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From quantum ladder climbing to classical autoresonance

G. Marcus, L. Friedland, and A. Zigler
Racah Institute of Physics, Hebrew University of Jerusalem, 91904 Jerusalem, Israel

~Received 12 August 2003; published 21 January 2004!

The autoresonance phenomenon allows excitation of a classical, oscillatory nonlinear system to high ener-
gies by using a weak, chirped frequency forcing. Ladder climbing is its counterpart in quantum mechanics.
Here, for the first time to our knowledge, conditions for the transition from the quantum to the classical
regimes are outlined. The similarities and differences between the two approaches are presented.
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I. INTRODUCTION

The ability to place an atom or a molecule in a spec
state is of great importance in spectroscopy and chem
dynamics@1#. Direct excitation of high vibrational levels in
molecule by monochromatic radiation is inefficient, due
the small value of the transition dipole moment between
initial and final states@2#. An alternative is to create a cas
cading transition from the initial to the final state through
series of intermediate levels by using a chirped light pu
having a continuously varying frequency. Several auth
have addressed this problem, both classically and
quantum-mechanical terms@2–6#. In quantum mechanics th
method is usually referred to as ladder climbing, while
classical mechanics the term dynamic autoresonance is u
Studying the problem of molecular excitation by a chirp
pulse via classical mechanics yields a significant simplifi
tion and tractability of the details of the dynamics during t
excitation@4,5#. However, the question of whether the cla
sical approach is applicable in this case to quantum syst
such as molecules is still open. In the present work we
cuss the differences and similarities between the two
proaches and study the transition from ladder climbing
dynamic autoresonance, where classical mechanics ca
applied. We review the autoresonance and ladder climb
concepts in Secs. II and III. The two regimes are compa
in Sec. IV, while numerical illustrations of our analysis a
given in Sec. V. Finally, Sec. VI presents a summary of o
results.

II. CLASSICAL DYNAMIC AUTORESONANCE

Dynamic autoresonance~AR! is a method of exciting an
oscillatory nonlinear system to high energies by a weak d
ing oscillation, as well as controlling the excited state
changing the driving frequency. This method is general a
has been applied in many fields of physics, such as par
accelerators@7#, fluid dynamics@8#, plasmas@9,10#, nonlin-
ear waves@11,12#, and planetary dynamics@13,14#. For bet-
ter understanding of the classical AR and, later, the lad
climbing ~LC! phenomena, let us address the general pr
lem of controllable excitation of a nonlinear oscillatory sy
tem from rest in classical terms. One can apply a reson
driving force for excitation, i.e., tune the drive frequencyv
to the unperturbed system’s natural response frequencyv0 .
Nevertheless, in most cases, the nonlinear frequency
1050-2947/2004/69~1!/013407~5!/$22.50 69 0134
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destroys the resonance as the energy of oscillations
creases, limiting the response amplitude toO(«1/2), where«
is the driving amplitude. In order to overcome this limitatio
one could start in resonance and later change the driv
frequency, so that it continuously matches the instantane
frequency of the driven system. Such a feedback appro
allows one to stay in resonance for longer times, but f
quency chirping by itself is not sufficient for ensuring co
tinuing energy flow into the system. One also needs to c
relate the phase of the drive to guarantee the stability of
time varying, phase-locked excited state. Furthermore, in
croscopic systems such as atoms and molecules, it is us
difficult to both track and control the phase. Can we avo
using the feedback mechanism for strong excitation? T
answer to this question is positive, and the idea is based
slow passage through the linear resonance in the sys
instead of starting in resonance. One can show in this c
that trapping into resonance followed by a continuing a
stable self-phase-locking with the drive is guaranteed, p
vided the driving frequency chirp rate is small enough. T
slow passage through and capture into resonance yields
cient control of the energy of the driven system, as it au
matically ~without external feedback! adjusts its state to sta
in resonance with the chirped frequency drive. This is
essence of the dynamic autoresonance in the system.

For illustrating the AR in a simple case, consider a wea
nonlinear oscillator described by

utt1v0
2u1~cu21du3!/m50. ~1!

By decomposing the solution into harmonicsu'a0
1a1 cos(Vt)1a2 cos(2Vt)1¯ and viewing the amplitudea1
as small, one can calculate the natural response frequen
the oscillator to second order ina1 @15#:

V'v0~12bca1
2!, ~2!

where

bc'
3

8 S c

mv0
2D 2

2
5

12

d

mv0
2 .

Now, consider a weakly driven oscillator

utt1v0
2u1~cu21du3!/m5~«/m!cosF E v~ t !dtG , ~3!
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wherev5v0(12at), and both the chirp ratea and « are
small. To solve Eq.~3!, we again expandu in harmonics:u
'a0(t)1a1(t)cos@u(t)#1a2(t)cos@2u(t)#1¯ but now view
both ai(t) and the frequency of oscillationsV(t)[du/dt as
slow functions of time. Inserting this expansion into Eq.~3!
and keeping resonant terms only yields the following sl
evolution equations:

a1t52
«

2mv0
sinF, ~4a!

F t5v0bca1
22at2

«

2mv0a1
cosF, ~4b!

where F(t)5u2*v(t)dt is the phase mismatch and@ # t
stand ford@ #/dt. At this stage, we introduce the dimensio
less time t5a1/2t, the driving parameterm5 1

2 («/mv0)
3(v0bc)

1/2a23/4, and the rescaled complex dependent va
able C5(v0bc)

1/2a21/4a1 exp(iF). This allows us to con-
vert our two real equations~4a! and ~4b! into one complex
equation forC, with m being asingleparameter in the prob
lem:

iCt1~ uCu22t!C5m. ~5!

Equation~5! has two nonvanishing asymptotic solutions
t→1`. One is the bounded solutionC5a1 exp(2it2/2),
where the phase mismatchF[argC52it2/2 is growing
continuously. The second solution isC5t1/2, where the am-
plitude a15t1/2 is growing in time, but the phase mismatc
remains zero. The transition between the bounded and
bounded solutions for a given initial conditiona150 at t
→2` ~the oscillator is at rest initially! is controlled by
single parameterm in Eq. ~5!. One finds numerically that the
bifurcation occurs atm th'0.41. Above this value, the phas
locking persists and the amplitude grows continuously, wh
below m th the excitation dephases from the drive and sa
rates. By returning to the original parameters, we find
threshold forcing amplitude

« th50.82m~v0 /bc!
1/2a3/4 ~6!

for having continuing phase locking~autoresonance! in the
system. Alternatively, given the driving amplitude«, one can
achieve phase locking and growing amplitude excitati
provided the driving frequency chirp rate is sufficient
small,

a,a th51.303~«/m!4/3~bc /v0!2/3.

Finally, we present a more physical argument@7,16# for
estimating the threshold for autoresonance in the system.
sume a continuing phase locking in the system, so that
phase mismatchF remains bounded and small,uFu!p,
while the amplitudea1 is a slow function of time. Then Eq
~4b! can be approximated as

F t'b̃ca1
22at2

«̃

2a1
, ~7!
01340
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which, upon differentiation and use of Eq.~4a!, yields

F tt'2SsinF2a, ~8!

where «̃5«/mv0 , b̃c5v0bc , and S(t)5 «̃@ b̃ca1

1 «̃/(4a1
2)# is a slow function of time. Equation~8! repre-

sents an effective adiabatic pendulum problem for the v
ableF. It shows that in the phase-locked state,F oscillates
around some average, provided the effective tilted cos
potential

Veff5aF2ScosF ~9!

governing the dynamics ofF has potential minima. The con
dition for existence of minima isS.a. On the other hand
the function S as a function ofa1 has a minimumSm

53/2«̃4/3b̃c
2/3 at a1m51/2(«̃/b̃c)

1/3. Then the requirement fo
having effective potential minima at all stages of evolutio
i.e., Sm.a, yields «̃.(2a/3)3/4b̃c

21/250.738a3/4b̃c
21/2.

Thus, to within a few percent in the coefficient, we recov
the above-mentioned threshold condition~6!.

III. QUANTUM-MECHANICAL LADDER CLIMBING

The LC phenomenon is, in some sense, the quantum
log of the classical dynamic AR. The quantum energy lev
of the nonlinear oscillator described by Eq.~1! are @17#

En'\v0@~n11/2!2bq~n11/2!2#, ~10!

wherebq5(\/mv0)bc .
This distribution of levels can be viewed as a ladder

which the distance between adjacent steps decreases a
climbs to higher energy. In order to continue from one step
the ladder to another, one has to adjust the driving freque
so that initially it matches (E12E0)/\ and, after the prob-
ability of finding the system in level one reaches uni
change the driving frequency to match (E22E1)/\, and so
on. Equation~10! defines the transition frequency:

vn,n115~En112En!/\5v0@122bq~n11!#. ~11!

Therefore, at every step, one has to change the driving
quency by 2v0bq , wait a certain time until the probability
for transition from leveln to level n11 approaches unity
~but not more than this time, since otherwise the probabi
of returning to leveln starts to increase!, and change the
drive frequency again. This is a very different strategy
compared to the classical AR, where the frequency is va
continuously without any feedback information being nec
sary during the excitation process. The question is how
citation of the quantum nonlinear oscillator proceeds if o
passesthe transition frequencies by continuously varying t
driving frequency. Prior to discussing this issue, it is use
to introduce three relevant time scales in our problem, i
the Rabi time scaleTR , the sweep rate time scaleTS , and
the nonlinear transition time scaleTNL , which are defined as
follows:

TR51/VR5A2m\v0/«, ~12a!
7-2
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TS51/Aa, ~12b!

TNL52v0bq /a52\bc /ma. ~12c!

From the Landau-Zener theorem we know that effici
population transfer by a chirped pulse in two-level syste
can be achieved@18,19# if VR

2/2a.1. In terms of the above
mentioned time scales this condition can be expressed a

TR,
TS

&
. ~13!

Note thatTS is the characteristic time for population transf
within the two-level system driven by chirped frequency
diation, whileTNL is the time necessary for the chirped fr
quency to pass the nonlinear shift between two adjacent
ergy levels. Therefore, the condition

TS,TNL ~14!

guarantees completion of the population exchange betw
two adjacent levels before the varying driving frequen
passes the resonance with the next transition. Note that
~14! is only a necessary condition for being in the LC r
gime, where successive resonant transitions between a
cent levels are effectively independent. A stronger, but su
cient, condition must take into account what usually
referred to as thewidth of the resonance. In other words,
have the LC process, the driving amplitude must be su
ciently small, so that only two adjacent levels are coupled
each given time of chirped excitation. We shall discuss t
effect and find a stronger inequality to replace~14! for the
LC in the following.

IV. TRANSITION FROM LC TO AR

At this stage, we further discuss the LC versus AR
gimes and the transition from one regime to another. F
we focus on the condition for classicality in our problem
Application of the classical theory requires mixing~cou-
pling! of many levels at all times. In our case, the drivin
force amplitude is a parameter that can cause such mixin
other words, for classicality, thewidth of the resonance
should be sufficient to include, in addition tovn,n11 , the
resonance atvm,m11 , where (n2m) is the number of levels
mixed by the driving force. From a detailed analysis
Goggin and Milonni@20#, the condition for a simultaneou
resonance with the two transitions is

«A\/2mv0.2\v0bq~n2m!2. ~15!

If we set the transition to the classical behavior at (n2m)
51, we can write this condition in terms of our characteris
timesTR , TS , andTNL as follows:

TS
2/~TRTNL!.1. ~16a!

The inequality~16a! will be the condition for classical be
havior of the system. The inverse inequality
01340
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In

TS
2/~TRTNL!,1 ~16b!

means decoupling between the adjacent resonances. T
fore, Eqs.~13! and ~16b! comprise a set of inequalities de
fining the LC regime@note that~16b! is a stronger inequality
than ~14! and thus replaces the latter at this stage of disc
sion#.

Next, we write the classical condition for being in the A
regime, i.e.,

«.« th , ~16c!

where the threshold driving amplitude« th is given by Eq.
~6!. By using our three characteristic time scales,~16c! be-
comes

TR
2/~TSTNL!,1.48. ~16d!

Remarkably, the Planck constant present inTR andTNL can-
cels in ~16d!. Thus, conditions~16a! and ~16d! define the
regime of classical AR.

At this stage, to visualize the different regimes of ope
tion, we introduce two dimensionless parametersP1
5TS /TR andP25TNL /TS . The pair of inequalities~13! and
~16b!, which guarantee efficient continuing excitation in th
LC regime, can be written in terms of these parameters

P1.& ~17!

and

P2.P1 . ~18!

Similarly, the classical autoresonance conditions~16a! and
~16d! become

P2,P1 ~19!

and

P2.0.67/P1
2. ~20!

All these inequalities divide theP1-P2 parameter space into
a number of regions, as shown in Fig. 1. The region cor
sponding to the quantum-mechanical LC is separated f
the classical AR region by the shaded transition area.
illustrate all these conditions in the next section, by prese
ing quantum-mechanical simulations for two sets of con
tions, as one crosses the boundary with either the LC or
AR regime.

Finally, we expect that the usual energy relaxation p
cesses in molecular systems will not affect the efficiency
excitation in either the AR on LC regime, provided the d
ration of the excitation process is short compared to the c
acteristic relaxation time scale.

V. NUMERICAL SIMULATION

Here we present the results of numerical simulatio
which test the above-mentioned predictions. We solved
normalized time dependent Schro¨dinger equation for a par
ticle in the Morse potential U(j)5(D/\v0)@12exp
7-3
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(2aj)#2 ~see the illustration in Fig. 2! perturbed by a spa
tially uniform, oscillating, chirped frequency driving force
so that the perturbing Hamiltonian is H8
5(«x0 /\v0)j sin(t20.5at2), wherex05A\/mv0.

We used the well-known Morse functionscn of the un-
perturbed oscillator to calculate the dipole matrix eleme
Hm,n5^cnujucm& and used this matrix in solving the vecto
equation@17#

iĊm5(
n

Hm,nCn , ~21!

FIG. 1. P1-P2 parameter space. The full circles correspond
thresholds found in numerical simulations. Open triangle, squ
diamond, and circle are points at which detailed simulation res
are shown in Figs. 3–6 below. The gray area is the transition
tween the quantum-mechanical and classical regimes. Note tha
linear oscillator limit requiresP2→0 and therefore cannot be i
neither LC nor AR regime.

FIG. 2. The Morse potential and its energy levels. One can
that the distance between adjacent levels decreases as one c
into higher energy levels on the ladder. Parameters areD
56.3\v0 anda51.
01340
s

where Cn are the complex amplitudes in the expansi
c(t)5(nCn(t)cn . We used the initial conditionsC051 and
Cn50, n.0, corresponding to the oscillator at rest. No a
tempt was made to deal with the continuum of states ass
ated with the dissociation. Figures 3–6 show the results
our simulation at four different points in theP1-P2 plane
~see Fig. 1!.

Figures 3 and 4 illustrate the quantum-mechanical reg
of operation with well-separated transitions between succ
sive levels. In contrast, Figs. 5 and 6 illustrate strong c
pling between many neighboring levels during the excitat
process, indicating the classical behavior.

e,
ts
e-
the

e
bs

FIG. 3. The results of numerical simulation with (P1 ,P2)
5(0.71,16.3)~open square in Fig. 1!. P1 is below the threshold for
efficient LC. The upper graph shows the probabilities of differe
levels as a function of time. The lower graph presents the energ
the oscillator as a function of time, as well as the maximum p
sible energy one could reach in the case of complete transfe
population between the levels.

FIG. 4. The same as Fig. 3 but at point (P1 ,P2)5(1.43,16.3)
~open diamond in Fig. 1!. P1 is above the threshold for efficient LC
7-4
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VI. CONCLUSIONS

~a! We have discussed two adiabatic counterparts yield
efficient excitation of oscillating systems from equilibriu
by passage through resonance, i.e., quantum-mechanica
der climbing and classical dynamic autoresonance.

~b! We characterized the process of chirped freque
excitation by three characteristic time scalesTR , TS , TNL ,
i.e., the Rabi, sweep, and nonlinearity time scales. Th
three times can be used to conveniently parametrize the
citation process in a dimensionless two-parameter spaceP1
5TS /TR andP25TNL /TS .

~c! Conditions for the transition between the quantu
mechanical and classical behavior in the process of adiab
chirped frequency excitation were found.

FIG. 5. The same as Fig. 3 but at point (P1 ,P2)5(1.49,0.21)
~open circle in Fig. 1!. P1 is below the threshold for classical AR
e
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~d! If the condition for classicality is met, a more tran
parent classical theory can be used instead of the quan
mechanical formalism. This yields significant simplificatio
and insight in analyzing the driven system.

~e! Finally, two main conditions define the region i
P1-P2 parameter space for efficient, chirped frequency ex
tation in either the LC or AR regime, i.e.,

P1.& and P1.
1

0.82AP2

.
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FIG. 6. The same as Fig. 3 but at point (P1 ,P2)5(2.17,0.21)
~open triangle in Fig. 1!. P1 is above the threshold for classical AR
-
,

r,
@1# A. Ben-Shaul, Y. Haas, K. L. Kompa, and R. D. Levine,Laser
and Chemical Change~Springer-Verlag, Berlin, 1981!.

@2# D. J. Maas, D. I. Duncan, B. R. Vrijen, W. J. van der Zand
and D. L. Noordam, Chem. Phys. Lett.290, 75 ~1998!.

@3# S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, Phys. R
Lett. 65, 2355~1990!.

@4# B. Meerson and L. Friedland, Phys. Rev. A41, 5233~1990!.
@5# J. M. Yuan and Wing-Ki Liu, Phys. Rev. A57, 1992~1998!.
@6# T. Witte, T. Hornung, L. Windhorn, D. Proch, R. de Vivie

Riedle, M. Motskus, and K. L. Kompa, J. Chem. Phys.118,
2021 ~2003!.

@7# M. S. Livingston, High-Energy Particle Accelerators~Inter-
science, New York, 1954!.

@8# L. Friedland, Phys. Rev. E59, 4106~1999!.
@9# J. Fajans, E. Gilson, and L. Friedland, Phys. Rev. Lett.82,

4444 ~1999!.
@10# J. Fajans, E. Gilson, and L. Friedland, Phys. Plasmas6, 4497

~1999!.
,

.

@11# I. Aranson, B. Meerson, and T. Tajima, Phys. Rev. A45, 7500
~1992!.

@12# L. Friedland and A. G. Shagalov, Phys. Rev. Lett.81, 4357
~1998!.

@13# R. Malhotra, Sci. Am.281~5!, 56 ~1999!.
@14# L. Friedland, Astrophys. J.547, L75 ~2001!.
@15# L. D. Landau and E. M. Lifshitz,Mechanics, 3rd ed.~Perga-

mon, Oxford, 1976!, Vol. 1, Chap. V, p. 87.
@16# L. Friedland and J. Fajans, Am. J. Phys.69, 1096~2001!.
@17# L. D. Landau and E. M. Lifshitz,Quantum Mechanics (Non

Relativistic Theory), 3rd ed.~Butterworth Heinemann, Oxford
1977!, Vol. 3, Chap. VI, p. 136.

@18# S. Chelkowski and A. D. Bandrauk, J. Chem. Phys.99, 4279
~1993!.

@19# J. R. Rubbmark, M. M. Kash, M. G. Littman, and D. Kleppne
Phys. Rev. A23, 3107~1981!.

@20# M. E. Goggin and P. W. Milonni, Phys. Rev. A37, 796~1988!.
7-5


