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Abstract

This work includes a new characterization of the multivariate nor-
mal distribution. In particular, it is shown that a positive density
function f is Gaussian if and only if the f(x+ y)/f(x) is convex in x
for every y. This result has implications to recent research regarding
inadmissibility of a test studied by Moran (1973).
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1 Introduction

There are many characterizations of the normal distribution. For some sur-
veys see, e.g., [4, 9, 13, 15] and more recently, [1, 3, 6, 12, 16]. The present
study is about a new characterization, which is that a positive (possibly mul-
tivariate) density f is Gaussian if and only if f(x+y)/f(x) is convex in x for
every y. Note that the latter is equivalent to the convexity of the likelihood
ratio f(x − θ1)/f(x − θ0) in x for every θ0 ̸= θ1 where θ1, θ2 are (possibly
multivariate) location parameters. A characterization of the one parameter
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exponential family via monotonicity of (more general) likelihood ratios may
be found in [2].

The motivation for this follows from a statistical hypothesis problem.
Assume that one observes an i.i.d. sample. The distribution is known up
to a location parameter y and the need arises to test whether y is the null
vector or not. In [11] Moran suggested a test which is based on a single
split of the data. The rationale is to use the �rst part of the data in order
to estimate in what direction some estimator of y diverges from the null.
Then, the second part is applied in order to test whether the true value of y
diverges from the null in this direction. Theorem 4 in [7] asserts that once
the observations are normally distributed, then this test is inadmissible. A
careful reading of the proof of this theorem yields that the same conclusion
can be made for every density function f(·) such that f(x+y)/f(x) is convex
in x for every y. This issue, has been the initial motivation to characterize
the space of density functions satisfying this property, which as announced
can unfortunately only be Gaussian.

One potential direction for further research is the possible application
of the current characterization to devising new normality tests. For various
examples of normality tests see, e.g., [5, 8, 10] and references therein.

2 Main results

We begin with the following.

Lemma 1 g : Rn → R is convex, strictly positive and g(x + y)/g(x) is

convex in x for every y if and only if for some symmetric positive semide�nite

A ∈ Rn×n, b ∈ Rn and c ∈ R,

g(x) = exp

(
1

2
xTAx+ bTx+ c

)
. (1)

Proof: If (1) holds with a positive semide�nite A, then g is log-convex.
Similarly g(x+ y)/g(x) is log-linear in x for every y, hence also log-convex.
log-convex functions are convex.

To show the converse denote

g(x; y) = lim
t↓0

g(x+ ty)− g(x)

t
(2)

Since g(x+ ty) is convex in t ∈ R, this limit exists and is �nite for every x, y.
Since g(x+ ty)/g(x) is convex in x for every t, y then so is

g(x+ ty)− g(x)

g(x)
=

g(x+ ty)

g(x)
− 1 (3)
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and thus, letting t ↓ 0 implies that g(x; y)/g(x) is convex and therefore also
continuous in x for every y. Since g is convex then it is also continuous and
thus g(x; y) is continuous in x for every y.

By Theorem 25.5 of [14], g is di�erentiable on a dense subset D of Rn.
Therefore, for every x ∈ D we have that g(x; y) = ∇g(x)T y. Since g(x; y) is
continuous in x then for every sequence xn ∈ D such that xn → x we have
that

g(x; y) = lim
n→∞

∇g(xn)
T y (4)

so that necessarily g(x; y) is linear in y. Theorem 25.2 of [14] implies that g
is (necessarily continuously) di�erentiable on Rn. Moreover ∇g(x)T y/g(x) is
convex in x for every y. Therefore, so is−∇g(x)T y/g(x) = ∇g(x)T (−y)/g(x)
which implies that ∇g(x)T y/g(x) is a�ne in x for every y. In particular,
taking yi = 1 and yj = 0 for j ̸= i implies that ∂g(x)

∂xi
/g(x) = aTi x + bi for

some ai ∈ Rn and bi ∈ R. Therefore, if A is a matrix with rows ai and
b = (b1, . . . , bn)

T we have that

∇ log(g(x)) =
∇g(x)

g(x)
= Ax+ b . (5)

Hence,

log(g(x))− log(g(0)) =

∫ 1

0

d log(g(tx))

dt
dt =

∫ 1

0
(A(tx) + b)Txdt

=
1

2
xTATx+ bTx =

1

2
xTAx+ bTx . (6)

Without loss of generality A is symmetric. If not then we replace it with
(A+AT )/2 and the right hand side remains the same. Taking c = log(f(0))
implies (1). It remains to show that A is positive semide�nite. If it is not
then there exists λ < 0 and y ̸= 0 such that Ay = λy. Taking x = −b/λ
implies that yT (Ax+ b) = 0 and thus we have that

yT∇2g(x)y = yT
(
g(x)(A+ (Ax+ b)(Ax+ b)T )

)
y (7)

= g(x)yTAy = g(x)λ∥y∥2 < 0

contradicting the convexity of g.
The following is our main result.

Theorem 1 f : Rn → R is positive, Borel and integrates to 1 (a positive

density function). The following are equivalent.

(i) f(x+ y)/f(x) is convex in x for every y.
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(ii) f(x+ y)/f(x) is log-convex in x for every y.

(iii) f(x+ y)/f(x) is log-concave in x for every y.

(iv) f is a multivariate normal density (necessarily with positive de�nite

covariance matrix).

Proof:

(iv)⇒(iii) f(x+ y)/f(x) is log-linear in x for every y.

(iii)⇒(ii) If h(x, y) = f(x+ y)/f(x) is log-concave in x for every y, then so
is h(x+ y,−y) = f(x)/f(x+ y). Thus f(x+ y)/f(x) is log-convex in
x for every y.

(ii)⇒(i) Any log-convex function is convex.

(i)⇒(iv) Since f is a density then integrating f(x+y)/f(x) with respect to
y implies that g(x) = 1/f(x) is convex. Also, if h(x, y) = f(x+y)/f(x)
is convex in x for every y then so is h(x+ y,−y) = f(x)/f(x+ y) and
thus g(x + y)/g(x) is convex in x for each y. By Lemma 1 we must
have that for some symmetric positive semide�nite A ∈ Rn×n, b ∈ Rn

and c ∈ R we have that

f(x) = 1/g(x) = exp

(
−1

2
xTAx− bTx− c

)
. (8)

Let OΛOT be the spectral decomposition of A with OTO = OOT = I
and Λ = diag(λ1, . . . , λn) where λi ≥ 0 for all i. Then, f(Ox)|O| =
f(Ox) is also a density satisfying

f(Ox) = exp

(
−1

2
xTΛx− (OT b)Tx− c

)
. (9)

If λi = 0 for any i then the integral with respect to xi is in�nite and
thus f(Ox) cannot be a density. Therefore λi > 0 for all i and thus
A is positive de�nite. This implies that f is a multivariate normal
density with positive de�nite covariance matrix Σ = A−1 and mean
vector µ = −A−1b.
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3 Some discussion

It would be interesting to check whether the conditions of Theorem 1 can be
weakened. We do this with a series of remarks.

Remark 1 Given the equivalence of (ii) and (iii) of Theorem 1 a natural
question is why did we not consider concavity of f(x + y)/f(x) in x for all
y? This is because there is no density satisfying this. The reason is that if
f(x + y)/f(x) is concave in x for each y, then by integrating with respect
to y, 1/f(x) is concave and positive and thus must be a constant (since it is
bounded below by zero). Therefore f(x) must be a positive constant which
is impossible since f is a density.

Remark 2 In Lemma 1 if instead of convexity of g we assume that g is
di�erentiable (all else being the same), then we would instantly arrive at
the conclusion that ∇g(x)T y/g(x) is convex (and thus concave and therefore
a�ne) in x for each y. We note that in this case it would even su�ce to
assume that g(x+y)/g(x) is convex in x for all y in a neigborhood of zero. In
this case one would have that A that appears in this lemma need not be posi-
tive semide�nite. Although this is true, this would not help us in the proof of
Theorem 1 for which Lemma 1 was needed. Note that only the convexity of
f(x+y)/f(x) in x for each y is assumed in (i) of Theorem 1. Nothing about
the properties of f (such as di�erentiability/convexity/concavity) other than
it being a positive density is assumed.

We note that if we assume that f is di�erentiable, then the condition
that f(x + y)/f(x) is convex in x for �all y� can be weakened to �for all y
in a neighborhood of the origin�. Our view is that assuming di�erentiabil-
ity on top of the convexity in x of f(x + y)/f(x), rather than inferring it,
substantially weakens the result.

Remark 3 Can the convexity of f(x+ y)/f(x) in x for each y be replaced
with (the weaker) quasi-convexity? The answer is no. For example take
f(x) = e−|x|/2 (x ∈ R) which is, of course, not Gaussian. It is easy to check
that with y+ = max(y, 0) and y− = −min(y, 0),

log
f(x+ y)

f(x)
=


y x ∈ (−∞,−y+]

−y − 2x x ∈ (−y+, 0]

y + 2x x ∈ (0,−y−]

−y x ∈ [y−,∞) .

(10)
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Therefore, noting that either (−y+, 0] or (0,−y−] is empty, log(f(x+y)/f(x))
and thus f(x+ y)/f(x) is monotone, hence quasi-convex in x for each y.

Remark 4 In Remark 2 we mentioned that when f is di�eretiable, then
convexty of f(x+y)/f(x) in x for all y in a neighborhood of zero (rather than
for all y) implies that f is Gaussian. Are there non-Gaussian di�erentiable
densities for which f(x+ y)/f(x) is convex in x for all y ̸∈ (−ϵ, ϵ) for some
ϵ > 0? The answer is yes.

Let f(x) = ce−x4
, where c is a normalizing constant. Then it is straight-

forward to check that the second derivative of h(x, y) = f(x+ y)/f(x) with
respect to x is given by

hxx(x, y) = h(x, y)
(
−12(2x+ y)y + y2(3(2x+ y)2 + y2)2

)
. (11)

Since hxx(y)/y → −24x as y → 0 we clearly have that for any x ̸= 0 there
are y su�ciently close to zero for which hxx(x, y) < 0 and thus h(x, y) is not
convex in x for such y. This is, of course, expected for any (di�erentiable)
non-Gaussian density.

On the other hand, since 2ab ≤ a2 + b2,

2(2x+ y)y ≤ (2x+ y)2 + y2 ≤ 3(2x+ y)2 + y2 (12)

and thus for all y such that y2 ≥ 6 we clearly have that

12(2x+ y)y ≤ y2(3(2x+ y)2 + y2) ≤ y2(3(2x+ y)2 + y2)2 (13)

and thus, with ϵ =
√
6, f(x, y)/f(x) is convex in x for all y ̸∈ (−ϵ, ϵ).
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