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Abstract
Here we report on a simple-to-implement and cost-effective approach for laser pulse contrast enhancement, based on χ(3)

nonlinear self-focusing effect. An intentionally induced and gently controlled self-focusing in a thin glass, transforms
the time dependant intensity into variation in beam divergence. Followed by a spatial discriminating filter, only the
strongly focused fraction traverse the setup, at the expense of efficiency. Numerical model, accounting for pulse and
material parameters via Gaussian ABCD matrix, provides an estimate for the instantaneous beam waist and transmission
efficiency, which enables us to evaluate a resulted contrast enhancement. The estimated contrast enhancement spans
between half to 2.5 orders of magnitude, in conjunction with ∼ 90% - 25% estimated efficiency, depending on pulse
parameters. In a preliminary experiment we demonstrated the effect with 10s µJ sub GW regime with ∼ 40% efficiency
and ≥ 20 dB contrast improvement.
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1. Introduction

Since the appearance of high energy short pulse laser
systems based on Chirp Pulse Amplifiers (CPA) [1], it became
apparent that certain experiments can be hindered by pulse
parts that are not confined to its peak vicinity. It is therefore
important to define the pulse contrast ratio, i.e., the ratio
between the peak intensity and intensities extended towards
the pulse pedestals. As a result, high field experiments made
pulse contrast a property of vast importance. In that context,
the most demanding experiments are those involving the
interaction of intense light with solids [2,3], as they start to
dissociate into plasma. Typically, solid targets experience
coulomb explosion under intensities of above 1010 and 1013

W/cm2 [4] for nanosecond (ns) pedestals or picosecond (ps)
pre-pulses, correspondingly [5]. Once the plasma becomes
over-critical, i.e., plasma density scale length increases,
interaction is hindered. Hence, when intensities are on the
order of 1017 − 1021 W/cm2, contrast level must be kept
above ∼ 107 − 1011, respectively.
In recent decades, several techniques were developed
to clean up pulses, most are based on instantaneous
gating mechanisms obtained by nonlinear (NL) processes.
Amongst one can list, e.g., Cross-Polarized Wave (XPW) [6],
Second-Harmonic Generation (SHG) [7], Optical Parametric

Amplification (OPA) and specifically, Optical Parametric
Chirped Pulse Amplification (OPCPA) [8–10], Plasma Mirrors
(PM) [11,12], Self-Diffraction (SD) [13–15], etc.. Methods such
as those mentioned above typically clean up pulses by two
to five orders of magnitude, with reported value of even 70
dB improvement [16] . As with most nonlinear processes, the
above mentioned cases are associated with significant energy
penalty, i.e. efficiencies ranging from tens to a few percent.
An exceptional result was introduced in 2020, with an
approach based on a spatial NL plasma lens that was
generated by an auxiliary pump beam [17]. While achieving
contrast enhancement (CE) of two orders of magnitude, with
impressive efficiency of ∼80%, such a method entails sig-
nificant awkwardness, as it necessitates slaving a secondary
laser into the process and accurately synchronize it with the
main laser.
The approach described in this work is based on a self-
induced single-beam effect, which is achieved by simply
activating the basic Kerr-lens (KL) effect [18] using peak
powers significantly beyond the critical peak power for self
focusing (∼4 MW for Gaussian beam in glass). Given thin
enough sample (i.e., before the beam collapse occurs inside
the bulk material [19]), followed by a succeeding spatial
filtration. Since the NL lens constitutes temporal-spatial-
temporal mapping, the latter filtration translates to temporal
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cleaning, as elaborated below. Obviously, such process
occur in-line, is self induced and requires no alignment
to achieve the effect. Although some similarities to the
above-mentioned plasma lens exits, the proposed method
is far easier to implement since it is a self-induced process
and doesn’t require any additional optically synchronized
sources, nor unique materials.
Using KL in the context of pulse cleaning was sought after in
a work published in 1975, in form of a numerical model that
simulated KL mechanism inside a laser oscillator for contrast
enhancement [20]. However, since the model was based
on blocking the center of the beam, it predicted optimal
operation only inside oscillators, whereas for amplifier
applications it is expected to introduce low efficiency.
Naturally, under much higher energies such process is
less attractive. This drawback can, in the present context,
be offset by certain variations in the model’s scheme, as
proposed here. Interestingly, in the recent decade, the
spatial beam aspect affected by KL was found to enhance
certain laser beam properties. Liu et-al have demonstrated
spatial cleanup, namely M² beam parameter reduction via
KL, induced by a short pulse in a multi-mode graded-
index fiber [21]. Against most of the CE efforts, intentional
reduction of pulse contrast via KL effect was demonstrated
in 2019 [22] with the purpose of measuring high pulse contrast
with a limited diagnostics. The current study follows
an alternative path to the latter, that with some further
modification, can achieve pulse CE.
In 2021, an experimental study on Kerr lens affect on CE
demonstrated the use of multiple plates and a succeeding
filter [23]. This study indeed confirmed the validity of
the self-focusing approach for CE. The work presented
here proposes a complementary approach, providing both
thorough numerical model, and a validation with a single
stage nonlinear element.

2. Kerr lens approach

Figure 1. An Illustration showing the spatial shaping of a Gaussian beam
affected by the temporal intensity change, which in turn modify the medium.

Here, we propose a method that uses KL to discriminate
between different time-varying pulse intensity levels. In a
simplified description, the technique is aimed to improve

contrast via gently controlled KL excitation in a relatively
thin dielectric, i.e. the beam experiences negligible
transverse variations while traversing a short path along the
dielectric. However, it induces angular convergence, as elab-
orated below. The method’s principle is of translating time
varying pulse intensity profile to corresponding variations
in its spatial dimensions, that is, beam waist size, and then
consecutively applying spatial filtration. The latter spatially
modifies parts that traverses the filter, which, in turn, affects
its temporal profile, correspondingly.
It is to be stressed out that as a by-product, the process
potentially involves excitation of nonlinear phase via SPM,
adding some B-integral as well as positive 2nd-order
dispersion to the pulse phase. This implies that in case
obtaining the shortest available pulse from the setup is
mandatory, some extra dispersion compensation may be
required.
The numerical model’s concept maintains two assumptions.
Firstly, the KL induced within a relatively thin dielectric
(”thin” refers here to negligible beam diameter variations
while traversing through the dielectric), that is, the beam
only obtains local angular bend and starts to converge.
Naturally, the physical process involves combination of
angular change and some diameter change. The propagation
stage where the waist is formatted occurs outside the sample,
(i.e. air or vacuum). As a byproduct, there is a lower risk of
further nonlinearities accumulation, or material breakdown
(air ionization starts at I> 1013 W/cm2). Secondly, the
instantaneous nature of the nonlinear susceptibility in the
dielectric, typically having a sub-femtosecond (fs) delayed
response [24], enables pulses that span around multi-10s fs
to ps time to experience instantaneous spatial variations and
thereby contrast cleaning regardless of preceding pulse parts.
Assuming sufficient pulse intensity is available, the under-
lying mechanism can be described as follows. Initially,
low-intensity pulse parts that are temporally far from the
main peak, nearly maintain their spatial properties as they
merely experience any Kerr non-linearity. As a result,
the beam divergence remains practically unchanged when
passing the dielectric. On the contrary, higher-intensity
parts, including the main peak, maintain enough energy
to excite KL, which in turn modifies the beam’s angular
propagation, and consequently, diameter. The process is to
be kept under gentle control, i.e. such that it is far enough
from initiating aggressive focusing and material breakdown.
Next, a spatial filter is applied such as e.g. iris / hard aperture,
to filter a portion of the Gaussian beam’s exterior, as shown
in Fig 1.
On the downside, one can list the inevitable addition of B-
integral to the pulse phase, potentially adding some temporal
phase structure, that temporally broadens the incident pulse
by slight up-chirp. The nonlinear B-integral phase addition
can be readily estimated via [25]: B = k0 · n2

∫
I(z)dz,

with k0 = 2π/λ0, accumulated along the pulse propagation
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axis inside the dielectric. Some compensation to the B-
integral issue can be realized by applying, e.g. controlled
pulse shaping techniques [26].
It is again pointed out that the assumed applied power level
does not lead to total beam collapse and optics damage.
Practically this can be handled by avoiding two distinct
criteria: intensities of I ≥ 1014 W/cm2 and fluences of
≥ 2 J/cm2 for sub ps pulses [27].
As a last remark, it is reasonable to argue that the suggested
method has several potential distinct benefits over well-
known methods due to its ease of implementation, very low-
cost components, and lack of the requirement of temporally
and spatially synchronizing the beams.

3. System schematics

The experimental scheme that exploits the temporal-spatial
pulse coupling is presented in Fig. 2.

We assume a collimated near-infra-red ultrashort pulse
with available peak power significantly beyond the dielec-
tric’s nonlinear critical power. In the first stage, the beam is
focused by a lens with a (linear) focal length fL. For beam
with a divergence angle θ (before the lens), the 4σ waist
(after the lens) is: 2w0 ≈ fL · θ, assuming small angles
approximation.

Figure 2. System schematics. fL: linear focal lens, w0: beam waist after
the lens, zglass: glass distance from w0, l: iris-to-glass distance (movable),
3rd AC: Third-order scanning autocorrelator.

Focusing the beam in the first stage is needed for initiating
the nonlinear mechanism, especially in the case of fairly low
pulse energies. Furthermore, as shown below, zglass the
glass distance from the waist is an additional tuning knob
for the intensity that provided by delicately moving the glass
along the beam.

Next, while the beam enters the nonlinear medium, new
converging beam trajectory is induced by the Kerr effect,
whose focal length can be calculated (assuming Gaussian
intensity shape) by the following equation [28]:

f−1
NL

=
8n2d

πw4
P (1)

where n2 is the nonlinear refractive index, d is the glass
thickness, w is the beam radius, and P is the instantaneous
laser power. Moving the glass piece with respect to the beam
waist position (zglass), raises several scenarios that can be

roughly divided into the following categories, depending on
the generated nonlinear focal length fNL:

(1) The nonlinear dielectric is located at zglass = fNL,
precisely compensate the linear lens power, yielding a
collimated beam (Fig. 3 (a));

(2) The nonlinear dielectric is located at zglass < fNL, not
compensating the linear lens and leading to a diverging
beam (Fig. 3 (b));

(3) The nonlinear dielectric is located at zglass > fNL,
refocusing and generating a new (nonlinear) beam waist
(Fig. 3 (c));.

Figure 3. Illustration of the three KL focusing scenarios, obtained by
varying the dielectric location with respect to the beam waist: (a) zglass =
fNL, (b) zglass < fNL, and (c) zglass > fNL. Where fL: linear lens
focal length and fNL: NL lens focal length. The dark red part represents
the peak of the pulse where most of the NL process occurs, whereas the
light red part represents lower powers and noises adjacent to the peak with
weaker effect.
A crucial parameter that is, to our approach, used as a metric for the contrast
change, is the peak - to - noise areas ratio at the hard aperture filtration plane.
This metric shall be an estimate to the filtering ratio which finally be related
to CE.

The temporal cleaning method provided in this study is
based on spatial separation, practically achieved via the
presence of an aperture. Looking at the three scenarios
illustrated in Fig. 3, it is argued that the highest area ratio
between peak (dark red) and noise (light red) is obtained in
case (C), and at the tightest non-linear focus. The area ratio
is as follow:

A′
peak

A′
noise

=
C2 + 2C2 l(N−1)

zglass
+ C2 l2(N−1)2

z2
glass

C2 + (l + zglass)2
+ (2)

+
z2glass + 2lNzglass + l2N2

C2 + (l + zglass)2

Where A = πw2, C = πw2
0/λ, and l is the iris distance

from the glass. N is defined here as: N = 1 − zglass/fNL.
Note that N = 0 , N > 0 and N < 0 refers to cases (a),
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(b), and (c) respectively. The full calculation is detailed in
appendix A.

As obtained from Fig. 4, for a given C (10.7 mm) and
zglass (6.3 mm) (according to system parameters provided
at Sec. 4) and various l, the ratio of A′

peak/A
′
noise has a

minimum. When traveling long distances (l of ∼ meters
scale), these minima are found around N = 0, i.e. ⇒ fNL =
zglass, corresponding to case (a), whereas if traveling small
distances (l of a few millimeters scale), minima are found
around N < 0, i.e. ⇒ fNL < zglass , that corresponds to
case (c). Additionally, for shorter iris-glass distances (l), the
areas-ratio minima values (the local dips in Fig. 4) further
reduces with lower N values, i.e., pointing on potentially
valuable CE trend. By setting the expressions of the latter
cases, one can claim that the fNL < zglass case is optimal
for discriminating between A′

peak and A′
noise, and therefore

the potential for CE, is reinforced. It is therefore that in this
work the most appealing approach to expect CE is under the
conditions of case (c), which indeed was selected.

Figure 4. Peak-to-noise beam area ratios under various iris to glass
distances (l) vs. N. Values of zglass and C were set to 6.3 mm and 10.7
mm, respectively.

By inserting the explicit expressions: N(zglass) =
1 − zglass/fNL and fNL(zglass) = B

(
1 + (zglass/C)

2
)2

where, B = (πw4
0)/(8n2dP ) to Eq. 2, the following

expression is obtained (see Appendix. B):

A′
peak/A

′
noise = (3)

C4l(C4l − 2B(C2 + z2glass)(C
2 + zglass(l + zglass)))

B2(C2 + z2
glass

)3(C2 + (l + zglass)2)
+1

Obviously, one may seek for a case where the smallest
A′

peak/A
′
noise ratio as function of glass-iris distance (l), as

well as nonlinear medium (glass) position (zglass) can be

obtained. A plot of Eq. 3 is shown in Fig. 5 via a 2D
representation.
In addition, the location of the newly formed waist at the
pulse peak (zw0,NL

) can be expressed as follows (further
details in Appendix. B):

zw0,NL
=

zglass − fNL

(1− zglass/fNL)2 +
(

2C
πfNL

)2 + fNL (4)

The expression in Eq. 4 is represented by the white dashed
curve in Fig. 5. It can be seen that the white line is
located exactly on the minimum of A′

peak/A
′
noise approving

the basic estimation provided above, that the iris optimal
location is at the NL peak waist location zw0,NL

.

Figure 5. Two dimensional plot, showing peak-to-noise area ratio vs. l and
zglass. White dashed curve: l = zw0,NL

It is since that latter outcome, that the hard aperture iris
was selected to be positioned at the very spot where KL-
induced waist position occur: l = zw0,NL

.
We would like to draw ones attention that in order to apply
the model’s initial assumption for thin glasses, zw0,NL

must
have a lower boundary with respect to the glass thickness
d . Assuming up to 10% beam diameter narrowing from the
initial value, running a beam propagation code that tracks the
spatial pulse dynamics [29] the aforementioned requirement is
satisfied under the limit (see Appendix. C) :

zw0,NL
> d/2

Thus, this limit is used in what follows according to the
presented model.
In another aspect, the iris aperture size constitutes a trade-off
between efficiency and CE, since larger aperture transmits
more energy whereas a smaller aperture increases CE.

At low intensities, the iris blocks the majority of the
emerging beam as its diameter (and area) is smaller relative
to the pulse beam area at this position. On the contrary, near
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the intensity peak, majority of the beam energy is confined
to the nonlinear waist wNL, efficiently traverses the iris, i.e.
experiencing minimal attenuation.

4. Numerical model

In this section, a numerical model with parameters resem-
bling those of the available laser system was established to
evaluate the expected CE.
A temporal and spatial Gaussian shapes were assumed. Next,
some temporal noise features were artificially added to the
pulse vicinity, in order to represent non-ideal contrast. Noise
levels are specified below. The time profile included: firstly,
a sharp peak of some 100s fs duration that is typical to Yb
doped glass amplifiers, accompanied by a time-exponential
coherent pedestal (CP) that is typically reported to surround
the peak vicinity by several 10 ps. While presented on a
power scale, the CP has a linear skirt-like shape (Fig. 6).
A lower noise pedestal was also introduced to represent
the longer-term amplified spontaneous emission (ASE) noise
in the amplifiers. This noise level typically spans multi
hundreds of ps from both sides of the peak.

Figure 6. Pulse power vs. time. Blue: Numerically produced contrast trace
of power vs. time, on a normalized power scale. Orange: A reference 4
MW power level.

In recent decade, studies pointed out that CP is attributed
mainly to grating irregularities and scattering found e.g. on
the groove edges [30], as well as imperfections in the (whole)
stretcher and compressor structures.
Based on reports [31,32] and experience with CPA lasers, the
CP and ASE were chosen in our model to have a levels of
-25 and -50 dB relative to the pulse peak.
The parameters that were used in the numerical model
are as follows: pulse energy E=1 mJ , central wavelength
CWL=1053 nm, divergence angle θ=2 milli-Radian (mrad),
and a time duration of 450 fs FWHM. The numerical

temporal pulse shape is presented on a power scale in Fig.
6. In our example case, the power at the pulse’s peak is ∼
0.664 GW after being adjusted to the chosen energy such that∫
P (t)dt = E, where P (t) and E are power and total pulse

energy.
In order to determine the appropriate zglass, fNL as a

function of zglass was calculated, based on Eq. 1. Beam
waist at the glass position was derived from:

w(z) = w0

√
1 + (

λ · z
π · w2

0

)2

where,

w0 ≃ 1

2
· θ · fL

while P was assumed to be the pulse peak power.

Figure 7. Kerr focal length as a function of glass distance from the beam
waist position (blue), crossed with the linear f = zglass plot (orange). The
intersection point of the two plots represents the precisely collimated case.

The resulted NL focal length as a function of zglass is
represented by the blue curve in Fig. 7. In order to visualize
the three different cases discussed above, f = zglass was
plotted in Fig. 7 (orange curve). According to Fig. 7,
zglass has to fall within the range of 0 and 52 mm in order
to preserve the condition fNL < zglass. The simulation’s
input parameters were: fL = 60 mm, d=1 mm, θ = 2 mrad,
n2 = 2.6 · 10−20 m2/W (typical to fused silica around 1
µm).
To obtain optimal beam areas ratio, it is beneficial to follow
the A′

peak/A
′
noise curve (l = zw0,NL

, zglass) and seek for
a minimum, according to Eq. 3 at l = zw0,NL

(Eq. 4). As
presented in Fig. 8, zglass was chosen to be 6.3 mm.

Since in real scenarios it is not always possible to work
at extremely short distances, or extremely small apertures,
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Figure 8. Beam areas peak-to-noise ratio A′
peak

/A′
noise at l = zw0,NL ,

where minimum ratio obtained at zglass=6.3 mm.

slightly larger z can be chosen in order to shift the NL focal
position, or enlarge the NL focal size.
In what follows, calculation of the nonlinear focal length vs.
time are provided, where Eq. 1 is applied with the optimal
zglass (6.3 mm). It can be inferred from Fig. 9 that fNL

varies from sub 0.5 mm at the pulse’s peak, which indicates
an extremely intense effect, to approximately a meter, when
the laser power reduces below Pcr. Farther out, at tens of
ps, fNL extends to much larger values, practically implying
negligible effect.

Figure 9. Kerr focal length as a function of time, based on the numerical
pulse from Fig. 6 (blue).

In order to estimate the spatial filtration effect, the NL
beam waist diameter was calculated, as well as the nonlinear-
induced waist position (with respect to the nonlinear dielec-

tric), according to Gaussian beam propagation equations [33]:

z0NL(t) =

(w0NL(t)

w0

)2
· (|z| − fNL(t))

 + fNL(t) (5)

where the nonlinear waist w0NL
is obtained by:

w0NL(t) =
w0√(

1− z
fNL(t)

)2
+

(
z0

fNL(t)

)2 (6)

and z0 = πw2
0/λ is the Rayleigh length produced by the

linear lens.
The calculated position of the new waist at the peak (t=0)
was zw0,NL

(t = 0) = 0.5 mm for the resulted fNL

mentioned above. It is noted that the waist position turned
out to be slightly larger (fNL ∼ 0.48 mm), as a result of
the preceding divergence. To obtain the strongest nonlinear
gating discrimination (for the specific chosen parameters) as
explained in the preceding section, the position of the hard
aperture filtering was set to be zw0,NL

(t = 0).
Next, the instantaneous beam radii, obtained at the iris

plane, were calculated using the following equation:

w(z = zw0,NL
− zw0,NL

(t = 0), t) = (7)

w0NL
(t)

√
1 +

(
zw0,NL

(t)− zw0,NL
(t = 0)

z0NL
(t)

)2
where z was selected to be the distance between the iris plane
(zw0,NL

(t = 0)) to the time-dependent NL beam waist, and
z0NL

is the NL Rayleigh length induced by that same Kerr
effect.
Following the calculated waists w0NL

, a two-dimensional
spatial-temporal Gaussian beam shape was generated. The
spatial part can be described as follows:

I(x, y) = I0,0(t)e
(−2·(x2+y2)/w(zw0,NL

(t=0),t)2) (8)

where I(t) is the time pulse intensity.

Figure 10. Sum of the 2D generated Gaussians at the iris plane in top (a) and
side view (b). Dashed curve represent the normalized pulse shape assuming
no NL effect.
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The sum of all time frames at the iris plane is represented
in Fig. 10. As can be seen, the final shape resembles a
Gaussian, albeit with a somewhat sharper center.
In order to simulate the hard aperture spatial effect, a
2D circle with varying radii was (numerically) spatially
multiplied by the 2D beam shape, in different pulse times.
Fig. 11 represents this projection on x axis in different
times (colorful plots), while the iris itself is represented by
the black rectangle. As can be observed, the spatial pulse
generated at t=0 (Fig. 11 yellow), practically completely
traverses the aperture, whereas the spatial pulse preceding
the peak by t=-61.6 ps (Fig. 11 purple) or earlier suffers a
considerable blocking.

Figure 11. Spatial Gaussian pulses after experiencing the NL lens projected
at the iris plane. The colored curves represent spatial pulses at various times.
The (numerical) iris is represented by the black curve.

5. Results

A two stage computation was carried out in order to produce
the temporal pulse profile following the spatial filtration. The
iris aperture and the pulses beam shape were first spatially
multiplied, and then the beam’s spatial domain was inte-
grated - I(t) =

∫ ∫
I(x, y, t)dxdy to preserve only temporal

dependence. Displaying the latter with unity normalization
on power scale provided the temporal contrasts, for four
different aperture sizes. The resultant plots are shown in Fig.
12

Figure 12. Contrast traces before (blue) and after KL effect and hard
aperture filter, for 70 µm (orange ), 34 µm (green), 10.6 µm (yellow) and
4.8 µm (purple) aperture diameters, applied upon the numeric Gaussian
input beam. Inset: same plot in time scale of a few ps surrounding the peak,
provided for a more detailed observation.

In addition, in order to complete the performance esti-
mation, the whole process’s efficiency was calculated by
extracting the ratio of the transmitted energy to the incident
energy, using the following integration:

η =

∫
Pclippeddt∫
Pindt

(9)

Where the integrals limits in the current work were taken
to within the pulse FWHM.

The aforementioned integration was carried out using a
variety of aperture radii, considered in ascending order,
from largest to smallest, associated to highest-to-lowest
transmission, correspondingly.
For aperture diameters of : 70, 34, 10.6 , and 4.8 µm,
the obtained CE factors were 5, 10, 20, and 25 dB, with
corresponding efficiencies of 90%, 74%, 44%, and 23%
(within FWHM pulse range) (Fig. 12). Considering different
energy integration criterion, e.g. 10% power drop, yields
somewhat different efficiencies: 82%, 64%, 36%, and 19%,
for the same iris diameters, respectively. Of cause, as
application demands, various energy integration criteria can
be set.

It is however stressed out that the peak vicinity has
the pronounced effect on the experiment, thus longer time
consideration can be of a lesser value.

It is worth mentioning that according to simulation results,
it can be concluded that a need for small apertures may be
impractical. A simple way around this obstacle is applying
a magnification (e.g.: an imaging stage), allowing the use of
larger apertures in a real experiment.
Next, an experimental setup was set in order to validate the
applicability of the above model. A full description of the
experimental system can be found in Sec. 3.
The laser setup parameters are as follows: A Yb-fiber CPA
with a center wavelength of λ = 1.03 µm, pulse duration of
∼ 450 fs (FWHM), a 4σ divergence angle of θ = 2.3 mrad
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at the output of the CPA’s compressor, and controlled pulse
energies of up to several 10s of µJ.
A baseline reference contrast was set as the raw unfiltered
CPA pulses, needed to be compared with respect to pulses
that experienced the nonlinear effect, as proposed in the
model. For evaluating the results, a 3rd-order scanning
AC was used (Ultrafast-Innovations ”Tundra”) with optical
hardware dedicated to the 1 µm vicinity [34]).

Figure 13. Measured pulse contrast before (blue) and after the KL effect
and the clipping aperture (orange).

According to the experimental result that are plotted in
Fig. 13, the original laser pulses yielded contrast values of
around 104 with respect to the noise level, when observed
± 100 ps farther away of the peak, which is very typical to
Yb fiber CPA laser systems. Further details of the scheme
are provided in the following text. The linear lens’s focal
length fL was selected to be 100 mm and the NL dielectric
piece was a 0.25 inch of uncoated fused silica. The output
pulse measured after the KL and a 400 µm iris aperture is
represented by the orange curve in Fig. 13. Where laser
input energy E=10.5 µJ, glass location Zglass=3 mm, and
iris location l = 7 mm. As shown, the pulse contrast was
increased by nearly two orders of magnitude to ∼ 10−6,
while the measured efficiency (estimated via average power)
was 40% using uncoated glass (additional 8% efficiency can
be excepted).
As for the nonlinear phase induced by the setup, the given
parameters yield ∼1 Radians, which hardly disrupt the time
pulse shape, and therefore its contrast as well.

It should be noted that in the experiment, lower pulse
energies, and therefore, thicker glasses were applied, with
refer to the model’s example. It is to be stressed out
that at this early stage of the study, the model refers to a
simplified mechanism, in which intra-glass beam variation
were negligible. In a succeeding work, a more mature model
shall cover more complexities, including the processes ac-
cumulated within the glass. Such progress shall enable

to validate the experiment more accurately. Additionally,
energy upgrade of the scheme shall enable to operate with
thinner glasses and meet cases more overlapping with the
numerical model.

6. Conclusions

To conclude, a cost effective concept for CE, based on
KL is proposed. Its attractiveness is based mainly on
its simplicity and small number of components, basically
nonlinear glass piece followed by a hard aperture. By
correctly placing the components in accordance with specific
pulse parameters the effect can be enhanced. An underlying
theoretical and numerical descriptions was provided and
expressed via formulas, and a numerical support. The
method is based on the temporal dependence of the non-
linear effect. This dependence is transformed into spatial
one, which is manifested back to provide the cleaner time
profile. While a new spatial beam waist is created at the
time-peak of the pulse (under certain conditions of z <
fNL), the weaker and noisy parts, farther from it, hardly
induces any spatial changes. Therefore, while the peak
traverses the aperture almost entirely, the noise (weaker)
part experiences strong losses, resulting in an overall CE.
The current numerical model works as follows: it translated
the instantaneous pulse’s intensity into 2-D spatial beam
distribution variations, followed by 2-D multiplication by
a hard clip circular aperture. Finally, data is returned to
the time domain by spatial integration. In comparison to
other CE techniques (e.g., OPA, XPW act.), one can realize
the attractiveness of the proposed approach, considering the
overall combination of CE degree, efficiency, and low cost.
The model predicts typical efficiencies that vary between,
e.g., 90%, for 5 dB CE, to 23% for 25 dB CE. In addition,
we conducted an experiment that confirmed the numerical
result, and demonstrated two orders of magnitude CE at
expense of 40% efficiency. As a final remark, it is further
stressed out that the technique is simple to implement,
not requiring beam synchronization or exotic materials.
Therefore laser labs can consider to benefit from CE upgrade
with good efficiency, that is to operate high energy CPA
systems with better performance. Further planned studies
are underway, one aims at expanding the numerical model
to cover thick glasses and another at empirically testing the
model under higher energies and different glass thicknesses.

A. Beam area calculation for pulse peak vs. noise for the
3 cases

A calculation for the beam area, assuming the formation of
a nonlinear lens in the glass - fNL at the pulse’s peak is
presented below.
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Figure 14. Diagram description of the system precisely at the pulse peak
time point, when a non-linear lens with a focal length fNL is produces.
fL: linear focal length (converging lens), zglass: glass distance from beam
waist (w0), l : distance from the glass where the area ratio was evaluated
(also, is the iris aperture location).

A Gaussian beam can be described by a complex parame-
ter q, which contains information both on beam radius w and
wave-front radius of curvature R [35]:

1

q
= −i

λ

πw2
+

1

R

As can be seen in Fig. 14, q is taken to be at the linear lens
focal plane fL, hence, R ⇒ ∞ and w = w0:

=⇒ q = i
πw2

0

λ
= iC

It is now possible to apply the ABCD matrix technique
for evaluating the pulse peak spatial propagation in the NL
process.(

Apeak Bpeak

Cpeak Dpeak

)
=

(
1 l
0 1

)
·
(

1 0
−1/fNL 1

)
·
(
1 zglass
0 1

)
That is:(
Apeak Bpeak

Cpeak Dpeak

)
=

(
1− l/fNL zglass + l − zglassl/fNL

−1/fNL 1− zglass/fNL

)
Let us define a variable: N = 1−zglass/fNL , [⇒ 1/fNL =
(1 − N)/zglass]: according to which, negative N values
expresses zglass > fNL (case (c) at Sec. 3), and vice versa.
Further developing the latter yields the following,

(
Apeak Bpeak

Cpeak Dpeak

)
=

1 + l(N−1)
zglass

zglass + lN
N−1
zglass

N


q′peak =

Apeakq +Bpeak

Cpeakq +Dpeak

where q’ represent the Gaussian beam at the iris location as
can be observed in Fig. 14. By definition:

1

q′
peak

= −i
λ

πw′2
peak

+
1

R′
peak

The following can be inferred:

⇒ Apeak = − λ

Im
(
1/q′

peak

)

where A′
peak = πw′

peak
2.

1

q′
peak

=
Cpeakq +Dpeak

Apeakq +Bpeak

Comparing only the imaginary parts:

Im

 1

q′
peak

 = Im

(
Cpeakq +Dpeak

Apeakq +Bpeak

)
=

= Im

(
CpeakiC +Dpeak

ApeakiC +Bpeak

)
=

= Im

(
(CpeakiC +Dpeak)(−ApeakiC +Bpeak)

(ApeakiC +Bpeak)(−ApeakiC +Bpeak)

)

= Im

CpeakApeakC
2 − iCDpeakApeak

A2
peak

C2 +B2
peak

+
Im

 iCCpeakBpeak +DpeakBpeak

A2
peak

C2 +B2
peak

 =
= C

CpeakBpeak −DpeakApeak

A2
peak

C2 +B2
peak

Therefore,

A′
peak = − λ

C

A2
peakC

2 +B2
peak

CpeakBpeak −DpeakApeak
=

− λ

C

(1 +
l(N−1)
zglass

)2C2 + (zglass + lN)2

( N−1
zglass

)(zglass + lN)−N(1 +
l(N−1)
zglass

)
⇒

A′
peak = λC + 2λC

l(N − 1)

zglass
+ λC

l2(N − 1)2

z2
glass

+

+
λ

C
z2glass + 2lN

λ

C
zglass +

λ

C
l2N2

In addition, a computation of the beam area farther from the
pulse vicinity (noise) is shown below, assuming no nonlinear
lensing occur within the glass.
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Figure 15. System diagram describing the low pulse intensities and noise,
where one assumes no generation of a non-linear lens fNL in the glass.
fL: linear focal length, zglass: glass distance from beam waist (w0), l
: distance from the glass where the areas ratio was evaluated (also is the
aperture position).

(
Anoise Bnoise

Cnoise Dnoise

)
=

(
1 l
0 1

)
·
(
1 zglass
0 1

)
=

(
1 l + zglass
0 1

)
⇒

Therefore, since q = iC as mentioned above:

q′noise =
Anoiseq +Bnoise

Cnoiseq +Dnoise
= iC + l + zglass

A′
noise = πw′2

noise = −λ · Im−1(1/q′noise) =

= −λ·Im−1 (1/(iC + l + zglass)) =
λ

C
(C2+(l+zglass)

2)

Resulting in:

⇒
A′

peak

A′
noise

=
C2 + 2C2 l(N−1)

zglass
+ C2 l2(N−1)2

z2
glass

C2 + (l + zglass)2
+ (10)

z2glass + 2lNzglass + l2N2

C2 + (l + zglass)2

B. Beam area calculation for pulse peak vs. noise as a
function of the glass and iris positions

Here an optimal iris position (l) and glass position (zglass)
are calculated, according to the peak-to-noise beam areas
ratio (expressions were obtained in Appendix A). Inserting
N = 1 − fNL/zglass to A′

peak/A
′
noise from Eq. 10,

Appendix A:

A′
peak

A′
noise

=

C2l2

f2
NL

− 2C2l
fNL

+ C2 + l2(1− zglass

fNL
)2

C2 + (l + zglass)2
+

2lz(1− zglass

fNL
) + z2glass

C2 + (l + zglass)2

In addition, fNL depends on z, according to the next
equation:

1

fNL
=

8n2d

πw4
P ⇒

fNL =
π

8n2dP

w0

√
1 +

(
λzglass

πw2
0

)2
4

=

=
πw4

0

8n2dP

(
1 +

(zglass
C

)2)2
= B

(
1 +

(zglass
C

)2)2
where B =

πw4
0

8n2dP
.

⇒ A′
peak/A

′
noise(zglass, l) = (11)

C4l(C4l − 2B(C2 + z2glass)(C
2 + zglass(l + zglass)))

B2(C2 + z2
glass

)3(C2 + (l + zglass)2)
+1

Moreover, the location of the new waist is:

zw0,NL
= (zglass − fNL)

(
w0NL

w0

)2
+ fNL

where:

w0NL
=

w0√
(1− zglass/fNL)2 +

(
2w2

0

λfNL

)2

⇒ zw0,NL
=

zglass − fNL

(1− zglass/fNL)2 +
(

2C
πfNL

)2 + fNL

The optimal iris position was obtained based on the
schematic shown in Fig. 5, Sec. 3. The value zw0,NL

results
in the minimal areas-ratio obtained in Eq. 11. By inserting
l = zw0,NL

into Eq. 11 one can obtain the optimal zglass
by finding the minimal area ratio. This can be done either
by plotting it as function of zglass (Fig . 8), or by taking its
derivative expression and setting to 0.
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C. Beam waist propagation inside the glass

Figure 16. Beam propagation simulation showing spatial pulse variations.
Starting from bottom: beam convergence is observed after leaving the linear
lens. ”Linear” waist is seen where the narrowest diameter is obtained (∼
upper 2

3
of the figure). Nonlinear dielectric is sketched in a cyan line. Major

convergence occur after leaving the nonlinear sample, in air. The nonlinear
waist is seen as the narrowest beam near the end (top)

In order to determine the shortest limit for zw0,NL where thin
glass approximation is valid, a beam propagation method
simulation [29] was used. The parameters that were con-
sidered were in consistence with the numerical simulation
parameters presented in Sec. 4.
As obtained from Fig. 16 the beam diameter drops by 90%
in the case were the glass thickness (d) is double the new
formatted NL waist (zw0,NL): d=2 mm and zw0,NL=1 mm.
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