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Abstract: This paper presents a KGW Raman laser with an external-cavity configuration at 
the 2 µm region. The Raman laser is pumped by an actively Q-switched Tm:YLF laser, 
especially designed for this purpose emitting at 1880 nm. Due to the KGW bi-axial 
properties, the Raman laser is able to lase separately at two different output lines, 2197 nm 
and 2263 nm. The output energies and pulse durations that were achieved for these two lines 
are 0.15 mJ/pulse at 21 ns and 0.4 mJ/pulse at 5.4 ns, respectively. To the best of our 
knowledge, this is the first time that the KGW crystal, which is well known for its wide use in 
shorter wavelengths, is demonstrated in a Raman laser in the 2 µm region. According to the 
achieved results and due to the KGW properties, it appears to be a suitable crystal for energy 
scaling and efficient Raman conversion in this spectral range. An estimation of the Raman 
gain coefficient for this wavelength is provided as well. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

In the past few years, there has been a growing demand for high-power lasers emitting at 
wavelength beyond 2 μm. Lasers at these “retina-safe” wavelengths have several potential 
applications, including LIDAR, biomedicine [1], polymer material processing [2], defense 
applications, and gas sensing [3]. Therefore, 2 µm (SWIR) coherent sources have drawn 
much attention, as is evident from the recent efforts to develop high power lasers that cover 
this spectral range [3-5]. 

Within this context, solid-state Raman lasers lend themselves to an interesting approach. 
They are efficient and useful high-brightness sources that extend the spectral span of existing 
lasers and fill the spectral gaps between them [6-9]. Compared to OPO, Raman lasers have 
advantages such as narrow linewidth, avoid of phase matching constraints, pulse length 
shortening and beam quality improvement through Raman beam cleanup [10]. However, 
solid-state Raman lasers are mostly implemented in the visible and ~1 µm regions and only 
rarely in the SWIR region. The reasons for this are two fold, first because the stimulated-
Raman-scattering (SRS) gain coefficient drops theoretically approximately according to 
inverse wavelength, resulting in lower efficiency compared to NIR Raman lasers [6]. The 
second reason is the lack of suitable high power pump lasers that have sufficient gain over the 
Raman stimulated threshold. Recent developments in high-power pulsed Tm-doped and Ho-
doped solid-state lasers in the 2 µm region [5,11-14] expands the availability of pump sources 
that can be used for efficient Raman laser conversion in this spectral range. Those lasers can 
be designed to have high peak power, linear polarization and narrow bandwidth, 
characteristics which are often required to match the Raman gain properties [6, 8, 15, 16]. 

The first demonstrations of SRS conversion in 2 µm using Tm:KY(WO4)2 and BaWO4 
crystals were reported more than a decade ago [17, 18]. However, these reports lack 
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information about the obtained output energy. Since 2013, several studies have demonstrated 
crystalline Raman lasers in the 2 to 4 μm region: A BaWO4 crystal pumped by a Tm:YAP 
laser emitting at 2360 nm achieved 0.31 mJ of output energy [19], a YVO4 crystal pumped by 
a Tm:YAP laser emitting at 2418 nm yielded 0.27 mJ of output energy [20], a BaWO4 crystal 
pumped by a Tm,Ho:GdVO4 laser emitting at 2533 nm obtained 0.31 mJ of output energy 
[21, 22], a BaWO4 crystal pumped by a Ho:YAG laser emitting at 2602 nm yielded 0.27 mJ 
of output energy [23], and a diamond crystal pumped by a tunable OPO around 2.4 µm, 
emitting from 3.38 to 3.80 μm attained up to 0.12 mJ of output energy [24]. The highest 
conversion efficiency of these lasers was 13.9% (6.8% efficiency from pump diode, for 
intracavity lasers). 

Except for the Ho:YAG/ BaWO4 and diamond laser [23,24], all these solid-state Raman 
lasers were implemented using an intracavity configuration, where the Raman medium is 
placed within the fundamental laser cavity, thus utilizing all the energy which exists inside 
the cavity. The external cavity configuration, in which the Raman cavity is separated from the 
fundamental laser, is more reliable from design considerations and alignment constraints. It 
facilitates the control of the pump power density in the Raman crystal, by proper design of the 
delivering optics between the fundamental and Raman lasers. In addition, with this 
architecture, it is easier to achieve mode matching and proper thermal management, since the 
two cavities are separated. 

The aforementioned works investigated 2 µm Raman lasing by using mainly BaWO4. 
Since it is possible to obtain SRS in a wide selection of Raman crystals, one should search for 
other Raman media with good conversion efficiency in the 2 µm. In this context, one of the 
most popular tungstate Raman crystals is potassium gadolinium tungstate (KGd(WO4)2 or 
KGW) owing to its good optical and thermal properties. The KGW has high damage 
threshold and its negative thermo-optic coefficient mitigates the onset of thermal lensing 
compared to other Raman crystals [6, 25]. Moreover, because KGW is biaxial, it has Raman 
interaction with two different vibrational modes (901 1cm−  and 768 1cm− ), yielding the 
option to obtain two different Stokes wavelengths by controlling the polarization of the pump 
[25]. To date, KGW has been used in the visible and 1 µm segment only and numerous 
reviews are available on the performance of this medium when pumped near 1 μm and shorter 
[6-9]. Approaching longer wavelengths in the 2 μm region using a KGW crystal is 
challenging because of the theoretically abovementioned dependence of the Raman gain 
coefficient on the wavelength. Based on experimental results presented in this paper, an 
estimation of the gain coefficient for the KGW at the 2 μm is provided for the first time. 

In this paper we present an external-cavity KGW Raman laser, pumped by an actively Q-
switched Tm:YLF laser which operates at 1880 nm with 1 kHz repetition rate. This Raman 
laser can operate at two different wavelengths. At the first operating wavelength of 2197 nm, 
we obtained an output energy of 0.15 mJ/pulse and a 5.4 ns pulse duration. At the second 
wavelength of 2263 nm, a higher energy of 0.4 mJ/pulse was reached; however, a longer 
pulse duration of 21 ns was measured. To the best of our knowledge, this is the first Raman 
laser in the 2 μm region based on a KGW crystal as an active gain medium. The use of KGW 
allows to achieve the highest pulse energy reported in this spectral region. Part of this work 
was presented at the ASSL conference in 2018 [26]. 

2. Experimental setup 

The experimental setup of the Raman laser and its fundamental pump source is shown in Fig. 
1. The fundamental laser is an actively Q-switched Tm:YLF laser with an end-pumped 
architecture. This laser was described in detail in a previous study [27]. Briefly, a 9 mm 
length Tm:YLF (3.5% at.) with a 3 × 3 mm2 cross-section, pumped by a 793 nm laser-diode, 
is used as a gain medium. Both the diode and Tm:YLF crystal are water-cooled to 19°C. The 
input mirror of the Tm:YLF cavity is a flat mirror that is coated for high transmission (HT) at 
793 nm and high reflectivity (HR) around 1900 nm. An output-coupler (OC) with a 200 mm 
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radius of curvature (ROC) that is coated for a partial reflection (PR) of 70% around 1900 nm 
is placed 200 mm from the input mirror. A water-cooled (19°C) acousto-optic-modulator 
(AOM), with an AO medium made of 45 mm long fused silica, is used as an active Q-switch. 
Two uncoated yttrium aluminum garnet (YAG) etalon plates, with 500 µm and 25 µm 
thicknesses, are inserted into the laser cavity to narrow the laser spectral line. When pumped 
by a maximum power of 15.6 W at 793 nm, an average power of 2.35 W is obtained at 1 kHz. 
The lasing wavelength is measured to be 1880 nm with a spectral width of ~0.15 nm with the 
etalon pair, whereas without them, the spectral width was ~1.4 nm. The pulse duration was 
measured to be 34 ns full width at half-maximum (FWHM). The laser beam is linearly p-
polarized. 

The output emission from the Tm:YLF is imaged by a pair of antireflective (AR) coated, 
biconvex lenses, to a spot diameter of ~220 µm in the center of the KGW crystal. Due to 
divergence of the beam, the beam size increases to 300 µm at the facets of the Raman crystal. 

A half-wave-plate (HWP) was added between the lenses to control the polarization 
orientation and enable switching between the two different Raman vibration shifts of the 
KGW crystal, thus enabling selective lasing at 2197 nm and 2263 nm. Such an external cavity 
configuration is advantageous for a two-wavelength Raman laser, since it allows for easy 
switching between the two Raman-shifted modes. Owing to losses from the optical delivery 
components from the fundamental laser to the Raman laser, the available maximal pump 
energy for the Raman laser is 1.99 mJ/pulse. 

 

Fig. 1. Schematic of external KGW Raman laser and its Tm:YLF fundamental pump laser 

A plano–plano mirror, AR coated at the fundamental wavelength and HR coated for 
2170–2700 nm, is used as an input mirror for the Raman laser cavity, and a plano–concave 
mirror with a 200 mm ROC is used as an OC. This mirror has PR-coating of 90% reflectance 
between 2170 and 2700 nm and HR coating at the fundamental wavelength, enabling double-
pass pumping of the 30 mm long KGW crystal, which is used as the active Raman medium. 
The crystal has AR coating for the fundamental and Raman wavelengths, and its cross-section 
is 7 × 7 mm2. This crystal is oriented for propagation along the b-axis, having 901 1cm−  shift 

and 768 1cm−  shift, for E  (electric field) perpendicular to the c-axis and a-axis, respectively 
[20]. As mentioned above, the control of the electric field polarization is facilitated using the 
HWP. The total Raman laser cavity length is 33 mm. The Raman beam waist diameter inside 
the KGW crystal is calculated by the ABCD matrix method to be 400 µm and 410 µm at 2197 
nm and 2263 nm, respectively. The Raman laser beam has negligible divergence along the 
cavity. In order to improve the mode matching, a wider spot size of the pump laser was also 
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length is defined by: eff effL LN= , where L is the crystal length and effN  is the effective 

number of passes of SRS radiation trough the cavity. effN  is given by: 

 
0

1
1 1

~ ln
25

r
eff

L

Rc
N

τ

−
  +  

  
 (1) 

where rL  is the optical length of the cavity, c is the speed of light, 0τ is the pump pulse 

duration, and R is the reflectance coefficient of the Raman cavity output coupler. 
Based on the measured parameters of 34 ns pump pulse duration, 90% output coupler 

reflectivity at the first Stokes wavelength, and a cavity optical length of ~6 cm, the effective 
number of passes of the SRS radiation trough the cavity is estimated to be ~120 passes. This 
number translates to an effective interaction length of ~360 cm for a 3 cm Raman crystal. For 
this calculation, we took the average value of the pump beam diameter in the cavity (260 µm) 

From these numbers, given the measured intensity thresholds for the two crystal 
directions, the Raman gain coefficient of KGW at 1.9 µm can be given a lower bound of 1 
cm/GW for the 786 cm−1 mode, and 0.9 cm/GW for the 901 cm−1 mode. We should 
emphasize that this is only a first order approximation, and should be refined by further 
measurements. Moreover, it should be pointed out that, according to Reference [31,32], the 
estimated coefficient presented here is an effective Raman gain coefficient and not the 
material gain coefficient of the medium, due to the gain reduction factor arising from the 
spatial and spectral mismatch between the pump beam and stokes beam. 

Similar calculation, relying on the same method, for the BaWO4, yielded a gain 
coefficient of 1.1 cm/GW for slightly longer wavelength of 1.94 μm [19]. These values show 
that the gain difference between the KGW and the more popular BaWO4 becomes less 
significant in the SWIR region. Moreover, the superior damage threshold of KGW confers to 
this medium an important advantage in power scaling. 

Another important insight from the results that should be discussed is the lower threshold 
observed at the 2197 nm line compared to the 2263nm line. This is in accordance with the 
higher gain coefficient of the 768 1cm−  shift compared to the 901 1cm−  shift reported for 
1064 nm [6]. The results presented here support this ratio between the two lines also for this 
spectral range. However, despite the lower threshold for the 2197 nm line, the 2263 nm line 
exhibits higher output energy at maximal pump pulse energy. An additional noticeable 
difference is the pulse duration measured for the 2197 nm line which is much shorter than that 
measured for the 2263 nm line. These two observations may suggest that for the 2197 nm line 
a 2nd Stokes conversion builds up inside the cavity, and decreases the output level of the first 
Stokes. The 2nd Stokes wavelength is 2643 nm which is inside the OC reflectivity range, 
hence can be sustained by the SRS process. Note that this wavelength is partially absorbed by 
the fused silica substrate of the OC, hence attenuated by ~40%. Contrarily, for the other 
Stokes line at 2263 nm the 2nd Stokes is at ~2840 nm which is not reflected by the OC, hence 
all the available Raman gain is channeled into the 1st Stokes. This may explains why the 2263 
nm line is stronger than the 2197 nm line. This assumption should be confirmed with 
advanced spectral measurements in future work. 

Unfortunately, due to technical difficulties and limitations on setup and measurement 
devices, the 2nd Stokes was not observed and measured. However, to demonstrate the effect of 
pulse shortening due to 2nd Stokes generation a numerical simulation was run. In the 
simulation the Raman intensity coupled propagation equations [33] of the pump, 1st and 2nd 
Stokes are solved. The Gaussian temporal shaped pump pulse is divided into short time slices, 
each one equals to double pass duration in the cavity. For each time slice the differential 
equations are integrated, taking into account cavity boundary conditions, where the results of 
previous time slice integration serve as an initial condition. The simulation doesn’t take into 
account transverse effects such as diffraction and modes overlap between pump and Stokes 
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