
On Binomial Thinning and Mixing

Offer Kella∗† and Andreas Löpker‡

February 26, 2022

Abstract

In this paper we consider the notions of binomial thinning, binomial mixing,
their generalizations, certain interplay between them, associated limit theorems and
provide various examples.
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1. Introduction

Given a non-negative integer-valued random variable 𝑍 and a probability 𝛼, a (bino-
mially) 𝛼-thinned random variable denoted 𝛼 ◦ 𝑍 is a random variable that has, given
𝑍 = 𝑛, a binomial distribution with parameters 𝑛 and 𝛼. By definition, a 1-thinned random
variable has the same distribution as the original random variable and a 0-thinned random
variable is distributed like the constant zero.

While, for every 𝛼 ∈ [0, 1] and any arbitrary non-negative integer-valued 𝑍 , the 𝛼-
thinning operation is well defined, there are non-negative integer-valued random variables
that cannot be written as an 𝛼-thinned ‘version’ of some non-negative integer-valued 𝑍
for any 𝛼 < 1. It turns out that for any 𝑋 there is a minimal 𝛼 ∈ [0, 1] (possibly one or
zero) allowing such a representation. This observation gives rise to a nested hierarchy
of subsets of all distributions concentrated on the non-negative integers, parametrized by
𝛼. We investigate conditions for the membership to these classes, specialize results to
distributions with finite support and provide examples.

In addition we also focus on the dual concept of binomial mixtures denoted 𝑊 ◦ 𝑛,
where initially the support of the distribution of 𝑊 is contained in [0, 1]. 𝑊 ◦ 𝑛 is the
notation for a random variable of which conditional distribution given𝑊 is binomial with
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𝑛 and𝑊 (to be made more precise later). One question that we explore in this context is
whether one can perform the same type of binomial mixing operation when the support
is not contained in [0, 1]. We provide a nontrivial example where 𝑊 has the Gamma
distribution and thus has an unbounded support. Another question that arises is regarding
the relation between the minimal 𝛼 mentioned in the previous paragraph with respect to
the 𝛼-thinning operation associated with 𝑊 ◦ 𝑛, when well defined, and the minimal 𝛼
such that the distribution of (𝑊/𝛼) ◦ 𝑛 is well defined. It turns out that these two values
are equal.

For both thinning and mixing concepts we provide some limiting results where the
limits turn out to have Poisson and mixed Poisson distributions, respectively.

Binomial thinning has become a useful tool when studying count data time series ([1],
[16], [6]). The binomial thinning operation is also performed in a Galton-Watson branch-
ing process with Bernoulli offspring, where each individual survives with probability 𝛼
and has no descendants. One can also think of applications in queueing, e.g. in modified
M/G/1 systems with impatient customers ([5], [3]).

A somewhat related study to ours has been conducted in [18], where the emphasis is
on subclasses of non-negative integer-valued random variables of the form {𝛼 ◦ 𝑍 : 𝛼 ∈
(0, 1], 𝑍 ∈ 𝕄★

1 } (in the notations of the present paper). Structural aspects of binomial
thinning are also studied in [12] (the operation is called ‘dilation’ there).

Regarding the mixing operation a prominent mixed distribution is the beta-binomial
distribution, finding applications in Bayesian statistics. A reference for this and other
distributions appearing in this paper is [11].

The paper is organized as follows. In Section 2 we discuss the basic 𝛼-thinning
operation and prove various preliminary results. In Section 3 we give a more in depth
study of various concepts introduced in Section 2. In Section 4 and 5 we discuss the case
where the support of the random variables is bounded and provide various examples. In
particular we give a necessary and sufficient characterization as to when an 𝑋 does not
have an 𝛼-thinned distribution for any 𝛼 < 1. Finally, in Section 6 we discuss the concept
of binomial mixing and provide two nontrivial examples.

2. Thinning preliminaries

In what follows, for a random variable 𝑋 , support of 𝑋 abbreviates support of the distri-
bution of 𝑋 and a.s. abbreviates almost surely (with respect to the probability discussed).
Unless stated otherwise, random variables are assume to be a.s. finite. The notation
‘∼’ abbreviates ‘distributed as’, ‘⇒’ denotes convergence in distribution. We write
Gamma(𝛼, 𝛽), Exp(𝜆), Erlang(𝑚, 𝜆), Uniform[𝑎, 𝑏], Uniform(𝑖1, . . . , 𝑖𝑚), Poisson(𝜆),
Bernoulli(𝑝), Binomial(𝑛, 𝑝) for the gamma/exponential/continuous uniform/discrete
uniform distributions with the usual notations for the parameters. Finally, 1𝐴 denotes
the indicator of a set 𝐴.

Let 𝕄1 denote the family of all discrete probability distributions with support contained
in ℤ+ = {0, 1, 2, . . .}. When we write 𝑋 ∈ 𝕄1 we mean that the distribution of 𝑋 is in
𝕄1, or equivalently, that P(𝑋 ∈ ℤ+) = 1.
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Given 𝑋 ∈ 𝕄1 and 𝛼 ∈ [0, 1] the binomial 𝛼-thinning operation is defined as

𝛼 ◦ 𝑋 ∼
𝑋∑︁
𝑖=1

𝐵𝑖, (1)

where an empty sum (when 𝑋 = 0) is defined to be zero and (𝐵𝑖)𝑖∈ℤ+ are i.i.d. Bernoulli
r.v., independent of 𝑋 , with P(𝐵𝑖 = 1) = 𝛼 (see [15]). In particular, note that 0 ◦ 𝑋 = 0
a.s. and 1 ◦ 𝑋 ∼ 𝑋 .

It is simple to show that for independent 𝑋,𝑌 ∈ 𝕄1, independent 𝛼 ◦ 𝑋, 𝛼 ◦ 𝑌 and
𝛼, 𝛽 ∈ (0, 1] the following relations hold.

(i) 𝛼 ◦ (𝑋 + 𝑌 ) ∼ 𝛼 ◦ 𝑋 + 𝛼 ◦ 𝑌 .
(ii) 𝛼 ◦ (𝛽 ◦ 𝑋) ∼ 𝛽 ◦ (𝛼 ◦ 𝑋) ∼ (𝛼𝛽) ◦ 𝑋 .
(iii) E(𝛼 ◦ 𝑋) = 𝛼E𝑋 (finite or infinite).
(iv) Var (𝛼 ◦ 𝑋) = 𝛼2Var (𝑋) + 𝛼(1 − 𝛼)E𝑋 , whenever E𝑋2 < ∞.

The set of all 𝛼-thinned distributions is denoted by 𝕄𝛼 and when we write 𝑋 ∈ 𝕄𝛼 we
mean that 𝑋 ∼ 𝛼 ◦ 𝑍 for some 𝑍 ∈ 𝕄1.

For 𝑋 ∈ 𝕄1 we denote the probability generating function (p.g.f.) of 𝑋 by

𝑃𝑋 (𝑠) =
{
E𝑠𝑋 𝑠 ∈ [−1, 0) ∪ (0, 1]
𝑃(𝑋 = 0) 𝑠 = 0 ,

which is continuous on [−1, 1] and infinitely differentiable on (−1, 1). Often it is more
convenient to work with the function 𝐺𝑋 (𝑠) = 𝑃𝑋 (1− 𝑠), the alternate probability gener-
ating function (a.p.g.f.) of 𝑋 , which is continuous on [0, 2] and is infinitely differentiable
on (0, 2). We recall that 𝑛!𝑃(𝑋 = 𝑛) = 𝑃

(𝑛)
𝑋

(0) = (−1)𝑛𝐺 (𝑛)
𝑋

(1). One reason to use
𝐺𝑋 (𝑠) rather than 𝑃𝑋 (𝑠) is the useful relation

𝐺𝛼◦𝑋 (𝑠) = 𝐺𝑋 (𝛼𝑠), (2)

for 𝑠 ∈ [0, 1), which is straightforward to show. In fact, this equality holds on [0, 2]. The
reason is that upon changing the order of summation we have that

∞∑︁
𝑖=0

|1 − 𝑠 |𝑖
∞∑︁
𝑘=𝑖

(
𝑘

𝑖

)
𝛼𝑖 (1 − 𝛼)𝑘−𝑖𝑃(𝑋 = 𝑖) = E(1 − 𝛼 + |1 − 𝑠 |𝛼)𝑋 (3)

Thus, the sum converges abslutely whenever 1− 𝛼 + |1− 𝑠 |𝛼 ≤ 1 which holds if and only
if 𝑠 ∈ [0, 2]. Therefore, it is allowed to change the order of summation when (1 − 𝑠)𝑖
replaces |1 − 𝑠 |𝑖 which gives 𝐺𝑋 (𝛼𝑠) on the right hand side.

A real valued function 𝑓 is called absolutely monotone (resp., completely monotone) on
an open interval (𝑎, 𝑏) (𝑎 or 𝑏 could be infinite) if it is smooth (=infinitely differentiable)
and satisfies 𝑓 (𝑛) (𝑡) ≥ 0 (resp., (−1)𝑛 𝑓 (𝑛) (𝑡) ≥ 0) for all 𝑡 ∈ (𝑎, 𝑏).

We recall that a function 𝑓 : (0, 1] → ℝ is a p.g.f. of some, nonnegative, integer
valued random variable if and only if it is absolutely monotone on (0, 1) and satisfies
𝑓 (1−) = 𝑓 (1) = 1 (e.g., Th. 3a, p. 146 of [17]). Therefore, 𝐺 : [0, 1) → ℝ is an a.p.g.f.
if and only if it is completely monotone on (0, 1) and satisfies 𝐺 (0+) = 𝐺 (0) = 1.

We note that although 𝑃𝑋 (𝑠) (as a function on [−1, 1]) is absolutely monotone on
(0, 1) (and hence, also at 0), it is not necessarily so on (−1, 0). Similarly, 𝐺𝑋 (𝑠) (as a
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function on [0, 2]) need not be completely monotone on (1, 2). For a trivial example,
take 𝑃(𝑋 = 1) = 1 and observe that 𝑃𝑋 (𝑠) = 𝑠 is negative on (−1, 0) and 𝐺𝑋 (𝑠) = 1 − 𝑠
is negative on (1, 2).

When 𝑌 is an a.s. nonnegative random variable we denote by 𝐿𝑌 (𝑠) = E𝑒−𝑠𝑌 the
Laplace-Stieltjes transform (LST) of 𝑌 . We recall that a function ℎ : [0,∞) → ℝ is an
LST of some a.s. nonnegative random variable if and only if it is completely monotone
on (0,∞), is continuous (from the right) at zero and satisfies ℎ(0) = 1.

For ease of reference, 𝑋 has a mixed Poisson distribution if for some nonnegative random
variable 𝑌 , the conditional distribution of 𝑋 given 𝑌 is Poisson(𝑌 ), where Poisson(0) is
the distribution of the constant zero. Equivalently, when 𝑋 ∼ 𝑁 (𝑌 ), where {𝑁 (𝑡) | 𝑡 ≥ 0}
is a Poisson process with rate 1 and 𝑌 is an independent nonnegative random variable.
We note that when 𝑋 has a mixed Poisson distribution, then 𝑃(𝑋 = 𝑘) = E𝑒−𝑌𝑌 𝑘/𝑘!,
E𝑋 = E𝑌 and Var(𝑋) = Var(Y) + E𝑌 whenever E𝑌2 < ∞. It is easy to verify that,
since 𝐺𝑋 (𝑠) converges absolutely on [0, 2], then 𝐺𝑋 (𝑠) = 𝐿𝑌 (𝑠) for 𝑠 ∈ [0, 2]. Also, if
𝐺𝑋 (𝑠) = 𝐿𝑌 (𝑠) on some 𝑆 ⊂ (0, 2) containing an accumulation point, then since 𝐺𝑋 (·)
and 𝐿𝑌 (·) are analytic on (0, 2) and continuous on [0, 2], it follows that 𝐺𝑋 (𝑠) = 𝐿𝑌 (𝑠)
on [0, 2], thus necessarily 𝑋 ∼ 𝑁 (𝑌 ).

Remark 1. We note that, although 𝐿𝑌 (𝑠) is finite on [0,∞) and is equal to 𝐺𝑁 (𝑌 ) (𝑠)
on [0, 2], it is possible that 𝐺𝑁 (𝑌 ) (𝑠) is infinite or undefined for 𝑠 ∉ [0, 2]. One such
example is when 𝑌 has the density 𝑦−21[1,∞) (𝑦). It is easy to verify that in this case,
letting 𝑆𝑛−1 ∼ Gamma(𝑛− 1, 1) and recalling 𝑁 (1) ∼ Poisson(1), then for 𝑛 ≥ 2 we have

𝑛(𝑛 − 1)E𝑒−𝑌 𝑌
𝑛

𝑛!
=

∫ ∞

1
𝑒−𝑦

𝑦𝑛−2

(𝑛 − 2)!d𝑦 = P(𝑆𝑛−1 > 1) = P(𝑁 (1) ≤ 𝑛 − 2) . (4)

Thus, when 𝑠 ∉ [0, 2] we have that |1 − 𝑠 | > 1, which implies that

lim
𝑛→∞

|1 − 𝑠 |𝑛P(𝑁 (𝑌 ) = 𝑛) = lim
𝑛→∞

|1 − 𝑠 |𝑛
𝑛(𝑛 − 1)P(𝑁 (1) ≤ 𝑛 − 2) = ∞ (5)

and thus
∑∞
𝑖=0(1−𝑠)𝑖P(𝑁 (𝑌 ) = 𝑖) is either infinite (for 𝑠 < 0) or undefined (for 𝑠 > 2). ^

An immediate consequence of the discussion above is the following.

Theorem 1. Let 𝑋 ∈ 𝕄1 and 𝛼 ∈ (0, 1).

(i) There exists 𝑓 : [0, 1/𝛼) → ℝ completely monotone on (0, 1/𝛼) with 𝑓 (0+) =

𝑓 (0) forwhich 𝑓 (𝑠) = 𝐺𝑋 (𝑠) on 𝑆 ⊂ (0,min(𝛼−1, 2)) containing an accumulation
point if and only if 𝑋 ∈ 𝕄𝛼. In this case there exists 𝑍 ∈ 𝕄1 such that 𝐺𝑋 (𝑠) =
𝐺𝑍 (𝛼𝑠) on [0, 2].

(ii) There exists 𝑓 : [0,∞) → ℝ completely monotone on (0,∞) with 𝑓 (0) = 𝑓 (0+)
for which 𝑓 (𝑠) = 𝐺𝑋 (𝑠) on 𝑆 ⊂ (0, 2) containing an accumulation point if
and only if 𝑋 has a mixed Poisson distribution. Equivalently, there exists some
nonnegative 𝑌 such that 𝐺𝑋 (𝑠) = 𝐿𝑌 (𝑠) on [0, 2].

Proof. In (i) we note that since𝐺𝑋 (·) and 𝑓 (·) are analytic on (0, 𝛼−1∧2) and continuous
on [0, 𝛼−1 ∧ 2] then 𝐺𝑋 (𝑠) = 𝑓 (𝑠) on [0, 𝛼−1 ∧ 2]. Also, 𝑓𝛼 (𝑡) = 𝑓 (𝑡𝛼−1) is completely
monotone on (0, 1), continuous at 0, with 𝑓𝛼 (0) = 1 and thus there exists 𝑍 ∈ 𝕄1 for
which 𝐺𝑍 (𝑠) = 𝑓 (𝑠𝛼−1) for 𝑠 ∈ [0, 1). Therefore 𝐺𝑍 (𝛼𝑠) = 𝑓 (𝑠) for 𝑠 ∈ [0, 𝛼−1) and
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in particular for 𝑠 ∈ [0, 1) we have 𝐺𝑍 (𝛼𝑠) = 𝑓 (𝑠) = 𝐺𝑋 (𝑠) which is equivalent to
𝑋 ∼ 𝛼 ◦ 𝑍 , hence 𝑋 ∈ 𝕄𝛼. The converse is obvious. The fact that 𝐺𝑋 (𝑠) = 𝐺𝑍 (𝛼𝑠) for
𝑠 ∈ [0, 2] was discussed above. (ii) is also immediate from the discussion above. □

Corollary 2. The following are equivalent.

(i) 𝑋 ∈ 𝕄𝛼 for some 𝛼 ∈ (0, 1).
(ii) 𝐺𝑋 (𝑠) is completely monotone on (1, 𝑐) for some 𝑐 ∈ (1, 2].
(iii) 𝑃𝑋 (𝑠) is absolutely monotone on (−𝜖, 0) for some 𝜖 ∈ (0, 1)).

We note that replacing (0, 1) in (i) by [0, 1) is of no consequence since if (i) holds for
𝛼 = 0 then it also holds for any 𝛼 ∈ (0, 1) and if 𝛼 ∈ (0, 1) then also 𝛼 ∈ [0, 1).

Proof. The equivalence of (ii) and (iii) is obvious, thus it remains to show the equivalence
of (i) and (ii). If 𝑋 ∈ 𝕄𝛼 then we take 𝑍 ∈ 𝕄1 such that 𝑋 ∼ 𝛼◦𝑍 . Then𝐺𝑋 (𝑠) = 𝐺𝑍 (𝛼𝑠)
for 𝑠 ∈ [0, 2]. Since 𝐺𝑍 (𝛼𝑠) is completely monotone on (0, 1/𝛼) then 𝐺𝑋 (𝑠) must be
completely monotone on (0, 𝑐) (hence on (1, 𝑐)) where 𝑐 = min(2, 1/𝛼) ∈ (1, 2]. For
the converese, if 𝐺𝑋 (𝑠) is completely monotone on (1, 𝑐) (hence, on (0, 𝑐) then we take
𝛼 = 1/𝑐 and apply part (i) of Theorem 1. □

Corollary 3. 𝑋 ∼ 𝑁 (𝑌 ) for some nonnegative𝑌 if and only if there exists 𝑓 : [0,∞) → ℝ

completely monotone on (0,∞) with 𝑓 (0) = 𝑓 (0+) which agrees with 𝑃𝑋 (−𝑠) on some
𝑆 ⊂ [0, 1) containing an accumulation point.
In this case there exists an nonnegative random variable 𝑌 and 𝑝0 ∈ (0, 1] such that

𝑃𝑋 (−𝑠) = 𝑝0𝐿𝑌 (𝑠) for 𝑠 ∈ (0, 1]. If 𝑝0 = 1 then 𝑌 is a.s. zero and otherwise 𝑌 satisfies
P(𝑌 ∈ 𝑑𝑦) = 𝑝0𝑒

𝑦
P(𝑌 ∈ 𝑑𝑦).

We will demonstrate the use of Corollary 3 in Example 7.

Proof. If 𝑋 ∼ 𝑁 (𝑌 ) then 𝑃𝑋 (−𝑠) = 𝐺𝑋 (1 + 𝑠) = 𝐿𝑌 (1 + 𝑠) on 𝑆 = [0, 1) where clearly
𝑓 (𝑠) = 𝐿𝑌 (1 + 𝑠) is completely monotone on (0,∞) with 𝑓 (0) = 𝑓 (0+).

For the converse, if 𝑃𝑋 (−𝑠) = 𝑓 (𝑠) on 𝑆, then 𝐺𝑋 (𝑠) = 𝑓 (𝑠 − 1) on 𝑆 + 1 = {𝑠 + 1| 𝑠 ∈
𝑆} ⊂ [1, 2) ⊂ (0, 2). Thus, if we define 𝑔(𝑠) = 𝐺𝑋 (𝑠)1[0,1) (𝑠) + 𝑓 (𝑠 − 1)1[1,∞) (𝑠) then 𝑔
is completely monotone on (0, 1)∪ (1,∞) and since 𝑔 is smooth on (0, 2) and in particular
at 𝑠 = 1 it follows that 𝑔 is completely monotone on (0,∞) so that by (ii) of Theorem 1 it
follows that 𝑋 ∼ 𝑁 (𝑌 ) for some nonnegative 𝑌 .

Now, clearly 𝑝0 = 𝑃𝑋 (0) = 𝐺𝑋 (1) = 𝐿𝑌 (1) > 0. Hence P(𝑌 ∈ d𝑦) = 𝑝−1
0 𝑒−𝑦P(𝑌 ∈

d𝑦) defines a probability distribution satisfying 𝑝0𝐿𝑌 (𝑠) = 𝐿𝑌 (1 + 𝑠). This implies that
𝑃𝑋 (−𝑠) = 𝑝0𝐿𝑌 (𝑠) and that P(𝑌 ∈ 𝑑𝑦) = 𝑝0𝑒

𝑦
P(𝑌 ∈ 𝑑𝑦). Finally 𝑝0 = 1 if and only if

𝐿𝑌 (1) = 1 which is equivalent to P(𝑌 = 0) = 1. □

3. The sets 𝕄𝜶 and 𝕄★
𝜶

We recall that, for a given 𝛼 ∈ [0, 1], 𝕄𝛼 denotes the set of all 𝛼-thinned distributions
of 𝕄1. Clearly, for each 𝛼 ∈ [0, 1], 𝕄𝛼 is nonempty since 𝕄1 is nonempty.

For 𝛼 ∈ [0, 1) define 𝕄𝛼+ =
⋂
𝛾∈(𝛼,1] 𝕄𝛾. Note that 𝕄0 contains only the distribution

of the constant zero. Recall (Theorem 1) that 𝑋 ∈ 𝕄𝛼 if and only if 𝐺𝑋 (𝑠) = 𝐺𝑍 (𝛼𝑠) for
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some 𝑍 ∈ 𝕄1 and all 𝑠 ∈ [0, 2]. Finally, denote 𝕄★
0 = 𝕄0+ and for 𝛼 ∈ (0, 1] let

𝕄★
𝛼 ≡ 𝕄𝛼 \

⋃
𝛾∈[0,𝛼)

𝕄𝛾 . (6)

By definition, {𝕄★
𝛼 | 𝛼 ∈ [0, 1]} are pairwise disjoint with

⋃
𝛼∈[0,1] 𝕄

★
𝛼 = 𝕄1.

Theorem 4. For every 𝛼 ∈ (0, 1], 𝑀𝛼+ = 𝑀𝛼. Moreover, 𝕄0+ ≠ 𝑀0 and for 0 < 𝛼 <

𝛽 ≤ 1,
𝕄0 ⊂ 𝕄0+ ⊂ 𝕄𝛼 ⊂ 𝕄𝛽 . (7)

Proof. 𝕄0+ contains any Poisson (as well as mixed Poisson) distribution, therefore it is
non-empty and is different from 𝕄0 which contains only the distribution of the constant
0, which is also in 𝕄0+ and thus 𝕄0 ⊂ 𝕄0+. Let 𝑋 ∼ 𝛼 ◦ 1 (a Bernoulli distribution
with P(𝑋 = 1) = 𝛼). Assume that for some 𝛽 ∈ (0, 1] and some 𝑍 ∈ 𝕄1 we have that
𝑋 ∼ 𝛽 ◦ 𝑍 . Then clearly also 𝑍 has a Bernoulli distribution (possibly with 𝑃(𝑍 = 1) = 1)
and 𝛼 = 𝑃(𝑋 = 1) = 𝛽𝑃(𝑍 = 1) ≤ 𝛽. Therefore, 𝑋 ∉ 𝕄𝛽 for any 𝛽 < 𝛼 and thus
𝑋 ∈ 𝕄★

𝛼. Hence, 𝕄★
𝛼 is non-empty. We also see that if 𝑋 ∼ 𝛼 ◦ 𝑍 , then for 𝛽 > 𝛼 we

have that 𝑋 ∼ 𝛽 ◦ (𝛼/𝛽) ◦ 𝑍 and thus 𝕄𝛼 ⊂ 𝕄𝛽. The fact that they are contained in 𝕄1
and contain 𝕄0 is obvious. Finally, assume that for every 𝛽 > 𝛼, 𝑋 ∼ 𝛽 ◦ 𝑍𝛽 for some
𝑍𝛽 ∈ 𝕄1. Then, since for 𝛼 < 𝛽1 < 𝛽2 < 1 we have that 𝑋 ∼ 𝛽1◦𝑍𝛽1 ∼ 𝛽2◦(𝛽1/𝛽2)◦𝑍𝛽1 ,
we have that 𝑍𝛽2 ∼ (𝛽1/𝛽2) ◦ 𝑍𝛽1 , where the right side is stochastically smaller than 𝑍𝛽1 .
Therefore 𝑍𝛽 converges in distribution to some 𝑍𝛼 as 𝛽 ↓ 𝛼 where 𝑍𝛼 may possibly have
a defective distribution (infinite with positive probability). Since 𝐺𝑍𝛽 (𝑠) = 𝐺𝑋 (𝑠/𝛽) for
𝑠 ∈ [0, 𝛽] (hence for 𝑠 ∈ [0, 𝛼]), and𝐺𝑋 (𝑠/𝛽) converges to𝐺𝑋 (𝑠/𝛼) for every 𝑠 ∈ [0, 𝛼],
it follows that 𝐺𝑍𝛼

(𝑠) = 𝐺𝑋 (𝑠/𝛼) for all 𝑠 ∈ [0, 𝛼] and hence 𝐺𝑋 (𝑠) = 𝐺𝑍𝛼
(𝛼𝑠) with

1 = 𝐺𝑋 (0) = 𝐺𝑍𝛼
(0) which implies that the distribution of 𝑍𝛼 is proper and hence

𝑋 ∈ 𝕄𝛼. This implies that 𝕄𝛼+ = 𝕄𝛼. □

For every 𝑋 ∈ 𝕄1 the value 𝜌(𝑋) = inf{𝛼 ∈ [0, 1] : 𝑋 ∈ 𝕄𝛼} is well defined and

𝑋 ∈ 𝕄★
𝛼 ⇔ 𝜌(𝑋) = 𝛼. (8)

The mapping 𝜌(·) : 𝕄1 → ℝ+ shares some properties with a norm as follows.
Theorem 5. Let 𝑋,𝑌 ∈ 𝕄1 be independent and 𝛼 ∈ [0, 1]. Then,

(i) 𝜌(𝑋 + 𝑌 ) ≤ max(𝜌(𝑋), 𝜌(𝑌 )) (≤ 𝜌(𝑋) + 𝜌(𝑌 )),
(ii) 𝜌(𝛼 ◦ 𝑋) = 𝛼𝜌(𝑋),
(iii) When 𝑋 is a.s. bounded then 𝜌(𝑋) = 0 if and only if 𝑋 is a.s. 0.

Proof. (i) For every 𝛼, 𝛽 ∈ [0, 1] such that 𝑋 ∈ 𝕄𝛼 ⊂ 𝕄max(𝛼,𝛽) and𝑌 ∈ 𝕄𝛽 ⊂ 𝕄max(𝛼,𝛽)
we have 𝑋 + 𝑌 ∈ 𝕄max(𝛼,𝛽) and thus 𝜌(𝑋 + 𝑌 ) ≤ max(𝛼, 𝛽). Setting 𝛼 = 𝜌(𝑋) when
𝜌(𝑋) > 0 or letting 𝛼 ↓ 0 when 𝜌(𝑋) = 0 and similarly for 𝑌 completes the proof.

(ii) Obviously 0 ◦ 𝑋 ∼ 0 and thus 𝜌(0 ◦ 𝑋) = 0 = 0𝜌(𝑋), thus it suffices to prove this
for 𝛼 ∈ (0, 1].

We first note that if 𝑋 ∈ 𝕄𝛽 then 𝛼 ◦ 𝑋 ∈ 𝕄𝛼𝛽 and thus 𝜌(𝛼 ◦ 𝑋) ≤ 𝛼𝛽. By
taking 𝛼 = 𝜌(𝑋) when 𝜌(𝑋) > 0 and letting 𝛽 ↓ 0 when 𝜌(𝑋) = 0, this implies that
𝜌(𝛼 ◦ 𝑋) ≤ 𝛼𝜌(𝑋).

When 𝜌(𝑋) = 0 we have 0 ≤ 𝜌(𝛼 ◦ 𝑋) ≤ 𝛼𝜌(𝑋) = 0 and thus 𝜌(𝛼 ◦ 𝑋) = 𝛼𝜌(𝑋) = 0.
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When 𝜌(𝑋) ∈ (0, 1] then 𝑋 ∼ 𝜌(𝑋) ◦ 𝑍 for some 𝑍 ∈ 𝕄1. If there was a 𝛽 with
𝜌(𝛼 ◦ 𝑋) < 𝛽 < 𝛼𝜌(𝑋) then there was a 𝑊 ∈ 𝕄1 such that 𝛼 ◦ 𝑋 ∼ 𝛽 ◦ 𝑊 . Since
𝛽/𝛼 < 𝜌(𝑋) ≤ 1 we can write 𝛼 ◦ 𝑋 = 𝛼 ◦ (𝛽/𝛼) ◦𝑊 (recalling 𝛼 > 0), implying that
𝑋 ∼ (𝛽/𝛼) ◦𝑊 and hence 𝛽/𝛼 ≥ 𝜌(𝑋), contradicting 𝛽 < 𝛼𝜌(𝑋).

(iii) Clearly, if 𝑃(𝑋 = 0) = 1 then 𝜌(𝑋) = 0. Conversly, when 𝜌(𝑋) = 0 then either
𝑋 ∼ 0 ◦ 𝑍 ∼ 0 for some 𝑍 ∈ 𝕄1 and we are done or for every 𝛼 ∈ (0, 1] there exists some
𝑍𝛼 ∈ 𝕄1 such that 𝑋 = 𝛼◦𝑍𝛼. Let 𝑛 be such that 𝑃(𝑋 ≤ 𝑛) = 1. Then 𝑃(𝑍𝛼 ≤ 𝑛) = 1 for
all 𝛼 ∈ (0, 1]. For every 1 ≤ 𝑖 ≤ 𝑛 we have that 𝑃(𝑋 = 𝑖) = ∑𝑛

𝑘=𝑖

(𝑘
𝑖

)
𝛼𝑘 (1− 𝛼)𝑖−𝑘𝑃(𝑍𝛼 =

𝑘) which converges to zero as 𝛼 ↓ 0 and thus 𝑃(𝑋 = 0) = 1. □

Remark 2. It is tempting to conjecture that the left inequality in (i) of Theorem 5 is
actually an equality. However, this turns out to be false in general. In an attempt to
sulvage one’s dignity, another guess could be that it should always hold that 𝜌(𝑋 + 𝑌 ) ≥
min(𝜌(𝑋), 𝜌(𝑌 )). This is false as well. In Corollary 16 to follow we will give an example
where 𝜌(𝑋 + 𝑌 ) is strictly smaller than both 𝜌(𝑋) and 𝜌(𝑌 ). ^

Remark 3. It is interesting to identify a connection between Corollary 2 and 𝜌(𝑋). First
note that 𝜌(𝑋) = 1 if and only if 𝑋 ∈ 𝕄★

1 which holds if and only if 𝐺𝑋 (𝑠) is not
completely monotone on (1, 𝑐) for any 𝑐 ∈ (1, 2]. From the proof of Corollary 2 it may
be concluded that, when 𝜌(𝑋) ∈ [1/2, 1), 𝑋 ∈ 𝕄𝜌(𝑋) if and only if 𝐺𝑋 (𝑠) is completely
monotone on (0, 1/𝜌(𝑋)). In this case 𝑋 ∼ 𝜌(𝑋) ◦ 𝑍 where 𝑍 ∈ 𝕄★

1 so that 𝐺𝑍 (𝑠) is not
completely monotone on (1, 𝑐) for any 𝑐 ∈ (1, 2] and thus 𝐺𝑋 (𝑠) = 𝐺𝑍 (𝜌(𝑋)𝑠) is not
completely monotone on (1/𝜌(𝑋), 𝑑) for any 𝑑 ∈ (1/𝜌(𝑋), 2].

Assume that for some 𝑛 ≥ 0 we have that 𝜌(𝑋) ∈ [2−(𝑛+1) , 2−𝑛). Let 𝑍 ∈ 𝕄★
1 be such

that 𝑋 ∼ 𝜌(𝑋) ◦ 𝑍 ∼ 2−𝑛 ◦ 𝑍𝑛 where 𝑍𝑛 ∼ (2𝑛𝜌(𝑋)) ◦ 𝑍 . Then 𝐺𝑍𝑛 (𝑠) is completely
monotone on (0, 1/(2𝑛𝜌(𝑋))) and is not completely monotone on (1/(2𝑛𝜌(𝑋)), 𝑑] for
any 𝑑 ∈ (1/(2𝑛𝜌(𝑋)), 2].

This implies the following procedure. If 𝐺𝑋 (𝑠) is completely monotone on (1, 2), then
take 𝑍1 ∈ 𝕄1 such that 𝑋 ∼ (1/2) ◦ 𝑍1. If 𝐺𝑍1 (𝑠) is completely monotone on (1, 2) then
take 𝑍2 ∈ 𝕄1 such that 𝑍1 ∼ (1/2) ◦ 𝑍2. We continue like this until the first 𝑛 for which
𝐺𝑍𝑛 (𝑠) is not complely monotone on (1, 2). If it is not completely monotone on (1, 𝑐)
for any 𝑐 ∈ (1, 2] then 𝜌(𝑋) = 2−𝑛. Otherwise we take the largest 𝑐 ∈ (1, 2) for which
𝐺𝑍𝑛 (𝑠) is completely monotone on (1, 𝑐) (necessarily strictly between 1 and 2) and then
𝜌(𝑋) = 1/(2𝑛𝑐). Note that if we take 𝑍 ∈ 𝕄★

1 such that 𝑍𝑛 ∼ (1/𝑐) ◦ 𝑍 then we have that

𝑋 ∼ (1/2) ◦ 𝑍1 ∼ . . . ∼ (1/2𝑛) ◦ 𝑍𝑛 ∼ (1/2𝑛) ◦ (1/𝑐) ◦ 𝑍 ∼ 𝜌(𝑋) ◦ 𝑍 . (9)

How do we identify that 𝜌(𝑋) = 0? This will happen if for any 𝑛, 𝐺𝑍𝑛 (𝑠) is completely
monotone on (1, 2), so that in this case this process never not ends. Since 𝐺𝑍𝑛 (𝑠/2𝑛)
is completely monotone on (0, 2𝑛) this will eventually result in a function which is
completely monotone on (0,∞) and agrees with 𝐺𝑋 (𝑠) on [0, 1) (hence, as discussed
earlier, also on [0, 2]), as expected (see Theorem 6 below). ^

If 0 < 𝜌(𝑋) ≤ 𝛼 ≤ 1 then it makes sense to let 𝛼−1 ◦ 𝑋 denote the random variable 𝑍
on the right hand side of 𝑋 = 𝛼 ◦ 𝑍 , so that 𝑋 ∼ 𝛼 ◦ (𝛼−1 ◦ 𝑋) for every 𝛼 ∈ [𝜌(𝑋), 1].
On the other hand, from 𝛼 ◦ 𝑋 ∼ 𝛼 ◦ 𝑍 for 𝑍 ∼ 𝑋 it follows that 𝛼−1 ◦ (𝛼 ◦ 𝑋) ∼ 𝑋 for
all 𝛼 ∈ (0, 1].
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When 𝜌(𝑋) = 0, then for 𝛼, 𝑠 ∈ (0, 1] we have

𝐿𝛼(𝛼−1◦𝑋) (𝑠) = 𝐺 (𝛼−1◦𝑋) (1 − 𝑒−𝛼𝑠) = 𝐺𝑋

(
1 − 𝑒−𝛼𝑠
𝛼𝑠

𝑠

)
which converges to 𝐺𝑋 (𝑠) as 𝛼 ↓ 0. Since 𝐺𝑋 (𝑠) → 1 as 𝑠 ↓ 0, then by the continuity
theorem for LST’s (which also holds when restricting to [0, 1)) we have that 𝛼(𝛼−1 ◦ 𝑋)
converges in distribution to some nonnegative 𝑌 satisfying 𝐺𝑋 (𝑠) = 𝐿𝑌 (𝑠) on [0, 1)
(hence, also on [0, 2]). Therefore, 𝑋 ∼ 𝑁 (𝑌 ) as explained in the paragraph preceding
Theorem 1. Also, if 𝑋 ∼ 𝑁 (𝑌 ) then since 𝛼 ◦ 𝑁 (𝑌/𝛼) ∼ 𝑁 (𝑌 ) for every 𝛼 ∈ (0, 1], this
implies that 𝜌(𝑋) = 0. Therefore we have the following known result that can be traced
back to [14], Satz 4.2 (see also [9], Theorem 2.3 and [12]).

Theorem 6. 𝑋 ∈ 𝕄★
0 if and only if 𝑋 has a mixed Poisson distribution.

Remark 4. Since 𝑁 (𝑌 ) has unbounded support whenever 𝑌 is not identically zero, any
random variable with bounded support, other than the constant zero, cannot be in𝕄★

0 . ^

The following theorem generalizes Proposition 2.1 in [12].

Theorem 7. [Poisson approximation] Let 𝑆𝑛 =
∑𝑛
𝑘=1 𝑋𝑘𝑛, where 𝑋1𝑛, 𝑋2𝑛, . . . , 𝑋𝑛𝑛 are

i.i.d. non-negative integer-valued random variables with 𝑋1𝑛 ⇒ 𝑋 and E𝑋1𝑛 → 𝐸𝑋

as 𝑛 → ∞, where E𝑋 < ∞. Also assume that 𝑎𝑛 ∈ [0, 1] with 𝑛𝑎𝑛 → 𝜆 ∈ (0,∞) as
𝑛→ ∞. Then

𝑎𝑛 ◦ 𝑆𝑛 ⇒ 𝑁 (𝜆E𝑋), 𝑛→ ∞.

Proof. From (2) it follows that for every 𝑠 ∈ [0, 1],

𝐺𝑎𝑛◦𝑆𝑛 (𝑠) = 𝐺𝑆𝑛 (𝑎𝑛𝑠) = 𝐺𝑛
𝑋1𝑛

(𝑎𝑛𝑠) = exp
(
log𝐺𝑋1𝑛 (𝑎𝑛𝑠)

𝑎𝑛𝑠
· 𝑛𝑎𝑛𝑠

)
.

Thus, showing that the right hand side converges to 𝑒−𝜆E𝑋𝑠 = 𝐿𝜆E𝑋 (𝑠) = 𝐺𝑁 (𝜆E𝑋) (𝑠),
will complete the proof. Since 𝑛𝑎𝑛 → 𝜆, it remains to show that

log𝐺𝑋1𝑛 (𝑎𝑛𝑠)
𝑎𝑛𝑠

→ −E𝑋

as 𝑛→ ∞. By Jensen’s inequality it follows that
log𝐺𝑋1𝑛 (𝑎𝑛𝑠)

𝑎𝑛𝑠
=

logE(1 − 𝑎𝑛𝑠)𝑋1𝑛

𝑎𝑛𝑠
≥ E𝑋1𝑛

log(1 − 𝑎𝑛𝑠)
𝑎𝑛𝑠

(10)

where the right hand side converges to −E𝑋 as 𝑛 → ∞. Now, since log 𝑥 ≤ 𝑥 − 1 for
𝑥 > 0 we have that

log𝐺𝑋1𝑛 (𝑎𝑛𝑠)
𝑎𝑛𝑠

≤ E(1 − 𝑎𝑛𝑠)𝑋1𝑛 − 1
𝑎𝑛𝑠

. (11)

Note that for every 𝑢 ∈ (0, 1) and every 𝑥 ∈ [0,∞) we have that, for some 𝑣 ∈ (0, 𝑢),
(1 − 𝑢)𝑥 − 1

𝑢
= −𝑥(1 − 𝑣)𝑥−1 ≤ −𝑥(1 − 𝑢) (𝑥−1)+ . (12)

Therefore, for every 𝜖 ∈ (0, 1) and 𝑛 ≥ 𝑠/𝜖 we have that
E(1 − 𝑎𝑛𝑠)𝑋1𝑛 − 1

𝑎𝑛𝑠
≤ −E𝑋1𝑛 (1 − 𝑎𝑛𝑠) (𝑋1𝑛−1)+ ≤ −E𝑋1𝑛 (1 − 𝜖) (𝑋1𝑛−1)+ . (13)
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As 𝑥(1 − 𝜖) (𝑥−1)+ is bounded and continuous (in 𝑥) on [0,∞), it follows that the right
side converges, as 𝑛 → ∞, to −E𝑋 (1 − 𝜖) (𝑋−1)+ , which in turn (monotone convergence)
converges to −E𝑋 as 𝜖 ↓ 0. Therefore we have shown that

−E𝑋 ≤ lim inf
log𝐺𝑋1𝑛 (𝑎𝑛𝑠)

𝑎𝑛𝑠
≤ lim sup

log𝐺𝑋1𝑛 (𝑎𝑛𝑠)
𝑎𝑛𝑠

≤ −E𝑋 (14)

and we are done. □

Remark 5. As a sanity check, note that for 𝑋1𝑛 = 1 we have that 𝑎𝑛◦𝑆𝑛 ∼ Binomial(𝑛, 𝑎𝑛)
which implies the well known fact that Binomial(𝑛, 𝑎𝑛) ⇒ Poisson(𝜆) whenever 𝑛𝑎𝑛 →
𝜆. Also note that 𝑛−1 ◦ 𝑆𝑛 → 𝑁 (E𝑋) which is a distributional version of a law of large
numbers in the current context. Finally note that if either the supports of 𝑋1𝑛 are contained
in a (common) bounded set or 𝑋1𝑛 is stochastically increasing in 𝑛, then the condition
E𝑋1𝑛 → E𝑋 is redundant. ^

For 𝑋 ∈ 𝕄1, denote supp(𝑋) = {𝑖 | 𝑖 ∈ ℤ+, P(𝑋 = 𝑖) > 0} (support of the distribution
of 𝑋). We will say that supp(𝑋) contains holes if for some 𝑛 ≥ 1, 𝑃(𝑋 = 𝑛) > 0 = 𝑃(𝑋 =

𝑛 − 1). Note that a special case is when 𝑃(𝑋 = 𝑛) > 0 for some 𝑛 ≥ 1 and 𝑃(𝑋 = 0) = 0.
Also note that trivially the support of the constant zero does not contain holes, but that of
any other positive integer constant does.
Lemma 8. For every 𝛼 ∈ (0, 1), supp(𝛼 ◦ 𝑋) does not contain holes and

sup{𝑖 |𝑖 ∈ ℤ+, 𝑃(𝑋 = 𝑛) > 0} = sup{𝑖 |𝑖 ∈ ℤ+, 𝑃(𝛼 ◦ 𝑋 = 𝑛) > 0} . (15)

Proof. Immediate from the fact that for each 𝑛 ≥ 1 with 𝑃(𝑋 = 𝑛) > 0 we have, for every
0 ≤ 𝑘 ≤ 𝑛, that 𝑃(𝛼 ◦ 𝑋 = 𝑘) ≥

(𝑛
𝑘

)
𝛼𝑘 (1 − 𝛼)𝑛−𝑘𝑃(𝑋 = 𝑛) > 0. □

Theorem 9. 𝜌(𝑋) = 𝛼 ∈ (0, 1) (equivalently, 𝑋 ∈ 𝕄★
𝛼) if and only if there is some

𝑍 ∈ 𝕄★
1 such that 𝑋 ∼ 𝛼 ◦ 𝑍 . Moreover, any 𝑋 ∈ 𝕄1 such that supp(𝑋) contains holes is

in 𝕄★
1 .

Proof. Assume that 𝜌(𝑋) = 𝛼 (equivalently, 𝑋 ∈ 𝕄★
𝛼). Then there is a 𝑍 ∈ 𝕄1 such that

𝑋 ∼ 𝛼 ◦ 𝑍 . Assume to the contrary that 𝑍 ∈ 𝕄𝛽 for some 𝛽 ∈ (0, 1). Then 𝑍 ∼ 𝛽 ◦𝑊 for
some 𝑊 ∈ 𝕄1 and thus 𝑋 ∼ 𝛼 ◦ (𝛽 ◦𝑊) ∼ (𝛼𝛽) ◦𝑊 which contradicts the assumption
that 𝜌(𝑋) = 𝛼. Thus, necessarily 𝑍 ∈ 𝕄★

1 . Now, let 𝑍 ∈ 𝕄★
1 and take 𝑋 ∼ 𝛼 ◦ 𝑍 . Assume

to the contrary that 𝑋 ∈ 𝕄𝛽 for some 𝛽 < 𝛼. Then, for some𝑊 ∈ 𝕄1, 𝑋 ∼ 𝛽 ◦𝑊 . Since
𝛼 ◦ (𝛽/𝛼) ◦𝑊 ∼ 𝛽 ◦𝑊 ∼ 𝛼 ◦ 𝑍 , then 𝑍 ∼ (𝛽/𝛼) ◦𝑊 . This contradicts the assumption
that 𝑍 ∈ 𝕄★

1 . Finally, by Lemma 8, any distribution in 𝕄1 of which support contains
holes cannot be in 𝕄𝛼 for any 𝛼 ∈ (0, 1) and is thus in 𝕄★

1 . □

The next theorem shows that any mixed Poisson distribution not concentrated at zero is
the distribution of a product of some random variable in 𝕄★

𝛼 (necessarily with unbounded
support) with some independent Bernoulli random variable.
Theorem 10. Let 𝛼 ∈ (0, 1] and let 𝑌 be a non-negative random variable with 𝑃(𝑌 =

0) < 1. Then there exist 𝑋 ∈ 𝕄★
𝛼 and an independent Bernoulli 𝐵, such that 𝐵𝑋 ∼ 𝑁 (𝑌 ).

Proof. Let 𝑃(𝑍 = 0) = 0 and for 𝑛 ≥ 1

𝑃(𝑍 = 𝑛) = 1
1 − 𝐿𝑌 (1/𝛼)

E

(
𝑒−𝑌/𝛼

(𝑌/𝛼)𝑛
𝑛!

)
. (16)
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From Theorem 9, 𝑍 ∈ 𝕄★
1 and thus 𝑋 ∼ 𝛼 ◦ 𝑍 ∈ 𝕄★

𝛼. Let 𝐵 ∼ Bernoulli(1 − 𝐿𝑌 (1/𝛼))
be independent of 𝑍 . It is easy to check that 𝐵𝑍 ∼ 𝑁 (𝑌/𝛼) and that

𝐵(𝛼 ◦ 𝑍) ∼ 𝛼 ◦ 𝐵𝑍 ∼ 𝛼 ◦ 𝑁 (𝑌/𝛼) ∼ 𝑁 (𝑌 ) (17)

and the proof is complete. □

For a general 𝑋 ∈ 𝕄1 let 𝑋0 ∼ 𝑋 | (𝑋 ≥ 1). Obviously, as 𝛼 → 0 the thinned variable
𝛼 ◦ 𝑋 tends to zero, but (𝛼 ◦ 𝑋)0 may still converge weakly to a nonconstant random
variable.

Theorem 11. Let 𝑋 ∈ 𝕄1 with P(𝑋 = 0) < 1. If 𝑋 has a finite mean then

(𝛼 ◦ 𝑋)0 ⇒ 1, 𝛼 → 0.

If instead P(𝑋 ≥ 𝑘) = 𝑘−𝛾𝐿 (𝑘) with 𝛾 ∈ (0, 1) and 𝐿 slowly varying at infinity then

(𝛼 ◦ 𝑋)0 ⇒ Sibuya(𝛾), 𝛼 → 0.

Remark 6. The Sibuya distribution is described in Example 6. Recall that a function 𝐿
is slowly varying if 𝐿 (𝑐𝑥)/𝐿 (𝑥) → 1 as 𝑥 → ∞ for every 𝑐 > 0. The theorem shows that
if we apply binomial thinning repeatedly to an 𝑋 with finite mean then 𝛼𝑛 ◦ 𝑋 , given that
it is still positive, will most probably be one if 𝑛 is large. This is no longer true in the
infinite mean case. ^

Proof. The a.p.g.f. of 𝑋0 is given by 𝐺𝑋0 (𝑠) =
𝐺𝑋 (𝑠)−𝐺𝑋 (1)

1−𝐺𝑋 (1) . Provided that E𝑋 < ∞ we
have

𝐺 (𝛼◦𝑋)0 (𝑠) = 1 − 1 − 𝐺𝑋 (𝛼𝑠)
1 − 𝐺𝑋 (𝛼)

= 1 − 𝛼𝑠E𝑋 + 𝑜(𝛼)
𝛼E𝑋 + 𝑜(𝛼) → 1 − 𝑠,

which is the a.p.g.f. of the constant one. Now assume that 𝑎𝑘 := P(𝑋 ≥ 𝑘) = 𝑘−𝛾𝐿 (𝑘)
and let 𝐴(𝑠) = ∑∞

𝑘=0(1 − 𝑠)𝑘𝑎𝑘 . By Karamata’s theorem for power series ([2], Corollary
1.7.3) 𝑎𝑛 = 𝑘−𝛾𝐿 (𝑘) implies that

𝐴(𝑠) ∼ 𝑠𝛾−1𝐿 (1/𝑠)Γ(1 − 𝛾)

as 𝑠 → 0. Now

𝑠𝐴(𝑠) = 𝑠
∞∑︁
𝑘=0

(1 − 𝑠)𝑘
∞∑︁
𝑖=𝑘

𝑝𝑖 = 𝑠

∞∑︁
𝑖=0

𝑝𝑖

𝑖∑︁
𝑘=0

(1 − 𝑠)𝑘 = 1 − (1 − 𝑠)𝐺𝑋 (𝑠).

i.e. as 𝑠 → 0

1 − 𝐺𝑋 (𝑠) = 1 − 1 − 𝑠𝐴(𝑠)
1 − 𝑠 ∼ Γ(1 − 𝛾)𝑠𝛾𝐿 (1/𝑠).

This implies that

1 − 𝐺 (𝛼◦𝑋)0 (𝑠) =
1 − 𝐺𝑋 (𝛼𝑠)
1 − 𝐺𝑋 (𝛼)

∼ (𝛼𝑠)𝛾
𝛼𝛾

𝐿 (1/(𝛼𝑠))
𝐿 (1/𝛼) → 𝑠𝛾

as 𝛼 → 0 by the properties of slowly varying functions. 𝐺 (𝛼◦𝑋)0 (𝑠) = 1− 𝑠𝛾 is the a.p.g.f.
of a Sibuya distribution. □

Recall the following. For a sequence {𝑎𝑘 | 𝑘 ≥ 0} define 𝑟 = lim sup𝑛→∞ |𝑎𝑘 |1/𝑘 , then
the radius of convergence of 𝑆(𝑥) = ∑∞

𝑘=0 𝑎𝑘𝑥
𝑘 is 𝑅 = 0 when 𝑟 = ∞, 𝑅 = ∞ when 𝑟 = 0
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and 𝑅 = 1/𝑟 when 𝑟 ∈ (0,∞). When |𝑥 | < 𝑅, 𝑆(𝑥) converges absolutely and is infinitely
differentiable with 𝑆(𝑛) (𝑥) = 𝑛! ∑∞

𝑘=𝑛

(𝑘
𝑛

)
𝑥𝑘−𝑛𝑎𝑘 which also has a radius of convergence 𝑅

and thus converges absolutely for |𝑥 | < 𝑅.
Theorem 12. Let 𝑋 ∈ 𝕄1 and let 𝑅𝑋 denote the radius of convergence of 𝑃𝑋 (𝑠) =

𝐺𝑋 (1 − 𝑠) = ∑∞
𝑘=0 𝑠

𝑘 𝑝𝑘 , where 𝑝𝑘 = P(𝑋 = 𝑘). Then 𝑅𝑋 ≥ 1 (possibly infinite) and the
following holds:

(i) If (1 + 𝑅𝑋)−1 < 𝛼 < 1 (0 on the left when 𝑅𝑋 = ∞) then 𝐺𝑋 (𝑠/𝛼) is well defined
for 𝑠 ∈ [0, 1] and

𝑝★𝑗 (𝛼) ≡
∞∑︁
𝑘= 𝑗

(
𝑘

𝑗

)
𝛼−𝑘 (𝛼 − 1)𝑘− 𝑗 𝑝𝑘 (18)

converges absolutely with
∑∞
𝑗=0 𝑝

★
𝑗
(𝛼) = 1. Moreover, if 𝑋 ∈ 𝕄𝛼 with 𝑋 = 𝛼 ◦ 𝑍 ,

𝑍 ∈ 𝕄1 then necessarily 𝑝★𝑗 (𝛼) ≥ 0 for all 𝑗 ≥ 0 and P(𝑍 = 𝑗) = 𝑝★
𝑗
(𝛼).

(ii) If 𝑅𝑋 > 1, 2(1 + 𝑅𝑋)−1 < 𝛼 < 1 and 𝑝★
𝑗
(𝛼) ≥ 0 for all 𝑗 ∈ ℤ+ then 𝑋 ∈ 𝕄𝛼 with

𝑋 = 𝛼 ◦ 𝑍 , 𝑍 ∈ 𝕄1 and P(𝑍 = 𝑗) = 𝑝★
𝑗
(𝛼).

Remark 7. Note that since 𝑅𝑋 ≥ 1, then (1 + 𝑅𝑋)−1 ≤ 1/2 and if 𝑅𝑋 > 1 then
2(1+ 𝑅𝑋)−1 < 1. In particular, the first part of Theorem 12 is valied for any 𝛼 ∈ (1/2, 1).
Also note that the first part also implies that when (1 + 𝑅𝑋)−1 < 𝛼 < 1 and there exists
𝑗 ≥ 0 such that 𝑝∗

𝑗
(𝛼) < 0, then there is no 𝑍 ∈ 𝕄1 such that 𝑋 ∼ 𝛼 ◦ 𝑍 . In particular,

if for any 𝛼 ∈ (1 − 𝜖, 1), where 0 < 𝜖 ≤ 1/2, there is some 𝑗 for which 𝑝∗
𝑗
(𝛼) < 0 then

necessarily 𝑋 ∈ 𝕄★
1 . ^

Proof. (i) 𝐺𝑋 (𝑠/𝛼) is well defined for 𝛼(1 − 𝑅𝑋) < 𝑠 < 𝛼(1 + 𝑅𝑋). Since 𝛼 >

(1+𝑅𝑋)−1 it follows that [0, 1] ⊂ [𝛼(1−𝑅𝑋), 𝛼(1+𝑅𝑋)]. Since (1−𝛼)/𝛼 < 𝑅𝑋 ,
the series (18) converges absolutely. If 𝑋 = 𝛼 ◦ 𝑍 then

𝐺𝑍 (𝛼𝑠) = 𝐺𝑋 (𝑠), |1 − 𝑠 | < 𝑅𝑋 . (19)

Since 𝛼 > (1 + 𝑅𝑋)=1 it follows that (19) holds in particular for 𝑠 = 1/𝛼 and

P(𝑍 = 𝑗) = (−1) 𝑗
𝑗!

𝐺
( 𝑗)
𝑍

(1) = (−1/𝛼) 𝑗
𝑗!

𝐺
( 𝑗)
𝑋

(1/𝛼) = 𝑝★𝑗 (𝛼). □

(ii) Since 𝛼 > (1 + 𝑅𝑋)−1 the function

𝑓 (𝑠) ≡ 𝐺𝑋 (𝑠/𝛼) =
∞∑︁
𝑘=0

(1 − 𝑠/𝛼)𝑘 𝑝𝑘 (20)

=

∞∑︁
𝑘=0

𝑘∑︁
𝑗=0

(
1 − 𝛼
𝛼

) 𝑘
𝑝𝑘

(
𝑘

𝑗

) (
1 − 𝑠
1 − 𝛼

) 𝑗
(−1)𝑘− 𝑗

is well defined for 𝑠 ∈ [0, 1] and 𝑓 (0) = 1. The sum of the absolute values is
∞∑︁
𝑘=0

(
1 − 𝛼
𝛼

) 𝑘
𝑝𝑘

𝑘∑︁
𝑗=0

(
𝑘

𝑗

) (
1 − 𝑠
1 − 𝛼

) 𝑗
=

∞∑︁
𝑘=0

(
1 − 𝛼
𝛼

) 𝑘 (
1 + 1 − 𝑠

1 − 𝛼

) 𝑘
𝑝𝑘

=

∞∑︁
𝑘=0

(
2 − 𝛼 − 𝑠

𝛼

) 𝑘
𝑝𝑘
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which converges provided that |2 − 𝛼 − 𝑠 |/𝛼 < 𝑅𝑋 . That is, when

−𝛼(𝑅𝑋 − 1) − 1 < 1 − 𝑠 < 𝛼(𝑅𝑋 + 1) − 1

where the left hand side is negative and, since 𝛼 ≥ 2/(1 + 𝑅𝑋), the right hand
side is ≥ 1. Therefore for all 𝑠 ∈ [0, 1] the sum 𝑓 (𝑠) is absolutely convergent,
so that we can interchange the order of summation in (??) and obtain, after some
rearrangements,

𝑓 (𝑠) = 𝐺𝑋 (𝑠/𝛼) =
∞∑︁
𝑗=0

(1 − 𝑠) 𝑗 𝑝★𝑗 (𝛼).

If 𝑝★
𝑗
(𝛼) ≥ 0 for 𝑗 ∈ ℤ+ then, since

∑∞
𝑗=0 𝑝

∗
𝑗
(𝛼) = 1, 𝑓 (𝑠) is the a.p.g.f. of a

random variable 𝑍 ∈ 𝕄1 with P(𝑍 = 𝑗) = 𝑝★
𝑗
(𝛼) and 𝑋 = 𝛼 ◦ 𝑍 .

We have seen that if the support of a distribution in 𝕄1 contains a hole then 𝑋 ∈ 𝕄★
1 .

In Theorem 9 in the next section we will show that for distributions with bounded support
the converse is also true. The following example demonstrates that this converse fails
when the support is unbounded. That is, there are distributions in 𝕄★

1 with unbounded
supports that do not contain holes.

Example 1. For 0 < 𝑑 < 𝑐 < 1 let 𝑝𝑘 = 𝑃(𝑋 = 𝑘) be defined as follows.

𝑝𝑘 =
1
𝐴
·
{
𝑐𝑘 𝑘 even,
𝑑𝑘 𝑘 odd

where 𝐴 = (1 − 𝑐2)−1 + 𝑑 (1 − 𝑑2)−1. The support of this distribution is unbounded and
does not contain holes. Clearly,

2𝐴𝑃𝑋 (𝑠) = 2
(

1
1 − (𝑐𝑠)2 + 𝑑𝑠

1 − (𝑑𝑠)2

)
=

1
1 − 𝑐𝑠 +

1
1 + 𝑐𝑠 +

1
1 − 𝑑𝑠 −

1
1 + 𝑑𝑠 (21)

so that for odd 𝑛 we have
2𝐴
𝑛!
𝑃
(𝑛)
𝑋

(𝑠) = 𝑐−1

(𝑐−1 − 𝑠)𝑛+1 − 𝑐−1

(𝑐−1 + 𝑠)𝑛+1 + 𝑑−1

(𝑑−1 − 𝑠)𝑛+1 + 𝑑−1

(𝑑−1 + 𝑠)𝑛+1 . (22)

Since 𝑑 < 𝑐 then for 𝑠 ∈ (−1, 0) we have 𝑐−1 + 𝑠 < max(𝑐−1 − 𝑠, 𝑑−1 − 𝑠, 𝑑−1 + 𝑠) from
which it follows that

(𝑐−1 + 𝑠)𝑛+1 · 2𝐴
𝑛!
𝑝
(𝑛)
𝑋

(𝑠) → −𝑐−1 < 0 (23)

when 𝑛 is odd and 𝑛 → ∞. Therefore 𝑃𝑋 (𝑠) is not absolutely monotone on (−𝜖, 0) for
any 𝜖 ∈ (0, 1). From Corollary 2, this is equivalent to 𝑋 ∈ 𝕄★

1 .
^

4. Distributions with bounded support

We now consider random variables 𝑋 with support in the finite set 𝐼𝑛 ≡ {0, 1, 2, . . . , 𝑛}.
Let us write 𝕄𝛼 (𝑛) = {𝑋 ∈ 𝕄𝛼 : supp(𝑋) ⊆ 𝐼𝑛} and 𝕄★

𝛼 (𝑛) = {𝑋 ∈ 𝕄★
𝛼 : supp(𝑋) ⊆ 𝐼𝑛}
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for the respective subsets of 𝕄𝛼 and 𝕄★
𝛼. Let as before for 𝛼 ∈ (0, 1]

𝑝★𝑗 (𝛼) =
𝑛∑︁
𝑘= 𝑗

(
𝑘

𝑗

)
𝛼−𝑘 (𝛼 − 1)𝑘− 𝑗 𝑝𝑘 , (24)

where 𝑝𝑘 = P(𝑋 = 𝑘). We note that here 𝐺𝑋 (𝑠), being a polynomial, is well defined and
finite for all 𝑠 ∈ ℝ.

Theorem 13. For 𝑛 ≥ 1 let 𝑋 ∈ 𝕄1(𝑛) with 𝑝𝑛 > 0. Then 𝜌(𝑋) ≥ 𝑝
1/𝑛
𝑛 > 0 and for

𝛼 ∈ (0, 1], 𝑋 ∈ 𝕄𝛼 (𝑛) if and only if 𝑝★𝑗 (𝛼) ≥ 0 for all 𝑗 ∈ 𝐼𝑛−1, in which case 𝑋 ∼ 𝛼 ◦ 𝑍
with 𝑃(𝑍 = 𝑗) = 𝑝★

𝑗
(𝛼) for 𝑗 ∈ 𝐼𝑛.

Proof. First observe that for every 𝛼 ∈ (0, 1] we have that 𝑝★𝑛 (𝛼) = 𝑝𝑛/𝛼𝑛 and that
𝑝∗𝑛 (𝜌(𝑋)) ≤ 1. This implies that 𝑝★𝑛 (𝛼) > 0 for all 𝛼 ∈ (0, 1] and that 𝜌(𝑋) ≥ 𝑝

1/𝑛
𝑛 .

Now, for every 𝛼 ∈ (0, 1] and 𝑠 ∈ ℝ, we have,

𝐺𝑋 (𝑠/𝛼) =
𝑛∑︁
𝑘=0

(1 − 𝑠/𝛼)𝑘 𝑝𝑘 =
𝑛∑︁
𝑘=0

(1 − 𝑠)𝑘 𝑝𝑘
𝑘∑︁
𝑗=0

(
𝑘

𝑗

)
𝛼−𝑘 (1 − 𝑠) 𝑗−𝑘 (𝛼 − 1)𝑘− 𝑗

=

𝑛∑︁
𝑗=0

(1 − 𝑠) 𝑗
𝑛∑︁
𝑘= 𝑗

(
𝑘

𝑗

)
𝛼−𝑘 (𝛼 − 1)𝑘− 𝑗 𝑝𝑘 =

𝑛∑︁
𝑗=0

(1 − 𝑠) 𝑗 𝑝★𝑗 (𝛼) , (25)

where, setting 𝑠 = 0, gives
∑𝑛
𝑗=0 𝑝

★
𝑗
(𝛼) = 𝐺𝑋 (0) = 1. Therefore, 𝐺𝑋 (𝑠/𝛼) is the a.p.g.f.

of some 𝑍 ∈ 𝕄1(𝑛) (i.e., 𝑋 ∼ 𝛼 ◦ 𝑍 , necessarily with 𝑃(𝑍 = 𝑗) = 𝑝★
𝑗
(𝛼) for 𝑗 ∈ 𝐼𝑛).

□

Remark 8. We mention that since 𝕄𝛼1 (𝑛) ⊂ 𝕄𝛼2 (𝑛) for 0 < 𝛼1 < 𝛼2 ≤ 1, then it
follows that 𝑝★

𝑖
(𝛼) ≥ 0 for all 𝑖 ∈ 𝐼𝑛 and 𝛼 ∈ [𝜌(𝑋), 1]. For all 𝛼 ∈ (0, 𝜌(𝑋)) there is at

least one 𝑖 ∈ 𝐼𝑛−1 for which 𝑝★
𝑖
(𝛼) < 0. This will be illustrated in Remark 11 following

Example 3. ^

Theorem 14. Let 𝑋 ∈ 𝕄1 with bounded support. Then 𝑋 ∈ 𝕄★
1 if and only if its support

contains a hole.

Proof. We have already seen (Lemma 8) that if the support of 𝑋 has a hole then it must
be in 𝕄★

1 . For the converse, assume that the support of 𝑋 has no holes. Therefore, either
𝑃(𝑋 = 0) = 1 and then 𝑋 ∈ 𝕄★

0 (hence, not in 𝕄★
1 ), or we let 𝑛 = max{𝑖 | 𝑃(𝑋 = 𝑖) > 0}.

Since 𝐺𝑋 (𝑠) is a polynomial of degree 𝑛, then for all 𝑘 > 𝑛 we have that 𝐺 (𝑘) (𝑠) = 0 for
all real 𝑠. For 𝑘 ≤ 𝑛 we have that (−1)𝑘𝐺 (𝑘) (1) = 𝑃(𝑋 = 𝑘) > 0 so that by the continuity
of 𝐺 (𝑘) (𝑠) there must be some 𝑐𝑘 > 0 such that (−1)𝑘𝐺 (𝑘) (𝑠) > 0 for all 𝑠 ∈ (1, 𝑐𝑘 ).
Taking 𝑐 = min{𝑐𝑘 | 𝑘 = 0, . . . , 𝑛} > 1 gives that 𝐺𝑋 is completely monotone on (0, 𝑐)
and by Corollary 2 we have that 𝑋 ∉ 𝕄★

1 . □

The following implies that 𝜌(·) is continuous on 𝕄1(𝑛) \ 𝕄1(𝑛 − 1) (but not on
𝕄1(𝑛)). Although it is possible that this may be concluded from the continuity property
of (possibly complex) roots of polymials of the form 𝑥𝑛+∑𝑛−1

𝑖=0 𝑐𝑖𝑥
𝑖 in 𝑐0, . . . , 𝑐𝑛−1 (and the

continuity of the maximum function), we prefer to give a simple self contained derivation
demonstrating how it is in fact a by product of Theorem 14.
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Theorem 15. Assume that 𝑋𝑘 ∈ 𝕄1(𝑛) for 𝑘 ≥ 1 and that 𝑋𝑘 ⇒ 𝑋 with 𝑃(𝑋 = 𝑛) > 0.
Then 𝜌(𝑋𝑘 ) → 𝜌(𝑋) > 0 as 𝑘 → ∞.

Proof. First assume that 𝜌(𝑋𝑘 ) = 1 for all 𝑘 ≥ 1. Since 𝑃(𝑋𝑘 = 𝑛) → 𝑃(𝑋 = 𝑛) > 0 as
𝑛→ ∞ then there exists some 𝐾 such that 𝑃(𝑋𝑘 = 𝑛) > 0 for all 𝑘 ≥ 𝐾 . By Theorem 14
for each 𝑘 ≥ 𝐾 the support of 𝑋𝑘 contains a hole (which cannot be 𝑛) and thus there exists
some 𝑖 ∈ {0, . . . , 𝑛 − 1} and a subsequence 𝑋𝑘𝑚 such that 𝑃(𝑋𝑘𝑚 = 𝑖) = 0. Therefore
𝑃(𝑋 = 𝑖) = 0 and since 𝑃(𝑋 = 𝑛) > 0 then the support of 𝑋 contains a hole and thus
𝜌(𝑋) = 1.

In general, let 𝛼𝑘 = 𝜌(𝑋𝑘 ) and let 𝑍𝑘 ∈ 𝕄★
1 (𝑛) be such that 𝑋𝑘 ∼ 𝛼𝑘 ◦ 𝑍𝑘 . It suffices to

show that if 𝛼𝑘 converges then it necessarily converges to 𝜌(𝑋). The reason is that this
would imply that any convergent subsequence of 𝛼𝑘 necessarily converges to 𝜌(𝑋) which
in turn implies that 𝛼𝑘 → 𝜌(𝑋). Therefore, we assume that 𝛼𝑘 → 𝛼 as 𝑘 → ∞. Take
𝑍𝑘 ∈ 𝕄★

1 (𝑛) such that 𝑋𝑘 ∼ 𝛼𝑘 ◦ 𝑍𝑘 . There exists a subsequence 𝑍𝑘𝑚 that converges in
distribution to some 𝑍 . Now,

𝛼𝑛𝑃(𝑍 = 𝑛) = lim
𝑚→∞

𝛼𝑛𝑘𝑚𝑃(𝑍𝑘𝑚 = 𝑛) = lim
𝑚→∞

𝑃(𝑋𝑘𝑚 = 𝑛) = 𝑃(𝑋 = 𝑛) > 0 (26)

and thus 𝛼 > 0 and 𝑃(𝑍 = 𝑛) > 0. By the first part of the proof we have that 𝑍 ∈ 𝕄★
1 (𝑛)

and since 𝑋𝑘𝑚 ∼ 𝛼𝑘𝑚 ◦ 𝑍𝑘𝑚 ⇒ 𝛼 ◦ 𝑍 we necessarily have that 𝑋 ∼ 𝛼 ◦ 𝑍 and thus
𝜌(𝑋) = 𝛼 > 0. □

Remark 9. We note that without the condition 𝑃(𝑋 = 𝑛) > 0, Theorem 15 would no
longer be always valid. For example, for 𝑛 ≥ 2 take 𝑝0, . . . , 𝑝𝑛−2 > 0 with

∑𝑛−2
𝑖=0 𝑝𝑖 = 1

and assume that 𝑃(𝑋𝑘 = 𝑖) = (1 − 𝑘−1)𝑝𝑘 for 0 ≤ 𝑖 ≤ 𝑛 − 2, 𝑃(𝑋𝑘 = 𝑛 − 1) = 0 and
𝑃(𝑋𝑘 = 𝑛) = 𝑘−1. For each 𝑘 ≥ 1, 𝜌(𝑋𝑘 ) = 1 since the support of 𝑋𝑘 contains a hole.
However, as 𝑘 → ∞ we have that 𝑋𝑘 ⇒ 𝑋 where the support of 𝑋 is 𝐼𝑛−2 and contains no
holes and thus 𝜌(𝑋) < 1. An extreme case is when 𝑛 = 2 and then 𝜌(𝑋𝑘 ) = 1 for 𝑘 ≥ 1
but 𝜌(𝑋) = 0. ^

Corollary 16. There exist independent 𝑋,𝑌 ∈ 𝑀1 such that 𝜌(𝑋 + 𝑌 ) is strictly smaller
than both 𝜌(𝑋) and 𝜌(𝑌 ).

Proof. Suppose that 𝑋,𝑌 are independent and both have support 𝑆 = {0, 1, 3, 4}. Since
2 ∉ 𝑆 then 𝑆 contains a hole and thus 𝜌(𝑋) = 𝜌(𝑌 ) = 1. However the support of 𝑋 +𝑌 is
𝑆 + 𝑆 = {𝑖 | 0 ≤ 𝑖 ≤ 8} which has no holes and thus 𝜌(𝑋 + 𝑌 ) < 1. □

Remark 10. If one is not happy with the example given in the proof of Corollary 16 and
is looking for an example with 𝜌(𝑋) ≠ 𝜌(𝑌 ). Then one may replace 𝑋 by 𝛼 ◦ 𝑋 . Since
𝛼 ◦ 𝑋 + 𝑌 ⇒ 𝑋 + 𝑌 as 𝛼 ↑ 1 and 𝑃(𝑋 + 𝑌 = 8) > 0, then Theorem 15 implies that
𝜌(𝛼 ◦ 𝑋 + 𝑌 ) → 𝜌(𝑋 + 𝑌 ) < 1 as 𝛼 ↑ 1. Therefore there exists an 𝛼 ∈ (0, 1) such that

𝜌(𝛼 ◦ 𝑋 + 𝑌 ) < 𝛼 = 𝜌(𝛼 ◦ 𝑋) < 1 = 𝜌(𝑌 ) . (27)

For an example with

𝜌(𝑋 + 𝑌 ) < min(𝜌(𝑋), 𝜌(𝑌 )) < max(𝜌(𝑋), 𝜌(𝑌 )) < 1 , (28)

simply replace 𝑋 and 𝑌 by (𝛼𝛽) ◦ 𝑋 and 𝛽 ◦ 𝑌 where 𝛽 ∈ (0, 1) and 𝛼 is what we chose
for (27). ^
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5. Examples

Example 2. We have already seen that a Bernoulli random variable 𝐵 withP(𝐵 = 1) = 𝛼
is a member of 𝕄★

𝛼. Since the constant 𝑛 is in 𝕄★
1 a binomial random variable 𝛼 ◦ 𝑛 ∼

Binomial(𝑛, 𝛼) is also a member of 𝕄★
𝛼. ^

Example 3. Assume that the support of 𝑋 is {0, 1, 2} and that 𝑝𝑖 = 𝑃(𝑋 = 𝑖) > 0 for
𝑖 = 0, 1, 2. Then it is easy to check that

𝑝★0 (𝛼) = 𝑝0 −
(
1
𝛼
− 1

)
𝑝1 +

(
1
𝛼
− 1

)2
𝑝2

𝑝★1 (𝛼) =
2𝑝2
𝛼

(
1 + 𝑝1

2𝑝2
− 1
𝛼

)
(29)

𝑝★2 (𝛼) =
𝑝2

𝛼2 ≥ 0 ∀𝛼 ∈ (0, 1] .

The quadratic function 𝑃𝑋 (−𝑥) = 𝑝2𝑥
2−𝑝1𝑥+𝑝0 is nonnegative whenΔ = 𝑝2

1−4𝑝0𝑝2 ≤ 0
which implies that 𝑝∗0(𝛼) ≥ 0 for 𝛼 ∈ (0, 1]. Therefore, in this case the equation for
𝑝∗1(𝛼) implies that 𝜌(𝑋) = 1

1+ 𝑝1
2𝑝2

.

When Δ > 0 the two (positive) roots of 𝑃𝑋 (−𝑥) are 𝑝1±
√
Δ

2𝑝2
. From this it follows that

𝑝∗0(𝛼) ≥ 0 when either
1

1 + 𝑝1−
√
Δ

2𝑝2

≤ 𝛼 ≤ 1 (30)

or when
0 < 𝛼 ≤ 1

1 + 𝑝1+
√
Δ

2𝑝2

. (31)

Evidently, (31) is irrelevant since the right hand side is strictly less than (1 + 𝑝1
2𝑝2

)−1 and
for any such 𝛼, 𝑝∗1(𝛼) < 0. Any 𝛼 that satisfies (30) is also larger than (1+ 𝑝1

2𝑝2
)−1 and for

such 𝛼 we also have that 𝑝∗1(𝛼) ≥ 0. Summarizing, with Δ+ = max(Δ, 0), we have that

𝜌(𝑋) = 1

1 + 𝑝1−
√
Δ+

2𝑝2

=



1
1+ 𝑝1

2𝑝2

Δ < 0

1
1+ 𝑝1

2𝑝2

= 1
1+ 2𝑝0

𝑝1

Δ = 0

1
1+ 2𝑝0

𝑝1+
√
Δ

Δ > 0 .

(32)

Therefore, if 𝑋 ∼ 𝜌(𝑋) ◦𝑍 , noting that 𝑝∗1(𝜌(𝑋)) = 0 whenΔ ≤ 0 and that 𝑝∗0(𝜌(𝑋)) =
0 when Δ ≥ 0 (recalling that 𝑝∗2(𝛼) > 0 for all 𝛼 ∈ (0, 1] and in particular for 𝛼 = 𝜌(𝑋)),
we have

supp(𝑍) =


{2} Δ = 0
{1, 2} Δ > 0
{0, 2} Δ < 0 .

(33)

Not surprisingly, these are also all of the possible supports which contain at least one
hole.
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When Δ = 0, since 𝑝∗0(𝜌(𝑋)) = 𝑝
∗
1(𝜌(𝑋)) = 0, we necessarily have that 𝑝∗2(𝜌(𝑋)) = 1.

Therefore,
• When Δ = 0, 𝑋 ∼ Binomial(2, 𝜌(𝑋)) (with 𝑃(𝑍 = 2) = 1).
• When Δ > 0, 𝑍 − 1 ∼ Bernoulli(𝑝∗2(𝜌(𝑋))).
• When Δ < 0, 𝑍/2 ∼ Bernoulli(𝑝∗2(𝜌(𝑋))).

When 𝑝𝑖 = 1/3 for 𝑖 = 0, 1, 2 we have that Δ = 1/3 − 4(1/3)2 < 0 and thus Δ+ = 0 so
that

𝜌(𝑋) = 1
1 + 𝑝1

2𝑝2

=
1

1 + 1/3
2/3

=
1

1 + 1
2
=

2
3

(34)

which is consistent with Example 9 appearing later. In this case 𝑍/2 ∼ Bernoulli(3/4)
since

𝑝∗2(𝜌(𝑋)) =
𝑝2

𝜌(𝑋)2 =
1/3

(2/3)2 =
3
4

(35)

Equivalently, 2
3 ◦ [2( 3

4 ◦ 1)] has the uniform distribution on {0, 1, 2}. ^

Remark 11. To illustrate Remark 8 assume that Δ > 0, set

𝛼1 =

(
1 + 𝑝1 +

√
Δ

2𝑝2

)−1

𝛼2 =

(
1 + 𝑝1

2𝑝2

)−1
𝛼3 = 𝜌(𝑋) =

(
1 + 𝑝1 −

√
Δ

2𝑝2

)−1

. (36)

and recall that 𝑝★2 (𝛼) > 0 for all 𝛼 ∈ (0, 1]. Now,

(i) For 𝛼 ∈ [𝛼3, 1], 𝑝★0 (𝛼), 𝑝
★
1 (𝛼) ≥ 0.

(ii) For 𝛼 ∈ [𝛼2, 𝛼3), 𝑝★0 (𝛼) < 0 ≤ 𝑝★1 (𝛼).
(iii) For 𝛼 ∈ (𝛼1, 𝛼2), 𝑝★0 (𝛼), 𝑝

★
1 (𝛼) < 0.

(iv) For 𝛼 ∈ (0, 𝛼1], 𝑝★1 (𝛼) < 0 ≤ 𝑝★0 (𝛼).

As observed in Remark 8, we have that for 𝛼 ∈ [𝜌(𝑋), 1], 𝑝★
𝑖
(𝛼) ≥ 0 for 𝑖 ∈ 𝐼2 and for

𝛼 ∈ (0, 𝜌(𝑋)) there is at least one 𝑖 ∈ 𝐼1 such that 𝑝★
𝑖
(𝛼) < 0. ^

Remark 12. Denoting the right hand side of (32) by 𝑟 (𝑝0, 𝑝1, 𝑝2) and defining 𝑟 (1, 0, 0) =
0 it is easy to check that 𝑟 (·), defined on the closed simplex

𝑆 = {(𝑝0, 𝑝1, 𝑝2) | 𝑝0, 𝑝1, 𝑝2 ≥ 0, 𝑝0 + 𝑝1 + 𝑝2 = 1} , (37)

gives the correct formula for 𝜌(𝑋) also for the cases where at least one of the 𝑝𝑖’s is
zero. In particular, when 𝑝2 = 0 and 0 < 𝑝1 < 1, 𝑋 ∼ Bernoulli(𝑝1) with 𝜌(𝑋) = 𝑝1
(see Example 2). For (0, 𝑝1, 𝑝2) with any choice of 𝑝1, 𝑝2 or (𝑝0, 0, 𝑝2) with 𝑝2 > 0
the support contains a hole so that 𝜌(𝑋) = 1. For (1, 0, 0), 𝜌(𝑋) is clearly zero. Also,
as mentioned in Theorem 15, 𝑟 is continuous on {𝑝 | 𝑝 ∈ 𝑆, 𝑝2 > 0} as well as on
{𝑝 | 𝑝 ∈ 𝑆, 𝑝1 > 0, 𝑝2 = 0}. ^

Example 4. Poisson and more generally mixed Poisson random variables are in 𝕄★
0 (see

Theorem 6). If 𝑋 has a Poisson distribution and 𝑋 = 𝑁 (𝑌 ) then 𝑌 is a.s. a constant. ^

Example 5. 𝑋 has a generalized negative binomial distribution with probability function
(see, e.g., [10, 11]) if, for some 𝑎 > 0,

P(𝑋 = 𝑘) = Γ(𝑎 + 𝑘)
Γ(𝑎)𝑘!

(1 − 𝑝)𝑘 𝑝𝑎 , (38)
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for 𝑘 ≥ 0. In this case

𝐺𝑋 (𝑠) =
( 𝑝

1−𝑝
𝑝

1−𝑝 + 𝑠

)𝛼
. (39)

for 𝑠 ∈
(
− 𝑝

1−𝑝 , 2+
𝑝

1−𝑝
)
⊃ [0, 2] and does not exist elsewhere. As a function on [0,∞) the

right side is clearly completely monotone on (0,∞) and continuous at zero. It is in fact the
LST of𝑌 ∼ Gamma(𝛼, 𝑝

1−𝑝 ). Hence ((ii) of Theorem 1) the generalized negative binomial
distribution is in 𝕄★

0 . Of course, the geometric and the negative binomial distributions,
where in both we count only failures, are special cases. ^

Example 6. In a sequence of independent experiments with decreasing success probabil-
ities 𝛾/𝑘 , 𝑘 = 1, 2, . . ., 𝛾 ∈ (0, 1), the number of trials 𝑋 until the first success is observed
has a so called Sibuya distribution ([7]), with probabilities given by

P(𝑋 = 𝑘) = 𝛾

𝑘

𝑘−1∏
𝑗=1

(
1 − 𝛾

𝑗

)
= (−1)𝑘+1

(
𝛾

𝑘

)
, 𝑘 = 1, 2, 3, . . . .

We write 𝑋 ∼ Sibuya(𝛾) in this case. The associated a.p.g.f. is 𝐺𝑋 (𝑠) = 1 − 𝑠𝛾. It
follows from Hardy and Littlewood’s Tauberian theorem that P(𝑋 ≥ 𝑘) ∼ 𝑘−𝛾/Γ(1 − 𝛾)
as 𝑘 → ∞, in particular E(𝑋𝑐) = ∞ for 𝑐 ≥ 𝛾, implying that 𝑋 has an infinite mean.
Also, since the support of 𝑋 has a gap at zero, 𝑋 ∈ 𝕄★

1 .
If 𝑋 ∼ Sibuya(𝛾) then 𝛼 ◦ 𝑋 has a scaled Sibuya distribution ([4]) with scale parameter

𝛼, i.e., 𝐺𝛼◦𝑋 (𝑠) = 1 − (𝛼𝑠)𝛾 and

P(𝛼 ◦ 𝑋 = 𝑘) =
{

1 − 𝛼𝛾 𝑘 = 0
(−1)𝑘+1𝛼𝛾

(𝛾
𝑘

)
𝑘 = 1, 2, 3, . . . .

Obviously, 𝛼 ◦ 𝑋 ∈ 𝕄★
𝛼. ^

Example 7. With the notations from Example 6, consider 𝑋 − 1, the number of failures
until the first success, when 𝑋 ∼ Sibuya(𝛾). It is known (e.g., [7]) That 𝑋 − 1 ∼ 𝑁 (𝑌 )
where𝑌 ∼ 𝑍1𝑍1−𝛾

𝑍𝛾
and 𝑍1, 𝑍1−𝛾, 𝑍𝛾 and 𝑁 (·) are independent with 𝑍𝛼 ∼ Gamma(𝛼, 1) for

𝛼 = 1, 1 − 𝛾, 𝛾 and hence 𝑋 − 1 ∈ 𝕄★
0 .

We would like demonstrate the use of Corollary 3 to infer that 𝑋 − 1 ∈ 𝕄★
0 , thereby

giving an alternate (necessarily equivalent) representation of 𝑌 .
If𝑈 ∼ Uniform[0, 1] and 𝑉 ∼ Gamma(1 − 𝛾, 1) are independent then, for 𝑠 > 0,

𝐿𝑈𝑉 (𝑠) = E𝐿𝑉 (𝑈𝑠) = E
(

1
1 + 𝑠𝑈

)1−𝛾
=

∫ 1

0
(1 + 𝑠𝑢)𝛾−1d𝑢 =

(1 + 𝑠)𝛾 − 1
𝛾𝑠

, (40)

so that, with 𝑝0 = P(𝑋 − 1 = 0) = P(𝑋 = 1) = 𝛾 and 𝑌 = 𝑈𝑉 ,

𝑃𝑋−1(−𝑠) =
(1 + 𝑠)𝛾 − 1

𝑠
= 𝑝0E𝑒

−𝑠𝑌 (41)

for every 𝑠 ∈ (0, 1], where the right side is well defined on [0,∞) and completely
monotone on (0,∞). Thus, if we take 𝑌 with P(𝑌 ∈ 𝑑𝑦) = 𝛾𝑒𝑦P(𝑌 ∈ 𝑑𝑦), then by
Corollary 3, 𝑋 − 1 ∼ 𝑁 (𝑌 ) where 𝑌 and 𝑁 are independent.
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This necessarily implies that
𝐿𝑈𝑉 (𝑠 − 1)
𝐿𝑈𝑉 (−1) = 𝐿 𝑍1𝑍1−𝛾

𝑍𝛾

(𝑠) . (42)

where we observe that𝑈𝑉 ∼ 𝑒−𝑍1𝑍1−𝛾.
Although this is not the main point of this example, for the sake of completeness, it is

straightforward to show that the density of 𝑌 is given by
Γ(−𝛾, 𝑦)
Γ(1 − 𝛾) (43)

where Γ(−𝛾, 𝑦) =
∫ ∞
𝑦
𝑒−𝑡𝑡−𝛾−1𝑑𝑡 is the upper incomplete Gamma function. Since

Γ(−𝛾, 𝑦) = 𝑒−𝑦𝑈 (1 + 𝛾, 1 + 𝛾, 𝑦) where 𝑈 is the confluent hypergeometric function
of the second kind, then the density of 𝑌 can be written as

𝛾𝑈 (1 + 𝛾, 1 + 𝛾, 𝑦)
Γ(1 − 𝛾) =

𝑈 (1 + 𝛾, 1 + 𝛾, 𝑦)
−Γ(−𝛾) . (44)

A related expression may be found in Proposition 6 of [13]. ^

Example 8 (Mixtures). Let (Θ,G, 𝑄) be some probability space and assume that, for
each 𝜃 ∈ Θ, 𝑝(𝜃, ·) is a probability mass function on ℤ+ and that for each 𝑛 ∈ ℤ+, 𝑝(·, 𝑛)
is G-measurable. That is, 𝑃(𝜃, 𝐴) =

∑
𝑛∈𝐴 𝑝(𝜃, 𝑛), where 𝜃 ∈ Θ and 𝐴 ⊂ ℤ+, is a

(normal) Markov kernel. Let 𝐾𝜃 be such that 𝑃(𝐾𝜃 = 𝑛) = 𝑝(𝜃, 𝑛), let 𝐾Θ be such that
𝑃(𝐾Θ = 𝑛) =

∫
Θ
𝑝(𝜃, 𝑛)𝑄(d𝜃) and for 𝛼 ∈ (0, 1) let (𝛼 ◦ 𝐾)Θ satisfy

𝑃((𝛼 ◦ 𝐾)Θ = 𝑛) =
∫
Θ

𝑃(𝛼 ◦ 𝐾𝜃 = 𝑛)𝑄(d𝜃) . (45)

Then it is straightforward to check that (𝛼 ◦ 𝐾)Θ ∼ 𝛼 ◦ 𝐾Θ. Similarly if 𝛼 > 𝜅 ≡
sup𝜃∈Θ 𝜌(𝐾 (𝜃)) then

𝛼−1 ◦ 𝐾Θ ∼ (𝛼−1 ◦ 𝐾)Θ,

where (𝛼−1 ◦ 𝐾)Θ obeys (45) with 𝛼−1 replacing 𝛼, so that 𝐾Θ ∈ 𝕄𝛼 and 𝜌(𝐾Θ) ≥ 𝜅.
The mixed Poisson distribution is, of course, a special case of this setup. For this case

𝛼 ◦ 𝐾Θ takes the form 𝛼 ◦ 𝑁 (𝑌 ), while for (𝛼 ◦ 𝐾)Θ we first take 𝛼 ◦ 𝑁 (𝑦) ∼ 𝑁 (𝛼𝑦) and
then uncondition with respect to 𝑦 to obtain 𝑁 (𝛼𝑌 ). This results in 𝛼 ◦ 𝑁 (𝑌 ) ∼ 𝑁 (𝛼𝑌 )
which we have already seen earlier. For this case for all 𝑦 ≥ 0 we have that 𝜌(𝑁 (𝑦)) =
𝜅 = 𝜌(𝑁 (𝑌 )) = 0. ^

6. Binomial mixtures

There is a second mixing operation that can be performed on binomial random variables.
We first note that if 𝑋,𝑈1,𝑈2, . . . , are independent random variables with 𝑋 ∈ 𝕄1 and

𝑈𝑖 ∼ Uniform[0, 1], then, for 𝛼 ∈ [0, 1] we have that

𝛼 ◦ 𝑋 ∼
𝑋∑︁
𝑖=1

1{𝑈𝑖≤𝛼}

Let us replace 𝑋 by 𝑛 ∈ ℤ+ and 𝛼 by some independent𝑊 with support in [0, 1]. Denote
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a random variable having such a distribution by𝑊 ◦ 𝑛, that is,

𝑊 ◦ 𝑛 ∼
𝑛∑︁
𝑖=1

1{𝑈𝑖≤𝑊}

and let us call this distribution a binomial mixture. If we take a Poisson process 𝑁 with
rate 1, independent of 𝑊 , then this is also the conditional distribution of 𝑁 (𝑊) given
𝑁 (1) = 𝑛.

Loosely speaking, this means that the conditional distribution of 𝑋 given 𝑊 = 𝑝 is
Binomial(𝑛, 𝑝). Binomial mixtures appear for example in connection with exchangeable
experiments: If 𝑌1, 𝑌2, 𝑌3 . . . is an infinite sequence of exchangeable Bernoulli random
variables then de Finetti’s theorem ([8],VII.4) implies that 𝑆𝑛 = 𝑌1 + 𝑌2 + . . . + 𝑌𝑛 is a
binomial mixture. In fact, for this case the same 𝑊 can be used for every 𝑛. It is to be
noted that the requirement that the sequence (𝑌𝑛)𝑛∈ℤ+ is infinite is crucial in this setup.

The a.p.g.f. of𝑊 ◦ 𝑛 is given by

𝐺𝑊◦𝑛 (𝑠) = E(1 − 𝑠𝑊)𝑛. (46)

It turns out that under certain conditions on 𝑊 the r.h.s. of (46) defines a proper a.p.g.f.
even if supp(𝑊) ∩ (1,∞) is nonnempty. In fact, we have the following.

Theorem 17. Let 𝑊 be a nonnegative random variable and set 𝑛 ≥ 1. Then (46) is a
proper a.p.g.f. if and only if E𝑊𝑛 < ∞ and E𝑊 𝑘 (1−𝑊)𝑛−𝑘 ≥ 0 for every 𝑘 ∈ 𝐾𝑛 where

𝐾𝑛 = {𝑘 | 𝑘 ∈ 𝐼𝑛, 𝑛 − 𝑘 is odd} . (47)

Remark 13. Observe that for 𝑛 = 1 the conditions of Theorem 17 are met if and only if
E𝑊 ≤ 1. For 𝑛 = 2 they are met if and only ifE𝑊2 ≤ E𝑊 < ∞ and from (𝐸𝑊)2 ≤ 𝐸𝑊2

this also implies that 𝐸𝑊 ≤ 1. Thus 𝔹(2) ⊂ 𝔹(1) (also see Corollary 18 below). In both
cases, the distribution of 𝑊 may have unbounded support. e.g., exp(1) for 𝑛 = 1 and
exp(2) for 𝑛 = 2 (also see Example 10 below). ^

Proof. If (46) is a proper a.p.g.f. then in particular it is nonnegative and nonincreasing
in 𝑠 and thus E(1 − 𝑊)𝑛 ∈ [0, 1]. Since E(1 − 𝑊)𝑛1{𝑊≤1} ∈ [0, 1], then a separate
consideration for 𝑛 odd and even implies that E(𝑊 − 1)𝑛1{𝑊>1} ∈ [0, 1]. Hence, E|𝑊 −
1|𝑛 < ∞, which is equivalent toE𝑊𝑛 < ∞. Obviously, since𝑊 is nonnegative,E𝑊 𝑘 (1−
𝑊)𝑛−𝑘 ≥ 0 for 𝑘 ∈ 𝐾𝑛 if and only if it holds for 𝑘 ∈ 𝐼𝑛.

It therefore remains to proof the equivalence under the condition thatE𝑊𝑛 < ∞. Since∑𝑛
𝑘=0(1 − 𝑠)𝑘 𝑝𝑘 is an a.p.g.f. if and only if 𝑝𝑘 ≥ 0 for 𝑘 ∈ 𝐼𝑛 and

∑𝑛
𝑘=0 𝑝𝑘 = 1 and since

E(1 − 𝑠𝑊)𝑛 =
𝑛∑︁
𝑘=0

(1 − 𝑠)𝑘
(
𝑛

𝑘

)
E𝑊 𝑘 (1 −𝑊)𝑛−𝑘 , (48)

(in particular for 𝑠 = 0) the equivalence is immediate. □

From here on we will agree to write 𝑊 ∈ 𝔹(𝑛) whenever 𝑊 satisfies the conditions
of Theorem 17. In this case the notation 𝑊 ◦ 𝑛 denotes a random variable having a
distribution with a.p.g.f. satisfying (46).

Corollary 18. For every 𝑛 ≥ 1, 𝔹(𝑛) ⊂ 𝔹(𝑛 − 1).
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Proof. Let𝑊 ∈ 𝔹(𝑛). It is easy to verify that for 𝑘 ∈ 𝐼𝑛−1

E𝑊 𝑘 (1 −𝑊)𝑛−1−𝑘 = E𝑊 𝑘 (1 −𝑊)𝑛−𝑘 +E𝑊 𝑘+1(1 −𝑊)𝑛−𝑘−1 (49)

where, by Theorem 17, both terms on the right are non-negative. Therefore the expression
on the left is nonnegative for all 𝑘 ∈ 𝐼𝑛−1 and in particular for 𝑘 ∈ 𝐾𝑛−1. Applying
Theorem 17 again we have that𝑊 ∈ 𝔹(𝑛 − 1). □

Remark 14. It is natural to wonder whether there exists a random variable 𝑊 with
supp(𝑊) ∩ (1,∞) nonempty such that 𝑊 ∈ 𝔹(𝑛) for all 𝑛 ≥ 1. The answer is that
this is impossible. The reason is that due to Theorem 17 this would be equivalent to
E𝑊 𝑘 (1 −𝑊)ℓ ≥ 0 for all 𝑘, ℓ. From monotone convergence it would then follow that for
odd ℓ

E𝑊 𝑘 (1 −𝑊)ℓ1{𝑊>1} → −∞
as 𝑘 → ∞, while E𝑊 𝑘 (1 −𝑊)ℓ1{𝑊≤1} ≤ 1 for all 𝑘 . Thus, for sufficiently large 𝑘 we
would necessarily have that E𝑊 𝑘 (1 −𝑊)ℓ < 0. ^

Remark 15. Is it true that for every 𝑛 ≥ 1 there exists𝑊 ∈ 𝔹(𝑛) with supp(𝑊) ∩ (1,∞)
nonnempty? Is it true that 𝔹(𝑛) contains distributions with infinite support? Example 10,
to appear later, implies that the answer to both questions is yes. ^

We would like to emphasize two facts. The first is that for𝑊 ◦ 𝑛 an interpretation as a
binomially mixed random variable is available only if supp(𝑊) ⊂ [0, 1]. The second is
that for any𝑊 ∈ 𝔹(𝑛) the first 𝑛moments of𝑊 identify the distribution of𝑊 ◦𝑛 and thus,
in contrast to the case of binomial thinning, the distribution𝑊 is not uniquely determined
from the distribution of𝑊 ◦ 𝑛.

As for the ◦ operation there are a number of immediate rules:

(i) (𝛼𝑊) ◦ 𝑛 ∼ 𝛼 ◦ (𝑊 ◦ 𝑛), 𝛼 ∈ [0, 1].
(ii) P(𝑊 ◦ 𝑛 = 𝑘) =

(𝑛
𝑘

)
E𝑊 𝑘 (1 −𝑊)𝑛−𝑘 .

(iii) E
(𝑊◦𝑛
𝑗

)
=

(𝑛
𝑗

)
E𝑊 𝑗 in particular E(𝑊 ◦ 𝑛) = 𝑛E𝑊 . Recall

(𝑘
𝑗

)
= 0 when 𝑘 < 𝑗 .

For a non-negative random variable𝑊 with E𝑊𝑛 < ∞ we let

𝜎𝑛 (𝑊) = inf{𝛼 ∈ (0,∞) : 𝑊/𝛼 ∈ 𝔹(𝑛)}.

In constrast to the often difficult evaluation of 𝜌(𝑋), it turns out that the value 𝜎𝑛 (𝑊)
is a root of a certain polynomial. Recall (47).

Theorem 19. WhenP(𝑊 = 0) = 1,𝜎𝑛 (𝑊) = 0. Otherwise, for any𝑊 withE𝑊𝑛 < ∞, for
each 𝑘 ∈ 𝐾𝑛 there is a unique positive root 𝛼𝑘 of the polynomial 𝑔𝑘 (𝛼) = E𝑊 𝑘 (𝛼−𝑊)𝑛−𝑘
and

𝜎𝑛 (𝑊) = max{𝛼𝑘 | 𝑘 ∈ 𝐾𝑛} (50)

and 𝜌(𝑊/𝜎𝑛 (𝑊)) ◦ 𝑛) = 1. Consequently, for any 𝑊 ∈ 𝔹(𝑛) we have that 𝜌(𝑊 ◦ 𝑛) =
𝜎𝑛 (𝑊).

Proof. We first note that when 𝑊 = 0 a.s. then (𝑊/𝛼) ◦ 𝑛 = 0 a.s. for all 𝛼 ∈ (0,∞)
(so that 𝑊/𝛼 ∈ 𝔹(𝑛)) and thus 𝜎𝑛 (𝑊) = 0. As was discussed earlier, for this case we
also clearly have that 𝜌(𝑊 ◦ 𝑛) = 0. Therefore, from here on it suffices to assume that
P(𝑊 = 0) < 1.
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From Theorem 17 we have, for 𝑊 ∈ 𝔹(𝑛) (hence, necessarily E𝑊𝑛 < ∞) and 𝛼 ∈
(0,∞), that𝑊/𝛼 ∈ 𝔹(𝑛) if and only if 𝑔𝑘 (𝛼) ≥ 0 for 𝑘 ∈ 𝐾𝑛, in which case

P((𝑊/𝛼) ◦ 𝑛 = 𝑘) =
(
𝑛

𝑘

)
𝛼−𝑛𝑔𝑘 (𝛼) . (51)

For 𝑘 ∈ 𝐾𝑛, 𝑔𝑘 is continuous, strictly increasing with 𝑔𝑘 (0) = −E𝑊 𝑘 < 0 and
lim𝛼→∞ 𝑔𝑘 (𝛼) = ∞. Therefore there exists a unique positive 𝛼𝑘 such that 𝑔𝑘 (𝛼𝑘 ) = 0.
Consider

𝑘 (𝑊) = arg max{𝛼𝑘 | 𝑘 ∈ 𝐾𝑛} . (52)

It is clear from Theorem 17 that for every 𝛼 ∈ [𝛼𝐾 (𝑊) , 1] we have that 𝑊/𝛼 ∈ 𝔹(𝑛) and
that for every 𝛼 ∈ [0, 𝛼(𝑊)) we have that there exists some 𝑘 ∈ 𝐾𝑛 such that 𝑔𝑘 (𝛼) < 0
so that by Theorem 17,𝑊 ∉ 𝔹(𝑛). Therefore 𝜎𝑛 (𝑊) = 𝛼𝑘 (𝑊) and (50) is satisfied.

Since 𝑔𝑘 (𝑊) (𝛼𝑘 (𝑊)) = 0, 𝑔𝑘 (𝛼𝑘 (𝑊)) ≥ 0 for 𝑘 ∈ 𝐾𝑛 (since 𝛼𝐾 (𝑊) ≥ 𝛼𝑘 ) and
𝑔𝑛 (𝛼𝐾 (𝑊)) = E𝑊𝑛 > 0, it follows from (51) that the support of the distribution of
(𝑊/𝜎𝑛 (𝑊)) ◦ 𝑛 contains 𝑛 and has a hole in 𝑘 (𝑊). Thus, Theorem 14 implies that
(𝑊/𝜎𝑛 (𝑊)) ◦ 𝑛 ∈ 𝕄★

1 (𝑛). Since whenever 𝑊 ∈ 𝔹(𝑛) we have that 𝜎𝑛 (𝑊) ≤ 1, then
𝑊 ◦𝑛 ∼ 𝜎𝑛 (𝑊) ◦ ((𝑊/𝜎𝑛 (𝑊)) ◦𝑛) and it follows from Theorem 9 that𝑊 ◦𝑛 ∈ 𝕄★

𝜎𝑛 (𝑊) (𝑛)
and thus 𝜌(𝑊 ◦ 𝑛) = 𝜎𝑛 (𝑊). □

Remark 16. In order to efficiently find the solutions of 𝐸𝑊 𝑘 (𝑧 −𝑊)𝑛−𝑘 = 0 for 𝑘 ∈ 𝐾𝑛,
let us write it as 𝑎(𝑧) = 𝑏(𝑧), where

𝑎(𝑧) = E𝑊 𝑖 (𝑧 −𝑊)𝑛−𝑖1{𝑊≤𝑧}, 𝑏(𝑧) = E𝑊 𝑖 (𝑊 − 𝑧)𝑛−𝑖1{𝑊>𝑧} . (53)

The function 𝑎(𝑥) is non-negative and increasing with 𝑎(0) = 0, while 𝑏(𝑥) is non-
negative, decreasing with 𝑏(0) > 0. Hence, in order to solve 𝑎(𝑥) = 𝑏(𝑥) a binary search
algorithm might be employed: start with an initial value 𝑧0 ∈ (0, 1) and update according
to

𝑧𝑛+1 =

{
𝑧𝑛−1 + 2−𝑛−1 if 𝑎(𝑧𝑛−1) > 𝑏(𝑧𝑛−1)
𝑧𝑛−1 − 2−𝑛−1 if 𝑎(𝑧𝑛−1) < 𝑏(𝑧𝑛−1).

^

Remark 17. If, for some 𝛼 ∈ (0, 1], supp(𝑊) ⊂ [0, 𝛼] then clearly 𝑊/𝛼 ∈ 𝔹(𝑛).
Therefore, 𝜌(𝑊 ◦ 𝑛) = 𝜎𝑛 (𝑊) ≤ 𝛼 and thus𝑊 ◦ 𝑛 ∈ 𝕄𝛼. ^

The natural place of the following example is at the end of Section 4. It appears here
since Theorem 19 allows a smoother derivation.

Example 9 (Discrete uniform distribution). If 𝑋 ∼ Uniform(𝐼𝑛) then 𝜌(𝑋) = 𝑛
𝑛+1 .

To see this, let𝑊 ∼ Uniform[0, 1] and set 𝑋 ∼ 𝑊 ◦ 𝑛. Then, for 𝑘 ∈ 𝐼𝑛,

P(𝑋 = 𝑘) =
(
𝑛

𝑘

) ∫ 1

0
𝑡𝑘 (1 − 𝑡)𝑛−𝑘 d𝑡 =

1
𝑛 + 1

, (54)

so that indeed 𝑋 ∼ Uniform(𝐼𝑛). By Theorem 19 𝜌(𝑋) = 𝜎𝑛 (𝑊) is the maximum of the
unique roots 𝛼𝑘 of 𝑔𝑘 (𝛼) = ∫ 1

0 𝑡
𝑘 (𝛼 − 𝑡)𝑛−𝑘 d𝑡 in (0, 1] for 𝑘 ∈ 𝐾𝑛. When 𝑘 ≥ 2 (and
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𝑛 − 𝑘 is odd), integration by parts leads to

𝑔𝑘 (𝛼) =
𝑘

𝑛 − 𝑘 + 1
𝑔𝑘−1(𝛼) −

(1 − 𝛼)𝑛−𝑘+1

𝑛 − 𝑘 + 1

=
𝑘

𝑛 − 𝑘 + 1
𝑘 − 1

𝑛 − 𝑘 + 2
𝑔𝑘−2(𝛼) −

(1 − 𝛼)𝑛−𝑘+1

𝑛 − 𝑘 + 1
+ 𝑘

𝑛 − 𝑘 + 1
(1 − 𝛼)𝑛−𝑘+2

𝑛 − 𝑘 + 2
.

Since 𝑔𝑘 (𝛼𝑘 ) = 0 and 𝑔𝑘 (1) > 0 we have that 𝛼𝑘 < 1. Therefore,

𝑔𝑘−2(𝛼𝑘 ) =
1

𝑘 − 1
(1 − 𝛼𝑘 )𝑛−𝑘+1

(
𝛼𝑘 +

𝑛 + 2
𝑘

)
> 0.

so that necessarily 𝛼𝑘 > 𝛼𝑘−2. Noting that 𝑛 − (𝑛 − 1) = 1 is odd, it follows that 𝛼𝑛−1 is
the desired maximal root which determines 𝜌(𝑋) = 𝜎𝑛 (𝑊). From

𝑔𝑛−1(𝛼) =
∫ 1

0
𝑡𝑛−1 (𝛼 − 𝑡) d𝑡 =

𝛼

𝑛
− 1
𝑛 + 1

,

it follows that 𝛼𝑛−1 = 𝑛/(𝑛 + 1) and thus 𝜌(𝑋) = 𝑛/(𝑛 + 1) or equivalently 𝑋 ∈ 𝕄★
𝑛/(𝑛+1) .

^

Remark 18. When 𝑋𝑛 ∼ Uniform(𝐼𝑛) and 𝑋𝑛 ∼ 𝑛
𝑛+1 ◦ 𝑍𝑛, it is straightforward to show

that (24) with 𝛼 = 𝑛
𝑛+1 becomes

P(𝑍𝑛 = 𝑗) = 𝑝★𝑗
( 𝑛

𝑛 + 1

)
= (𝑛 + 1) 𝑗−1

𝑛∑︁
𝑖= 𝑗

(
𝑖

𝑗

)
1
𝑛𝑖
(−1)𝑖− 𝑗 . (55)

In particular,

𝑃(𝑍𝑛 = 0) = 𝑛𝑛+1 − (−1)𝑛+1

(𝑛 + 1)2𝑛𝑛
, 𝑃(𝑍𝑛 = 𝑛 − 1) = 0 , 𝑃(𝑍𝑛 = 𝑛) =

(𝑛 + 1)𝑛−1

𝑛𝑛
, (56)

noting that the distribution of 𝑍𝑛 ∈ 𝕄★
1 has a hole in 𝑛 − 1.

Clearly, P(𝑍𝑛 = 𝑛)/P(𝑋𝑛 = 𝑛) is asymptotic to 𝑒 while P(𝑍𝑛 = 0)/P(𝑋𝑛 = 0) is
asymptotic to one. ^

The following theorem may be compared with Theorem 7, where we recall that 𝑁 (𝑊)
has a mixed Poisson distribution with conditional mean𝑊 .

Theorem 20. Suppose𝑊 is a nonnegative random variable, (𝑎𝑛)𝑛∈ℕ is a positive sequence
such that 𝑎𝑛/𝑛 → 1 as 𝑛 → ∞, 𝑊/𝑎𝑛 ∈ 𝔹(𝑛) for each 𝑛 ≥ 1 and E𝑒𝜖𝑊 < ∞ for some
𝜖 > 0. Then (𝑊/𝑎𝑛) ◦ 𝑛⇒ 𝑁 (𝑊).

Proof. Since 𝑎𝑛/𝑛→ 1, we have by bounded convergence that, for 𝑠 > 0,

E

(
1 − 𝑠𝑊

𝑎𝑛

)𝑛
1{𝑊≤𝑎𝑛/𝑠} = E

((
1 − 𝑠𝑊

𝑎𝑛

)𝑎𝑛)𝑛/𝑎𝑛
1{𝑊≤𝑎𝑛/𝑠} (57)

converges to E𝑒−𝑠𝑊 , which is also equal to 𝐺𝑁 (𝑊) (𝑠) on [0, 1]. Now,

E

(
𝑠
𝑊

𝑎𝑛
− 1

)𝑛
1{𝑊>𝑎𝑛/𝑠} = 𝑒

−𝜖𝑎𝑛/𝑠
(
𝑠

𝑎𝑛

)𝑛
E

(
𝑊 − 𝑎𝑛

𝑠

)𝑛
𝑒−𝜖 (𝑊−𝑎𝑛/𝑠)𝑒𝜖𝑊1{𝑊>𝑎𝑛/𝑠} . (58)

Since 𝑥𝑛𝑒−𝜖𝑥 achieves its maximum at 𝑥 = 𝑛/𝜖 , this implies that the right side of (58) is
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bounded above by(
𝑠

𝑎𝑛

)𝑛 (𝑛
𝜖

)𝑛
𝑒−𝑛−𝜖𝑎𝑛/𝑠E𝑒𝜖𝑊 =

(
𝑛𝑠

𝜖𝑎𝑛
𝑒−1− 𝜖 𝑎𝑛

𝑛𝑠

)𝑛
E𝑒𝜖𝑊 = 𝑓

(
𝑛𝑠

𝜖𝑎𝑛

)𝑛
E𝑒𝜖𝑊 , (59)

where 𝑓 (𝑥) ≡ 𝑥𝑒−1−𝑥−1 is continuous and strictly increasing on (0,∞). Let 𝑠∗ ≈ 3.59112
be the unique positive solution of 𝑓 (𝑥) = 1. For 𝑠 ∈ (0, 𝜖 𝑠∗) let 𝑁𝑠 be such that for 𝑛 ≥ 𝑁𝑠

𝑛

𝑎𝑛
≤ 1 + 𝜖 𝑠∗/𝑠

2
. (60)

Then,

𝑓

(
𝑛𝑠

𝜖𝑎𝑛

)
≤ 𝑓

(
𝑠∗ + 𝑠/𝜖

2

)
< 𝑓 (𝑠∗) = 1 (61)

and thus 𝑓 ( 𝑛𝑠
𝜖𝑎𝑛

)𝑛 → 0 as 𝑛→ ∞. SinceE𝑒𝜖𝑊 < ∞, it follows that the left hand side of (58)
vanishes as 𝑛 → ∞ on [0, 𝜖 𝑠∗). All of the above implies that 𝐺 (𝑊/𝑎𝑛)◦𝑛 (𝑠) → 𝐺𝑁 (𝑊) (𝑠)
on some positive right neighborhood of 0 from which the result follows. □

The next lemma will be needed for Example 10 to follow.

Lemma 21. Let𝑊 ∼ exp(1). For every odd integer ℓ ≥ 1 and real 𝛾 ≥ 0 the root of

E𝑊𝛾 (𝑧 −𝑊)ℓ (62)

is positive and strictly smaller than 𝛾 + ℓ/2 + 1. For ℓ = 1 the root is precisely 𝑧 = 𝛾 + 1.

Proof. For the first part it suffices to show that for for 𝑧 = 𝛾 + ℓ/2 + 1 we have that
E𝑊𝛾 (𝑧 −𝑊)ℓ > 0. Now,

E𝑊𝛾 (𝑧 −𝑊)ℓ =
∫ 𝑧

0
𝑤𝛾 (𝑧 − 𝑤)ℓ𝑒−𝑤𝑑𝑤 −

∫ ∞

𝑧

𝑤𝛾 (𝑤 − 𝑧)ℓ𝑒−𝑤𝑑𝑤 . (63)

Dividing the right hand side by 𝑧𝛾+ℓ+1, making the change of variable 𝑥 = 𝑤/𝑧 in the first
integral and 𝑥 = 𝑧/𝑤 in the second, gives∫ 1

0
(1 − 𝑥)ℓ

(
𝑥𝛾𝑒−𝑧𝑥 − 1

𝑥𝛾+ℓ+2 𝑒
−𝑧/𝑥

)
𝑑𝑥 . (64)

A sufficient condition for (64) to be strictly positive is that the integrand is stricly positive
on (0, 1) which is equivalent to

𝑥2𝛾+ℓ+2𝑒𝑧(1/𝑥−𝑥) > 1 . (65)

Noting that (2𝛾 + ℓ + 2)/𝑧 = 2 (since 𝑧 = 𝛾 + (ℓ/2) + 1) this is equivalent to

𝑓 (𝑥) = 2 log 𝑥 + 𝑥−1 − 𝑥 > 0 . (66)

Since

𝑓 ′(𝑥) = 2
𝑥
− 1
𝑥2 − 1 = −

(
1
𝑥
− 1

)2
, (67)

it follows that 𝑓 is strictly decreasing on (0, 1] with 𝑓 (1) = 0 and thus 𝑓 (𝑥) > 0 for all
𝑥 ∈ (0, 1]. To complete the derivation we observe that

E𝑊𝛾 (𝑧 −𝑊) = 𝑧Γ(𝛾 + 1) − Γ(𝛾 + 2) = (𝑧 − 𝛾 − 1)Γ(𝛾 + 1) (68)

so that the root is clearly 𝑧 = 𝛾 + 1. □
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The following example demonstrates the applicability of Theorems 19 and 20. As
promised in Remark 15, it also implies that for every 𝑛 ≥ 1 there are distributions in 𝔹(𝑛)
with unbounded support.

Example 10. [The gamma distribution] 𝑊 ∼ Gamma(𝑎, 𝑏) where 𝑎, 𝑏 > 0. Then
𝜎𝑛 (𝑊) = 𝑎+𝑛−1

𝑏
for every 𝑛 ≥ 1. Moreover, (𝑊/𝜎𝑛 (𝑊)) ◦ 𝑛 ⇒ 𝑋 where 𝑋 has a

generalized negative binomial distribution with 𝑎 and 𝑝 = 1/2 (see (38)).
To see this, we first note that since 𝑏𝑊 ∼ Gamma(𝑎, 1) and 𝜎𝑛 (𝑏𝑊) = 𝑏𝜎𝑛 (𝑊), it

suffices to consider the case 𝑏 = 1. We observe that if𝑊 ∼ Gamma(𝑎, 1) and 𝑋 ∼ Exp(1)
then

E𝑊 𝑘 (𝑧 −𝑊)𝑛−𝑘 = 1
Γ(𝑎)E𝑋

𝑘+𝑎−1(𝑧 − 𝑋)𝑛−𝑘 . (69)

If 𝑛 ≥ 1 and 𝑘 = 𝑛 − 1 then we have from Lemma 21, with 𝛾 = 𝑘 + 𝑎 − 1 = 𝑎 + 𝑛 − 2
and ℓ = 𝑛 − 𝑘 = 1, that the root of E𝑊𝑛−1(𝑧 − 𝑊) is 𝑧 = 𝛾 + 1 = 𝑎 + 𝑛 − 1. If
𝛾 = 𝑘 + 𝑎 − 1 is such that ℓ = 𝑛 − 𝑘 is odd and greater than or equal to 3 then from
(69) and Lemma 21 it follows that the root of E𝑊 𝑘 (𝑧 −𝑊)𝑛−𝑘 is strictly smaller than
𝛾 + ℓ/2 + 1 = 𝑘 + 𝑎 − 1 + 𝑛−𝑘

2 + 1 = 𝑎 + 𝑘+𝑛
2 . Since 𝑛− 𝑘 ≥ 3, it follows that 𝑘 ≤ 𝑛− 3 and

thus 𝑎 + 𝑘+𝑛
2 ≤ 𝑎 + 𝑛 − 3

2 < 𝑎 + 𝑛 − 1. Therefore, if 𝛼𝑘 are the roots of E𝑊 𝑘 (𝑧 −𝑊)𝑛−𝑘
for 𝑘 ∈ 𝐾𝑛, then all but one are strictly less than 𝑎 + 𝑛 − 1 and one is equal to 𝑎 + 𝑛 − 1.
From Theorem 19 it therefore follows that 𝜎𝑛 (𝑊) = 𝑎 + 𝑛 − 1.

Now, we recall that E𝑒−𝑠𝑊 = 𝐺𝑁 (𝑊) (𝑠) for 𝑠 ∈ [0, 1]. Also, from Example 5, when
𝑊 ∼ Gamma(𝑎, 𝑝/(1 − 𝑝)), then 𝑁 (𝑊) has a generalized negative binomial distribution
with 𝑎 and 𝑝. Since 𝑝/(1 − 𝑝) = 1 then necessarily 𝑝 = 1/2.

Finally, for every 𝜖 ∈ (0, 1) we have that E𝑒𝜖𝑊 = ( 1
1−𝜖 )

𝑎 < ∞ and, clearly, 𝜎𝑛 (𝑊)/𝑛 =
1 + 𝑎−1

𝑛
→ 1 as 𝑛→ ∞. Thus the convergence result follows from Theorem 20. ^

Remark 19. Special cases of Example 10 are:
• 𝑊 ∼ Exp(𝜆) with 𝜎𝑛 (𝑊) = 𝑛/𝜆.
• 𝑊 ∼ Erlang(𝑚, 𝜆) (independent sum of 𝑚 Exp(𝜆) distributed random variables)

with 𝜎𝑛 (𝑊) = (𝑚 + 𝑛 − 1)/𝜆.
• 𝑊 ∼ 𝜒2

(𝑚) (independent sum of squares of 𝑚 standard normally distributed random
variables) with 𝜎𝑛 (𝑊) = 𝑚 + 2(𝑛 − 1).

^
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