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Abstract
Recent studies have pointed out that highly cationic histones released by PMNs netosis may be 
major agents in autoimmune lupus since they have high affinity to various kidney sites and can be 
expected to play a key role in autoimmune glomerular disease.

Similarly to antibodies, cationic peptides such a nuclear histone can also act as potent opsonic agents 
capable of binding by strong electrostatic forces to negatively charged domains in immune complexes 
and in complement components resulting in their endocytosis and deposition in various parts of the 
kidney. It is also proposed that to prevent such events, highly anionic heparin and heparinoids, may 
be effective drugs since these may effectively neutralize histones activities but provided that agents 
such as steroids, methotrexate and colchicine, all potent inhibitors of neutrophils functions, and 
antibodies to TH1 cytokines be essential to treat nephritis and to prevent kidney failure. However, 
the main cause of kidney damage is eventually caused by the plethora of toxic pro inflammatory 
agents delivered by activated neutrophils and macrophages.

Introduction
In autoimmune lupus nephritis, activated neutrophils (PMNs) their released nets (‘netosis’) 

rich in a nucleosome and in highly cationic histones and in additional polycations, have been 
proposed to be involved as major key agents in the pathogenesis of lupus nephritis [1-4]. We 
here by propose a novel hypothesis to explain the mechanisms and pathogenicity of autoimmune 
nephritis. Localization in the kidneys of immune complexes and complement components from the 
circulation are seen mainly in the sub endothelial, mesangial, and subepithelial areas [3]. It is hereby 
suggested, that highly cationic agents such as histones [5], LL37, defensins and elastase released by 
activated PMNs nets (traps) [5-7], can act not only as bactericidal and cytocidal agents but, may 
also function as potent opsonins (opsonic agents) with properties similar to antibodies [8]. The 
polycationic opsonins can now bind by strong electrostatic forces to negatively-charged domains 
in immune complexes and in complement components facilitating their deposition (endocytosis) 
not only in subendothelial mesangial, and subepithelial areas of the kidney but paradoxically, can 
also induce their endocytosis by kidney cells [8-10] (see below) eventually causing renal damage 
and finally also renal failure. These novel suggestions originated from our previous observations 
showing that hemolytic streptococci, Candida albicans and even whole cell nuclei pre-coated by 
cationic polypeptides such as histones, could effectively bind to and also undergo endocytosis not 
only by professional phagocytes such as PMNs and macrophages but, also by endothelial cells, 
fibroblast and even by epithelial cells [8-10], However, as already proposed in many of our earlier 
publications, these were damage to mammalian cells seen in various inflammatory, infectious, in 
post infectious sequelae but, most probably also in autoimmune disorders, may be initiated by 
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a tights energy among the plethora of proinflammatory agonists 
released from activated PMNs and macrophages [11-14]. These 
agents include: histones, LL37, defensins, proteinases, reactive oxygen 
and nitrogen species, PLA2, lysophosphatides, fatty acids and many 
hydrolases [11-14]. Also, Th1cytokines generated can stimulate the 
recruitment, migration and localization in the kidney of additional 
PMNs which upon activation in the inflamed cites may further 
create waves of toxic pro inflammatory vicious toxic cycles [15,16]. 
To abolish or mitigate the toxic actions of the cationic opsonins, it 
maybe be advised that highly anionic heparin [17] be administered to 
patients as this may suppress tissue damage by its ability to strongly 
neutralize the synergistic toxic action induced by polycations. 
Also, heparin and heparinoids were shown to prevent the binding 
of immune complexes containing nucleosomal antigens to the 
glomerular basement membrane and thus delayed the onset nephritis 
[18]. An attention has also been focused on the role of electrostatic 
charges in the pathogenesis of immune complex-mediated tissue 
injury [19]. These authors have examined the ability of cationic 
histone and of the histone mimic poly L-arginine to modulate acute 
immune complex-mediated tissue injury. However, we propose 
that this is provided that in addition to anionic heparins [17-20] 
combinations among corticosteroids, methotrexate, colchicine and 
cyclophosphamide [21], but, also with additional suppressors of the 
PMNs functions chemotaxis and phagocytosis, and also anti TNF 
alpha [21], are administered to lupus nephritis patients.

It might be also be important, at this point, to note that 
the mechanisms of tissue damage in inflammation and in post 
inflammatory episodes induced by activated PMNs [11-14] and also 
in autoimmune episodes is highly similar to those seen in infections 
caused by group-A hemolytic streptococci [22]. In both cases, a 
typical synergy among secreted agonists is responsible for cell and 
tissue damage [12,22-23].

Conclusion
Several overlapping and also succession steps may help to explain 

the development of autoimmune nephritis.

1. Generation of autoimmune complexes and activation of 
the complement cascades [2,3].

2. The release from PMNs nets (netosis) of highly cationic 
toxic histones and formation of citrullinated histones [5-7].

3. Cationic Histone may also function as potent opsonic 
agents possessing properties similar to antibodies [8].

4. Opsonic histones, can function as opsonins and may 
interact with and also bind by strong electrostatic forces to 
negatively-charged domains on immune complexes and complement 
components, facilitating their binding, deposition and possibly also 
their internalization by kidney cells.

5. PMNs and Macrophages migrating to the kidney undergo 
activation to’ release into the surrounding media a plethora of toxic 
pro inflammatory agonists. These mainly include: cationic peptides, 
oxidants, proteinases, membrane -perforators phospholipases, 
fatty acids which may all act synergistically to injure heart valves, 
myocardial cells, joint synovial and also cartilage [11-15].

6. Protection against the progressing tissue damage 
in nephritis might be provided by highly anionic heparin and 
heparinoids [18-20] which can neutralize the toxicity of polycations. 

This is provided that these are also combined with drugs such as, 
steroids, methotrexate and colchicine and novel drugs [21]. All 
these potent anti-inflammatory agents may suppress chemotaxis, 
phagocytosis and alsoTh1 cytokines can be inhibited by drugs which 
affect leukocytes recruitment [21] heparins to suppress histones and 
also role in cell death [23].

7. Toxic oxidants and proteinases released by PMNs and 
macrophages may be controlled to some extent by multi drug 
strategies [23] and by the low molecular weight anti- oxidants: 
glutathione, ascorbate, N- acetyl cysteine as well as by certain plant 
polyphenols, and also by the anti proteinase, aprotinin and also by 
additional multidrug strategies [23].

8. Can we learn from the pathogenesis of group A hemolytic 
streptococcal infections how tissues are injured in post inflammatory 
sequelae [22].

Taken together, we may now conclude that similar mechanisms 
of tissue damage may also occur in rheumatoid arthritis, ulcerative 
colitis Crohn’s disease and perhaps also in additional autoimmune 
disorders.
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