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Abstract

The workload of a generalized n-site Asymmetric Simple Inclusion Process (ASIP) is
investigated. Three models are analyzed. The first model is a serial network for which the
steady-state Laplace-Stieltjes transform (LST) of the total workload in the first k sites
(k ≤ n) just after gate openings and at arbitrary epochs is derived. The former (just after
gate openings) turns out to be an LST of the sum of k independent random variables. The
second model is a 2-site ASIP with leakage from the first queue. Gate openings occur at
exponentially distributed intervals and the external input processes to the stations are two
independent subordinator Lévy processes. The steady-state joint workload distribution
right after gate openings, right before gate openings and at arbitrary epochs is derived.
The third model is a shot-noise counterpart of the second model where the workload at
the first queue behaves like a shot-noise process. The steady-state total amount of work
just before a gate opening turns out to be a sum of two independent random variables.

Keywords: ASIP queueing networks, Lévy networks.

1 Introduction

A tandem stochastic network is a linear set of n sites (queues) denoted Q1,Q2,...,Qn to which
a random stream of particles (or work) flows. Every site consists of a buffer and a gate behind
it that opens according to some stochastic process. Each site is characterized by some buffer
capacity Csite, denoting the maximal number of particles (amount of work) that the buffer
can hold and by Cgate, the maximal number of particles (work) that can pass through the
gate when it opens. Particles (work) flow into the system, usually to the first site, and then
move uni-directionally from one site to the next, until exiting the system. Three fundamental
models, distinguished by their Csite and Cgate values, have been analyzed in the literature:
The first is a Tandem Jackson Network (TJN), where particles flow into the first site according
to a Poisson process. The site capacities are Csite =∞ and Cgate = 1, while each gate opens
independently every exponentially distributed period of time, allowing at most a single particle
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(if any) to hop to the next site. The TJN [10] [11] is famous for its product-form solution for
the steady-state joint distribution function of the queue occupancies. The second model is the
Asymmetric Exclusion Process (ASEP), a fundamental model in non-equilibrium statistical
physics [13] [9], where Csite = 1 and Cgate ≥ 1. If the gate of Qi opens while the buffer of
Qi+1 is not empty, the particle in Qi is blocked. The third setup is the recently introduced
[14][15][17] Asymmetric Inclusion Process (ASIP), where both Csite =∞ and Cgate =∞. As
such, the ASIP fills the missing link between the TJN and the ASEP. The major difference
between the models is that in the ASIP, when the gate of Qi opens, all particles (work)
present there move simultaneously and instantaneously to the buffer of the next site, joining
the cluster of particles (work) there to form a larger cluster, while in the TJN or ASEP at
most one particle moves forward when the site’s gate opens. The ASIP may be considered
as an inclusion counterpart of the ASEP and as a batch-service counterpart of the TJN. It
was shown in [15] that, in contrast to the TJN, the ASIP does not admit a product-form
solution for its steady-state joint distribution function of the queue occupancies. However, it
admits a product-form solution for the site loads. ASIP’s limit laws were treated in [16] and
[17]. It was shown in [17] that, in a symmetric ASIP, the asymptotic probability that site k
is occupied is proportional to 1/

√
k. Occupation probabilities were further studied in [18].

The ASIP has been generalized in [5] to the case of general gate opening intervals, where gate
openings are determined by a Markov renewal process. The focus in [5] is on the steady-state
joint distribution function of the number of particles in the various sites. A very recent study
[3] analyzed occupancy correlations in the classical ASIP.

The current paper focuses on the analysis of workload in an ASIP network. Three mod-
els are considered. The first is a serial model for which the steady-state Laplace-Stieltjes
transform (LST) of the total workload in the first k sites is derived just after gate openings
and at arbitrary epochs. The second model is an ASIP model consisting of only two sites in
series, each with its own gate and a leakage of a fixed rate from Q1. Gate openings occur
at exponentially distributed intervals and the external input processes to the two sites are
non-decreasing Lévy processes. The steady-state joint workload distribution functions right
after gate openings, right before gate openings and at arbitrary epochs are derived. The
third model is a shot-noise counterpart of the second model where the leakage rate from the
first queue is linear in the workload and thus, in between gate openings, behaves like a shot
noise process. We obtain the steady-state joint workload LST just before and just after gate
openings. Sections 2, 3 and 4 treat Models 1,2 and 3, respectively.

2 Model 1: n queues in series

This section is devoted to an ASIP model consisting of n queues in series. The model is
described in Subsection 2.1. In Subsection 2.2 we derive an explicit expression for the steady-
state Laplace-Stieltjes transform (LST) of the total workload in the first k queues, just after
a gate opening. The workload LST in the first k queues at arbitrary epochs is derived in
Subsection 2.3. The steady-state joint workload LST right after gate openings is harder to
obtain. In Subsection 2.4 we provide a fairly detailed procedure for obtaining it in the cases
n = 2, 3.
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2.1 Model description

Consider the following model of n queues Q1, . . . , Qn in series. Each queue has one gate
behind it, which may be viewed as a server. Gates are closed almost all the time. When gate
i = 1, 2, . . . , n − 1 (the gate behind Qi) opens, all the work present in Qi is instantaneously
transferred to Qi+1. When gate n opens, all the work present in Qn instantaneously leaves the
system. After the transfer, the gate immediately closes again. Gate openings are determined
by a Markov renewal process. If, at some time t, gate i opens, then with probability pij the
next gate to open is gate j and the time until that gate opens is an independent random
variable distributed like Oij . We assume that the Markov chain governing the successive gate
openings is irreducible and we denote its steady-state distribution by πi, i = 1, . . . , n.

During an Oij period, work (sometimes denoted as fluid) may externally arrive at all
queues. The LST of amounts of work arriving to Q1, . . . , Qn during an Oij period is given
by Aij(s1, . . . , sn). Given Oij , these amounts are independent of amounts arriving during
previous periods. In addition, we denote the LST of the cumulative amount of work arriving
to Q1, . . . , Qk during an Oij period by Aijk(s) = Aij(s, . . . , s, 1, . . . , 1), where the last s occurs
at position k. Notice that one example is provided by an n-dimensional Lévy subordinator
process, possibly with dependence between amounts arriving at different queues and with
Laplace exponents which may depend on the type of gate opening interval.

We recall that we restrict ourselves to the case in which work from Qi can only move to
Qi+1, i = 1, 2, . . . , n − 1. That assumption will allow us to obtain exact steady-state results
for the total amount of work V(k) which is present in the first k queues right after a gate
opening (k = 1, 2, . . . , n). Our results will become somewhat simpler in the special case in
which the next gate opening is of gate j with a fixed probability qj , i.e., irrespective of the
index of the previous gate opening.

2.2 Analysis of the total workload in the first k queues

We are interested in the steady-state joint distribution of the amounts of work (V1, . . . , Vn)
just after a gate opening. To argue the existence of such a distribution, one can follow a
similar reasoning as in Section 2 of [5], that also considers an ASIP model of n queues in
series, but in which the focus is on customers instead of work/fluid.

In the present subsection we shall in particular focus on V(k) = V1 + · · ·+ Vk, namely, the
total amount of work in the first k queues right after a gate opening. It will turn out that
the analysis of V(k) can closely follow the reasoning for queue lengths in [5].

Introducing M , the index of the gate that has just opened, we consider

ξki(s) = E[e−sV(k)1{M=i}], k, i = 1, . . . , n, (1)

where 1{·} denotes an indicator. The fact that fluid can only move to downstream queues
(i.e., with higher index) will allow us to express all ξki(s) for a fixed k as functions of ξk−1,j(s)
and, inductively as functions of ξ1j(s), which can be determined explicitly.

Step 1: Determination of ξ1j(s), j = 1, . . . , n.
Obviously

ξ11(s) = P(M = 1) = π1 . (2)

Indeed, after gate 1 has opened, Q1 instantaneously has become empty. Now consider two
successive gate openings in steady state, the latter one being an opening of gate j. Summing
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over all possible gates i opened at the previous gate opening gives:

ξ1j(s) =

n∑
i=1

ξ1i(s)pijAij1(s) =

n∑
i=2

ξ1i(s)pijAij1(s) + ξ11(s)p1jA1j1(s), j 6= 1. (3)

Here we have employed Aij1(s), the LST of the amount of work arriving at Q1 during the
gate opening interval.

Introducing the (n− 1)-dimensional vectors

ξ1(s) = (ξ12(s), . . . , , ξ1n(s)), R1(s) = (p12A121(s), . . . , p1nA1n1(s)),

and with the matrix P1(s) of which the (i, j)th coordinate is pijAij1(s), we can write (3) as

ξ1(s) = ξ1(s)P1(s) + ξ11(s)R1(s), (4)

and hence, with I the matrix with ones on the diagonal and zeroes outside the diagonal,

ξ1(s) = ξ11(s)R1(s)(I − P1(s))
−1. (5)

All the terms in the righthand side of (5) are known; in particular, ξ11(s) = π1 is given in (2).
Hence we have determined ξ11(s), ξ12(s), . . . , ξ1n(s).

Step 2: Expressing ξkj(s) in terms of ξk−1,i(s), for i, j = 1, . . . , n, k = 2, . . . , n.
Considering two successive gate openings in steady state, the last one being of gate j, and
summing over all possible gates i for the first gate opening, we have for k = 2, . . . , n:

ξkj(s) =
n∑
i=1

ξki(s)pijAijk(s) =
∑
i 6=k

ξki(s)pijAijk(s) + ξkk(s)pkjAkjk(s), j 6= k, (6)

whereas

ξkk(s) =

n∑
i=1

ξk−1,i(s)pikAik,k−1(s). (7)

The explanation for the deviating terms (ξk−1,i(s) instead of ξki(s) and Aik,k−1(s) instead
of Aikk(s)) is that Qk has become empty right after an opening of gate k, so that the total
amount of fluid present in Q1, . . . , Qk equals the total amount present in Q1, . . . , Qk−1 after
the previous gate opening, plus the amount of fluid arriving in the first k − 1 queues.

Introducing the (n− 1)-dimensional vectors

ξk(s) = (ξk1(s), . . . , ξk,k−1(s), ξk,k+1(s), . . . , ξkn(s)),

Rk(s) = (pk1Ak1k(s), . . . , pk,k−1Ak,k−1,k(s), pk,k+1Ak,k+1,k(s), . . . , pknAknk(s)),

and with the matrix Pk(s) of which the (i, j)th coordinate is pijAijk(s), we can write (6) as

ξk(s) = ξk(s)Pk(s) + ξkk(s)Rk(s), (8)

yielding
ξk(s) = ξkk(s)Rk(s)(I − Pk(s))−1. (9)

4



Introducing
Ck−1(s) = (p1kA1k,k−1(s), . . . , pk−2,kAk−2,k,k−1(s), pkkAkk,k−1(s), . . . , pnkAnk,k−1(s)),
we can rewrite (7) as

ξkk(s) = ξk−1(s)C
T
k−1(s) + ξk−1,k−1(s)pk−1,kAk−1,k,k−1(s). (10)

We have thus expressed ξk(s) in terms of ξkk(s) via (9), and ξkk(s) in terms of ξk−1(s) and
ξk−1,k−1(s) via (10). Iterating, defining an empty product to be one and defining ξ0(s)C

T
0 (s)

to equal π1 for notational convenience, we obtain:

ξkk(s) =

k−1∑
i=0

ξi(s)C
T
i (s)

k−1∏
j=i+1

pj,j+1Aj,j+1,j(s). (11)

By carefully studying the structure of the above recursions, and introducing

Hi(s) = Ri(s)(I − Pi(s))−1CTi (s), i = 1, . . . , n,

the following holds:

ξkk(s) = π1
∑

`1,...,`k−1∈{0,1}

k−1∏
i=1

(`iHi(s) + (1− `i)pi,i+1Ai,i+1,i(s)), k = 1, . . . , n . (12)

With (12) and (9) we have a recipe for determining ξkj(s) explicitly, for k, j = 1, . . . , n.

Example. Let us consider the special case in which pij = p1j , ∀ i, j, and Aijk(s) = A1jk(s),
∀ i, j, k. Namely, the Markov renewal process that determines the gate openings and the
intervals in between has a simple structure. Each time the next gate opening is of gate j with
probability p1j , and the interval length until the next opening also only depends on j. In this
case we can obtain a simple expression for E[e−sV(k) ] =

∑n
j=1 ξkj(s). We have:

ξ11(s) = π1 = p11, (13)

and summing (3) over j = 2, . . . , n:

E[e−sV(1) ] =
n∑
j=1

ξ1j(s) = p11 +
n∑
j=2

p1jA1j1(s)E[e−sV(1) ], (14)

yielding

E[e−sV(1) ] =
p11

1−
∑n

j=2 p1jA1j1(s)
. (15)

Furthermore, summing (6) over j 6= k and using (7),

E[e−sV(k) ] = p1kA1k,k−1(s)E[e−sV(k−1) ] +
∑
j 6=k

p1jA1jk(s)E[e−sV(k) ], (16)

leading to the following recursive expression of E[e−sV(k) ] in terms of E[e−sV(k−1) ]:

E[e−sV(k) ] =
p1kA1k,k−1(s)

1−
∑

j 6=k p1jA1jk(s)
E[e−sV(k−1) ]. (17)
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Via iteration we obtain:

E[e−sV(k) ] =
k∏
i=1

p1iA1i,i−1(s)

1−
∑

j 6=i p1jA1jk(s)
, (18)

where A110(s) = 1.
Formula (18) reveals a decomposition property. That is, the LST is a product of k terms, all
of which are LST’s of random variables, and this implies that V(k) can be represented as sum
of k independent random variables.

2.3 The workload distribution at an arbitrary epoch

Armed with the LST’s ξki(s) from the previous subsection, we shall now derive an expression
for the steady-state LST χk(s) of the total workload in the first k queues at an arbitrary epoch.
In order to do this, we need to further specify the arrival process. Indeed, it clearly makes
a difference whether the amounts of work which arrive in the queues during a gate opening
interval Oij enter the system at the beginning of such an interval, or at the end, or according
to some other stochastic process. In this subsection we shall assume that the external arrival
process is an n-dimensional subordinator (hence a non-decreasing Lévy process) which may
vary from one gate interval to another. Denote the Lévy input process during an Oij period

by {X(1)
ij (t), . . . , X

(n)
ij (t), t ≥ 0} and its Laplace exponent by −ηij(s1, . . . , sn), i.e.,

E[e−s1X
(1)
ij (t)−···−snX(n)

ij (t)] = e−tηij(s1,...,sn).

Hence Aij(s1, . . . , sn) is the LST of Oij with parameter ηij(s1, . . . , sn):

Aij(s1, . . . , sn) = E[e−s1X
(1)
ij (Oij)−···−snX

(n)
ij (Oij)]

= E[e−ηij(s1,...,sn)Oij ] .(19)

In particular, if Oij ∼ exp(λij) then Aij(s1, . . . , sn) =
λij

λij+ηij(s1,...,sn)
.

The LST χk(s) is obtained by averaging over all possible gate intervals, and by making the
following observation. Considering an Oij interval at an arbitrary epoch during that interval,
the LST of the joint amounts which have arrived at the queues during the past part of Oij
equals ∫ ∞

0
e−tηij(s1,...,sn)

P(Oij > t)

E[Oij ]
dt

=
1−Aij(s1, . . . , sn)

E[Oij ]ηij(s1, . . . , sn)
.(20)

This leads to the following result:

χk(s) =

∑
i

∑
j πipijE[Oij ]

1−Aij(s,...,s,0,...,0)
E[Oij ]ηij(s,...,s,0,...,0)ξki(s)∑

i

∑
j πipijE[Oij ]

=

∑
i

∑
j πipij

1−Aij(s,...,s,0,...,0)
ηij(s,...,s,0,...,0)

ξki(s)∑
i

∑
j πipijE[Oij ]

,(21)
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where the last s in the n-dimensional expressions in the above formula occurs at position
k, and where ξki(s), k 6= i, are given in (9) and ξkk(s) in (12). When Oij ∼ exp(λij), (21)
becomes

χk(s) =

∑
i

∑
j

πipij
λij+ηij(s,...,s,0,...,0)

ξki(s)∑
i

∑
j
πipij
λij

. (22)

2.4 Multi-dimensional workload distributions

In this subsection we outline how the joint workload distribution just after gate openings can
be obtained. We provide a fairly detailed procedure for the cases n = 2 and n = 3 and, for
the sake of brevity, under the simplifying assumptions that pij = qj for all relevant i and that
and that Aij(·) = A(·) for all relevant i, j. For higher values of n, as well as without these
simplifying assumptions a similar procedure can be followed; however, it leads to quite messy
expressions.

The case n = 2
We shall determine the LST of the steady-state joint distribution of the workloads right after
gate openings, ξ(s1, s2) = E[e−s1V1−s2V2 ].

If V
(r)
i denotes the amount of work in Qi immediately after the rth gate opening, and

A
(r+1)
i the amount of fluid entering Qi between the rth and (r + 1)st gate openings, then

V
(r+1)
1 = 0, V

(r+1)
2 = V

(r)
1 +A

(r+1)
1 + V

(r)
2 +A

(r+1)
2 ,

if the (r + 1)st gate opening is of gate 1, and

V
(r+1
1 = V

(r)
1 +A

(r+1)
1 , V

(r+1)
2 = 0,

if the (r + 1)st gate opening is of gate 2. In steady state this yields:

ξ(s1, s2) = q1A(s2, s2)ξ(s2, s2) + q2A(s1, 0)ξ(s1, 0). (23)

Now observe that ξ(s1, 0) = ξ1(s1), and that this term, which only refers to Q1, can be

obtained from the results of Subsection 2.2. Furthermore observe that ξ(s2, s2) = E[e−s2V
(2)

],
a result for the total workload in Q1 + Q2, which also follows from Subsection 2.2. We are
thus able to obtain ξ(s1, s2).

Remark 1 Let us assume that station 2 is replaced by L parallel stations Q21, . . . , Q2L. A
proportion pj of every drop that leaves station Q1 is routed to station Q2j and the gates at

station 2 open at the same times. Let 1 −
∑L

j=1 pj be the proportion that leave the system
entirely (from station Q1). If we denote V1, V21, . . . , V2L the workloads in all stations then it
is easilly seen that V2j = pjV2 where (V1, V2) was defined in the beginning of this subsection.

This immediately implies that the steady-state LST for this case becomes ξ
(
α1,
∑L

j=1 pjα2j

)
.

This remains true regardless of the simplifying assumptions or the assumptions on the arrival
process and in fact, in the n station case, every station can be replaced by parallel stations
in a similar manner with the same consequence.
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The case n = 3
Here we compute the three-dimensional steady-state transform ξ(s1, s2, s3) = E[e−s1V1−s2V2−s3V3 ]
of workload right after gate openings (under the same simplifying assumptions described in
the beginning of this subsection). We have

V
(r+1)
1 = 0, V

(r+1)
2 = V

(r)
1 +A

(r+1)
1 + V

(r)
2 +A

(r+1)
2 , V

(r+1)
3 = V

(r)
3 +A

(r+1)
3 ,

if the (r + 1)st gate opening is of gate 1, and

V
(r+1
1 = V

(r)
1 +A

(r+1)
1 , V

(r+1)
2 = 0, V

(r+1)
3 = V

(r)
2 +A

(r+1)
2 + V

(r)
3 +A

(r+1)
3 ,

if the (r + 1)st gate opening is of gate 2, and

V
(r+1
1 = V

(r)
1 +A

(r+1)
1 , V

(r+1)
2 = V

(r)
2 +A

(r+1)
2 , V

(r+1)
3 = 0,

if the (r + 1)st gate opening is of gate 3. In steady state, this yields:

ξ(s1, s2, s3) = q1A(s2, s2, s3)ξ(s2, s2, s3) + q2A(s1, s3, s3)ξ(s1, s3, s3)

+ q3A(s1, s2, 0)ξ(s1, s2, 0). (24)

Taking s3 = 0 gives

ξ(s1, s2, 0) =
q1A(s2, s2, 0)ξ(s2, s2, 0) + q2A(s1, 0, 0)ξ(s1, 0, 0)

1− q3A(s1, s2, 0)
. (25)

Notice that ξ(s1, 0, 0) = E[e−s1V
(1)

] and that ξ(s2, s2, 0) = E[e−s2V
(2)

] are known from the
previous section, so that ξ(s1, s2, 0) is known. Of course, this term is also closely related to
the result in (23) for a model with n = 2 queues. In fact, a straightforward extension of (23)
for the first two queues of an n-queue tandem ASIP is:

ξ(s1, s2, 0, . . . , 0)) = q1A(s2, s2, 0, . . . , 0)ξ(s2, s2, 0, . . . , 0)

+ q2A(s1, 0, 0, . . . , 0)ξ(s1, 0, 0, . . . , 0) (26)

+
n∑
j=3

qjA(s1, s2, 0, . . . , 0)ξ(s1, s2, 0, . . . , 0) .

We still need to determine ξ(s2, s2, s3) and ξ(s1, s3, s3) in (24). Take s2 = s3 in (24) to get

ξ(s1, s3, s3) = q1A(s3, s3, s3)ξ(s3, s3, s3) + q2A(s1, s3, s3)ξ(s1, s3, s3)

+ q3A(s1, s3, 0)ξ(s1, s3, 0) . (27)

This equation allows us to express ξ(s1, s3, s3) in terms of the, by now known, functions

ξ(s3, s3, s3) = E[e−s3V
(3)

] and ξ(s1, s3, 0) (cf. (25)). It remains to determine ξ(s2, s2, s3). For
this purpose, take s1 = s2 in (24):

ξ(s2, s2, s3) = q1A(s2, s2, s3)ξ(s2, s2, s3) + q2A(s2, s3, s3)ξ(s2, s3, s3)

+ q3A(s2, s2, 0)ξ(s2, s2, 0) . (28)

This equation allows us to express ξ(s2, s2, s3) in terms of the, by now known, functions

ξ(s2, s3, s3) and ξ(s2, s2, 0) = E[e−s2V
(2)

]. Thus, ξ(s1, s2, s3) has been obtained.
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3 Model 2: An ASIP with leakage

In this section we consider an ASIP consisting of two stations Q1 and Q2 in series, each with
its own gate, with the additional feature that there is leakage from Q1. Namely, the content of
Q1 is not only transferred to Q2 at openings of the gate after Q1, but the content also leaks at
a fixed rate out of Q1 (whenever the queue is not empty). We restrict ourselves in this section
to gate openings at i.i.d. exponentially distributed intervals, and we assume that the external
input processes to the two stations are two independent subordinators (nondecreasing Lévy
processes). In Subsection 3.1 we present some preliminary results on a Lévy process reflected
at zero, which are used in Subsection 3.2 to derive the steady-state joint workload distribution
right after gate openings, right before gate openings and at arbitrary epochs.

3.1 Preliminaries

Let X = {X(t)|t ≥ 0} be a Lévy process with no negative jumps which is not a subordinator
and with Laplace exponent ϕ(α) = logE[e−αX(1)]. Denote

Lx(t) = − inf
0≤s≤t

(x+X(s))− = (L0(t)− x)+, (29)

Zx(t) = x+X(t) + Lx(t) = X(t) + x ∨ L(t) , (30)

and finally, for u ≥ 0 let
ψ(u) = inf{α|ϕ(α) > u}. (31)

Assume that T ∼ exp(λ) is independent of X, then for any α ≥ 0, and β > −ψ(λ) we
have that

E[e−αZx(T )−βLx(T )] =
e−αx(ψ(λ) + β)− e−ψ(λ)x(α+ β)(

1− ϕ(α)
λ

)
(ψ(λ) + β)

, (32)

where for α = ψ(λ) the right hand side is defined by continuity via L’Hôpital’s rule. This is,
in essence, Theorem 3.10 on page 259 of [1], which is a direct application of [12]. It is easy
to check that the proof is valid for all α, β as given here and not just α, β > 0 as in [1]. This
will be important later.

Whenever Y = {Y (t)|t ≥ 0} is a measurable process which is independent of Tλ ∼ exp(λ),
then clearly, for every γ > −λ we have that

E[Y (Tλ)e−γTλ ] =

∫ ∞
0

E[Y (t)]e−γtλe−λtdt =
λ

λ+ γ
E[Y (Tλ+γ)] . (33)

From (32) and (33) it immediately follows that for each α ≥ 0, γ > −λ and β > −ψ(λ+ γ):

E[e−αZx(T )−βLx(T )−γT ] =
λ

λ+ γ
· e−αx(ψ(λ+ γ) + β)− e−ψ(λ+γ)x(α+ β)(

1− ϕ(α)
λ+γ

)
(ψ(λ+ γ) + β)

=
e−αx(ψ(λ+ γ) + β)− e−ψ(λ+γ)x(α+ β)(

1 + γ−ϕ(α)
λ

)
(ψ(λ+ γ) + β)

. (34)
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3.2 Analysis

Now consider a system consisting of two stations in series. The external input process of
station Qi is a nondecreasing Lévy process Ji, i = 1, 2. These are independent subordinators
with

ηi(α) = − log e−αJi(1) = ciα+

∫
(0,∞)

(1− e−αu)νi(du),

where ci ≥ 0 and νi is a Lévy measure satisfying
∫
(0,∞)(u∧ 1)νi(du) <∞ and νi(−∞, 0] = 0.

The cumulative input to Q1 is x1 +J1(t) where x1 ≥ 0 is its initial state. Whenever Q1 is
not empty, the content leaks (is processed) at some rate r ≥ 0. When c1 < r and Q1 is empty,
the leak is at rate c1. A proportion p ∈ [0, 1] leaks into Q2 and the rest leaves the system
altogether. At independent intervals, also independent of J1, J2 and distributed exp(λ1), the
entire content of Q1 is transferred to Q2. As for Q2, the cumulative input is whatever arrives
from Q1 (either from the leakage or from the occasional transfer) as well as x2 + J2(t) where
x2 ≥ 0 is the initial state of Q2. At independent intervals which are distributed exp(λ2)
and independent of everything else (including the inter-transfer times of Q1) all the available
content of Q2 leaves the system all at once. This is the two-queue ASIP system that we would
like to explore.

Denote λ = λ1 + λ2. For X1(t) = J1(t) − rt, with Laplace-Stieltjes exponent ϕ1(α) =
logE[e−αX1(1)] = rα− η1(α), the content of Q1 at time t ≥ 0 is Z1,x1(t) where Z1,x1 replaces
Zx in (30). As long as there is no transfer until time t ≥ 0, the input to Q2 is p(rt−L1,x1(t)),
as L1,x1(t) is the cumulative lost capacity.

If T ∼ exp(λ) (the minimum of the transfer times from Q1 and Q2), then with proba-
bility λ1/λ there is a transfer from Q1 to Q2, in which case the state of the stations will be
(0, Z1,x1(T ) + p(rT − L1,x1(T )) + x2 + J2(T )), and with probability λ2/λ the state will be
(Z1,x1(T ), 0). Therefore, we will be interested in the LST of Z1,x1(T )+p(rT−L1,x1(T ))+J2(T )
and that of Z1,x1(T ).

If r ≤ c1 (which includes the case r = 0) then X1 is a subordinator and (34) does not
apply. However, in this case the result is far simpler, as Lx(T ) = 0 and Z1,x1(T ) = x1+X1(T ).
When r > c1 then, noting that

E[e−α(Z1,x1 (T )+p(rT−L1,x1 (T ))+J2(T ))] = E[e−(αZ1,x1 (T )−αpL1,x1 (T )+(prα+η2(α))T )] , (35)

we simply apply (34) setting either γ = prα + η2(α) and β = −pα (for Z1,x1(T ) + p(rT −
L1,x1(T )) +J2(T )) or γ = β = 0 (for Z1,x1(T )). Recall that in order to use (34) we must have
β > −ψ1(λ + γ), cf. (31). To see that this holds in this case, note that, when β < 0, this is
equivalent to ϕ1(−β) < λ + γ and if we insert β = −pα and γ = prα + η2(α) and observe
that ϕ1(α) = rα− η1(α), then indeed, as required,

ϕ1(−β) = rpα− η1(pα) < λ+ prα+ η2(α) = λ+ γ. (36)

This system is regenerative. The reason is that starting from (x1, x2) the system will (almost
surely) reach some state (0, x′2) after which it will reach a state (Z1,0(τ), 0) where τ is the first
time thereafter that the second station is emptied. This state is a regenerative one and it is
clear that the inter-regeneration times distribution has a finite mean and is nonarithmetic; it
actually has a density. Thus, there exists a limiting=ergodic=stationary distribution for the
joint content process. Assume that (Z1, Z2) has this joint distribution (of the buffer contents
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right after an arbitrary gate opening) and denote fA(α1, α2) = E[e−α1Z1−α2Z2 ]. Then given
the preceding arguments, we must have for the case where r > c1, that

fA(α1, α2) (37)

=
λ1
λ

fA(α2, α2)(ψ1(λ+ prα2 + η2(α2))− pα2)− fA(ψ1(λ+ prα2 + η2(α2)), α2)α2(1− p)(
1− (1−p)rα2−η1(α2)−η2(α2)

λ

)
(ψ1(λ+ prα2 + η2(α2))− pα2)

+
λ2
λ

fA(α1, 0)ψ1(λ)− fA(ψ1(λ), 0)α1(
1− rα1−η1(α1)

λ

)
ψ1(λ)

. (38)

We shall successively determine (i) fA(α1, 0) and fA(ψ1(λ), 0), (ii) fA(α2, α2), fA(ψ1(λ+
prα2), α2) and fA(α1, α2).
(i) Determination of fA(α1, 0) and fA(ψ1(λ), 0).
Taking α2 = 0 in (38), with α1 6= ψ1(λ1), gives:

fA(α1, 0) =
λ1
λ

+
λ2
λ

fA(α1, 0)ψ1(λ)− fA(ψ1(λ), 0)α1

1− rα1−η1(α1)
λ ψ1(λ)

, (39)

which is equivalent to

(λ1 − rα1 + η1(α1))fA(α1, 0) = λ1 − λfA(ψ1(λ), 0)
α1

ψ1(λ)
. (40)

Setting α1 = ψ1(λ1), the lefthand side of (40) becomes zero, and hence also the righthand

side should be zero, implying fA(ψ1(λ), 0) = λ1
λ

ψ1(λ)
ψ1(λ1)

, and hence

fA(α1, 0) =
λ1(1− α1

ψ1(λ1)
)

λ1 − rα1 + η1(α1)
=

1− α1
ψ1(λ1)

1− ϕ1(α1)
λ1

. (41)

Notice that this is also the LST of the workload in Q1 just before a gate opening of Q1, i.e.,
after an exp(λ1) amount of time starting from an empty state, cf. Theorem 4.1 of [6]. This is
expected by PASTA.

(ii) Determination of fA(α2, α2), fA(ψ1(λ+ prα2 + η2(α2)), α2) and fA(α1, α2).
Introducing the following functions for terms appearing in (38):

A(α2) =
λ1
λ

1

1− (1−p)rα2−η1(α2)−η2(α2)
λ

, (42)

B(α2) = −A(α2)
α2(1− p)

ψ1(λ+ prα2 + η2(α2))− pα2
, (43)

H(y) =
λ2
λ

f(y, 0)ψ1(λ)− f(ψ1(λ), 0)y

(1− ry−η1(y)
λ )ψ1(λ)

, (44)

one can rewrite (38) as
fA(α1, α2) = H(α1) +G(α2), (45)

where
G(α2) = A(α2)fA(α2, α2) +B(α2)fA(ψ1(λ+ prα2 + η2(α2)), α2). (46)
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The decomposition in (45) makes sense as we are observing the system just after gate openings.
With probability λi/λ, the gate opening was at Qi, and then Qi has become empty, yielding a
term without αi, i = 1, 2. The decomposition form of course implies that E[Z1Z2] = 0, which
obviously holds because after each gate opening at least one of the two queues has become
empty, hence Z1Z2 = 0. This also implies, as is quite intuitive, that Z1 and Z2 are negatively
correlated.

G(α2) is determined by substituting α1 = α2 respectively α1 = ψ1(λ+ prα2 + η2(α2)) in
(45):

G(α2) =
A(α2)H(α2) +B(α2)H(ψ1(λ+ prα2 + η2(α2)))

1−A(α2)−B(α2)
,

and hence

fA(α1, α2) = H(α1) +
A(α2)H(α2) +B(α2)H(ψ1(λ+ prα2 + η2(α2)))

1−A(α2)−B(α2)
. (47)

For completeness we give the LST of the total workload in the two queues, fA(α, α):

fA(α, α) =
(1−B(α))H(α) +B(α)H(ψ1(λ+ prα+ η2(α)))

1−A(α)−B(α)
. (48)

The time-stationary workload LST
Above we have computed the steady-state joint workload LST of our system just after gate
openings. If fB(α1, α2) is the steady-state joint workload LST just before (any) gate open-
ings, then by PASTA it is also the continuous-time steady-state workload LST. Clearly, one
relationship between fA and fB is as follows:

fA(α1, α2) =
λ1
λ
fB(α2, α2) +

λ2
λ1
fB(α1, 0) . (49)

However, this is not enough and in order to compute fB we need to compute the joint LST
of the system that starts with distribution having LST fA and ends after an independent
exponential time period with parameter λ. Thus, letting T ∼ exp(λ) be independent of
everything else, then in an identical manner as for (37) we have (when r > c1) that

fB(α1, α2) (50)

=
fA(α1, α2)(ψ1(λ+ prα2 + η2(α2))− pα2)− fA(ψ1(λ+ prα2 + η2(α2)), α2)(α1 − pα2)(

1 + rpα2+η2(α2)−(rα1−η1(α1))
λ

)
(ψ1(λ+ rpα2 + η2(α2))− pα2)

.

Therefore, we also have fB, the steady-state joint workload LST just before gate openings
and at arbitrary epochs.

Determination of moments
It readily follows from (41) that the mean buffer content in Q1 right after an arbitrary gate
opening is given by

E[Z1] = − d

dα1
fA(α1, 0)|α1=0 =

η′1(0)− r
λ1

+
1

ψ1(λ1)
. (51)
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E[Z2] follows by differentiating the expression in (45) w.r.t. α2. Alternatively, we could obtain
E[Z1 +Z2] from (48) and then subtract E[Z1]. Omitting the messy details, the end result can
be written as follows:

E[Z2] =
η′1(0)− (1− p)r

λ2
+

λ1
λλ2

η′2(0) +
λ21
λλ2

1− p
ψ1(λ)

+
λ1
λ

(E[Z1] +
λ1
λ2

(
ψ1(λ)

ψ1(λ1)
− 1)

1

ψ1(λ)
+
η′1(0)− r

λ1
)

+
λ1
λ2

1− p
ψ1(λ)

H(ψ1(λ)).(52)

4 Model 3: The shot-noise counterpart of Model 2

In this section we again consider an ASIP model consisting of two queues Q1 and Q2 in series,
Qi having a gate which opens at independent, exp(λi) distributed intervals, for i = 1, 2. If the
gate of Q1 opens, the buffer content of this queue instantaneously moves to Q2; if the gate of
Q2 opens, the buffer content of this queue instantaneously leaves the system. Again, the two
queues receive external input according to two independent Lévy subordinators Ji, i = 1, 2.
As in Model 2, there is leakage from Q1; a fraction p of the leakage from Q1 moves to Q2 and
the rest disappears altogether. So far the model description is the same as for Model 2 in
Section 3. The special feature of the present model, compared to Model 2, is that in between
gate openings, the workload at Q1 behaves like a shot-noise process. In a shot-noise process,
the workload decreases proportional to the buffer content, at rate rx when the buffer content
equals x; this amounts to an exponentially decreasing process, and can be seen as a fluid-type
counterpart of an infinite-server queue. It can model situations in which all material that is
present in a station is processed simultaneously.

Material from Q2 can leave this queue only when it has a gate opening. For this case, we
note that when there is no gate opening before time t, then the two buffer contents Z1,x1(t)
and Z2,x1,x2(t) evolve as follows:

Z1,x1(t) = x1 + J1(t)− r
∫ t

0
Z1,x1(s)ds = x1e

−rt +

∫
(0,t]

e−r(t−s)dJ1(s),

Z2,x1,x2(t) = p(x1 + J1(t)− Z1,x1(t)) + x2 + J2(t) (53)

= p

(
x1(1− e−rt) +

∫
(0,t]

(1− e−r(t−s))dJ1(s)

)
+ x2 + J2(t) .

Indeed, at any time t (before the first gate opening) a fraction p of the difference between
x1 + J1(t) and the buffer content Z1,x1(t) has moved to Q2. Recalling that for nonnegative
Borel functions h we have (see, e.g., Formula (8) of [4]),

E[e
−

∫
(0,t] h(t−s)dJ1(s)] = e−

∫ t
0 η1(h(s))ds, (54)
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this implies that

E[e−α1Z1,x1 (t)−α2Z2,x1,x2 (t)] = exp

(
− α2x2 − x1(α1e

−rt + α2p(1− e−rt))

−
∫ t

0
η1(α1e

−rs + α2p(1− e−rs))ds− η2(α2)t

)
(55)

= exp

(
− α2x2 − x1(α1e

−rt + α2p(1− e−rt))

−
∫ 1

e−rt
η1(α1u+ α2p(1− u))

du

ru
− η2(α2)t

)
.

Multiplying by λe−λt, where λ = λ1 + λ2, and integrating gives, after the obvious change of
variables v = e−rt,

E[e−α1Z1,x1 (T )−α2Z2,x1,x2 (T )] =
λ

r

∫ 1

0
v
λ+η2(α2)

r
−1 exp

(
− α2x2 − x1(α1v + α2p(1− v))

−
∫ 1

v
η1(α1u+ α2p(1− u))

du

ru

)
dv , (56)

where T ∼ exp(λ) is independent of everything else.

Remark 2 If in addition we assume that J1 is a compound Poisson process with arrival rate
λ and jumps ∼ exp(µ), then

η1(α) = λ

(
1− µ

µ+ α

)
=

λα

µ+ α
, (57)

in which case ∫ 1

v
η1(α1u+ α2p(1− u))

du

ru
(58)

can be computed explicitly by observing that

η1(α1u+ α2p(1− u))

ru
=

λ

r(µ+ pα2)

(
pα2

u
+

µ(α1 − pα2)

(α1 − pα2)u+ µ+ pα2

)
, (59)

and so the integral in (58) becomes

λ

r(µ+ pα2)

(
−pα2 log v + µ log

(
α1 + µ

α1v + pα2(1− v) + µ

))
. (60)

Multiplying by minus one and taking the exponent gives

v
λpα2

r(µ+pα2)

(
α1 + µ

α1v + pα2(1− v) + µ

)− λµ
r(µ+pα2)

. (61)
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We shall now determine the steady-state joint workload LST just before gate openings
and just after gate openings. Let (Z1,A, Z2,A) denote the steady-state workload vector at Q1

and Q2 just after an arbitrary gate opening, with LST FA(α1, α2), and let (Z1,B, Z2,B) denote
the steady-state workload vector just before an arbitrary gate opening, with LST FB(α1, α2).
Observe that, if gate 1 just opened, then Z1,A becomes zero and Z2,A becomes Z1,B + Z2,B;
and if gate 2 just opened, then Z1,A becomes Z1,B and Z2,A becomes 0. Hence, with (again)
λ = λ1 + λ2:

FA(α1, α2) =
λ1
λ
FB(α2, α2) +

λ2
λ
FB(α1, 0). (62)

From (56), conditioning on Z1,A = x1, Z2,A = x2, we have

FB(α1, α2) =
λ

r

∫ 1

0
v
λ+η2(α2)

r
−1e−

1
r

∫ 1
v η1(α1u+α2p(1−u))duu FA(α1v + α2p(1− v), α2)dv. (63)

We shall first determine K1(α1) = FB(α1, 0). Taking α2 = 0 in (63) yields

K1(α1) =
λ

r

∫ 1

0
v
λ
r
−1e−

1
r

∫ 1
v η1(α1u)

du
u FA(α1v, 0)dv

=
λ

r

∫ α1

0

y
λ
r
−1

α
λ
r
1

e−
1
r

∫ α1
y η1(z)

dz
z

(
λ1
λ

+
λ2
λ
K1(y)

)
dy.(64)

Differentiation w.r.t. α1 results in a first-order inhomogeneous differential equation:

K ′1(α1) =
λ1
rα1
−
(
λ1
rα1

+
η1(α1)

rα1

)
K1(α1), (65)

whose solution is readily seen to be

K1(α1) = α
−λ1

r
1 e−

1
r

∫ α1
0

η1(u)
u

du

[
C +

λ1
r

∫ α1

0
v
λ1
r
−1e

1
r

∫ v
0
η1(u)
u

dudv

]
. (66)

The fact that we should have K1(0) = 1 implies that the term between square brackets
should be zero, and hence C = 0. One can subsequently quickly verify, by the transformation
w = v/α1, that

limα1↓0K1(α1) =
λ1
r

∫ 1

0
w
λ1
r
−1dw = 1. (67)

We conclude that

K1(α1) = FB(α1, 0) =
λ1
rα1

∫ α1

0

(
v

α1

)λ1
r
−1

e−
1
r

∫ α1
v

η1(u)
u

dudv. (68)

By PASTA, this is also the LST of the steady-state workload in Q1 at an arbitrary epoch.
We next turn to the determination of K2(α2) = FB(α2, α2), which, again by PASTA, is the
LST of the steady-state total workload in the ASIP system at an arbitrary epoch. Taking
α1 = α2 in (63) gives

K2(α2) =
λ

r

∫ 1

0
v
λ+η2(α2)

r
−1e−

1
r

∫ 1
v η1(α2u+α2p(1−u))duu FA(α2v + α2p(1− v), α2)dv

=
λ

r

∫ 1

0
v
λ+η2(α2)

r
−1

× e−
1
r

∫ 1
v η1(α2u+α2p(1−u))duu

(
λ1
λ
K2(α2) +

λ2
λ
K1(α2p+ α2(1− p)v)

)
dv.(69)
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Solving for K2(α2) yields

K2(α2) = [1− λ1
r

∫ 1

0
v
λ+η2(α2)

r
−1e−

1
r

∫ 1
v η1(α2u+α2p(1−u))duu ]−1

× λ2
r

∫ 1

0
v
λ+η2(α2)

r
−1e−

1
r

∫ 1
v η1(α2u+α2p(1−u))duu K1(α2p+ α2(1− p)v)dv.(70)

One could subsequently substitute the expression for K1(α1) as found in (66) in (70). This
results in a quite complicated integral, which it seems that one has to evaluate numerically.
However, if p = 1 (so all the leakage goes to Q2) then (70) simplifies:

K2(α2) = [1− λ1
r

∫ 1

0
v
λ+η2(α2)+η1(α2)

r
−1dv]−1

λ2
r

∫ 1

0
v
λ+η2(α2)+η1(α2)

r
−1K1(α2)dv(71)

=

λ2
λ+η2(α2)+η1(α2)

K1(α2)

1− λ1
λ+η2(α2)+η1(α2)

=
λ2

λ2 + η2(α2) + η1(α2)
K1(α2).

Remark 3 When the initial workloads at the two stations are x1, x2 and when p = 1, the sum
of the workloads at the two stations just before a gate opening is clearly x1+x2+J1(T )+J2(T ).
Therefore, it is obvious that we necessarilly have that

E[e−αZ1,x1 (T )−αZ2,x1,x2 (T )] = e−αx1−αx2
λ

λ+ η1(α) + η2(α)
. (72)

This agrees with 56 upon setting α1 = α2 = α (and p = 1) as well as formula (63), which
reduces to the following, when we take p = 1 and α1 = α2 = α:

FB(α, α) =
λ

λ+ η1(α) + η2(α)
FA(α, α). (73)

In combination with (62), this readily agrees with (71).
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