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There is an intensive discussion nowadays about the meaning of effective computability, with 
implications to the status and provability of the Church-Turing Thesis (CTT). I begin by reviewing 
what has become the dominant account of the way Turing and Church viewed, in 1936, effective 
computability. According to this account, to which I refer as the Gandy-Sieg account, Turing and 
Church aimed to characterize the functions that can be computed by a human computer. In addition, 
Turing provided a highly convincing argument for CTT by analyzing the processes carried out by a 
human computer. I then contend that if the Gandy-Sieg account is correct, then the notion of effective 
computability has changed after 1936. Today computer scientists view effective computability in terms 
of finite machine computation. My contention is supported by the current formulations of CTT, which 
always refer to machine computation, and by the current argumentation for CTT, which is different 
from the main arguments advanced by Turing and Church. I finally turn to discuss Robin Gandy’s 
characterization of machine computation. I suggest that there is an ambiguity regarding the types of 
machines Gandy was postulating. I offer three interpretations, which differ in their scope and 
limitations, and conclude that none provides the basis for claiming that Gandy characterized finite 
machine computation.  
Key words: effective computability, Gandy machines, human computation, machine computation, 
physical computation, The Church-Turing Thesis.  
 

The Church-Turing thesis identifies the effectively computable functions with those 

functions that can be computed by a universal Turing machine (the Turing 

computable functions). But what exactly is an effectively computable function? What 

is the meaning of ‘effective computation’? In the first section of this paper, I review 

what has become the dominant view of effective computability. According to this 

view, Church (1936a) and Turing (1936) considered the functions that can be 

computed by a human computer, namely, by a human who computes by means of an 
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effective procedure. In addition, Turing (1936) provided a highly convincing 

argument for the Church-Turing thesis by analyzing the processes carried out by a 

human computer. An analysis of machine computation, something very different, was 

suggested much later, notably by Robin Gandy, in his 1980 paper “Church’s Thesis 

and Principles for Mechanisms”. This view – advanced, for example, in Copeland 

(1996), Shagrir (1997), and Shagrir and Pitowsky (forthcoming) – has its roots in 

Gandy’s seminal papers (1980, 1988) and those of Wilfried Sieg (1994, 1997, 2001, 

forthcoming), where it is explicated, honed, and extended. It will be apt, therefore, to 

refer to it as the Gandy-Sieg account of effective computation.  

In the second section, I argue that if the Gandy-Sieg account is correct, then 

since 1936 the way in which effective computation is understood has changed. In 

current computer science, effective computation is no longer identified with human 

computation, but, rather, it is identified with finite machine computation. The third 

section is devoted to Gandy’s 1980 paper. After examining Gandy’s analysis of 

machine computation, I attempt to better understand what kind of machines Gandy is 

really talking about. I argue that Gandy’s analysis does not apply to all instances of 

finite machine computation. 

 

1. Effective computation by humans 

 

 In 1936, Church, Kleene, Post, and Turing published pioneering papers on 

computability. Each paper provided a precise mathematical characterization of the 

class of effectively computable functions, namely the functions whose values can be 

computed by means of an effective procedure (algorithm).1 Though the 



 3

characterizations are quite different – the λ-calculus (Church), general recursive 

functions (Kleene), finite combinatory processes (Post), and Turing machines 

(Turing) – they are all extensionally equivalent: it was immediately proved that they 

identify precisely the same class of functions.2 Church and Turing also put forward 

versions of the now renowned Church-Turing thesis:  

The Church-Turing Thesis (CTT): Any effectively computable function (of 
positive integers) is Turing computable.3  
 
What is an effectively computable function (intensionally speaking)? On the 

Gandy-Sieg account, an effectively computable function is one whose values can be 

computed by a human computer: “Both Church and Turing had in mind calculation by 

an abstract human being using some mechanical aids (such as paper and pencil). The 

word ‘abstract’ indicates that the argument makes no appeal to the existence of 

practical limits on time and space.” (Gandy 1980: 123-124).4 A human computer is, 

intuitively, an ideal human who computes values of a function, e.g., addition, by 

following an effective procedure. An effective procedure, in turn, can be understood 

as a finite set of instructions (each instruction expressed by means of a finite number 

of symbols), that, if followed correctly, can lead to any of a function’s defined values 

in a finite number of steps. The execution of the instructions demands no special 

intellectual effort. The process, as Turing put it, is purely mechanical. The human 

computer is idealized in two ways. First, the human computer is not bounded by time 

and memory space. The computing agent can take as much finite time and as much 

finite memory space as he or she needs to arrive at a value of the function. Second, the 

computing agent follows the instructions correctly, making no errors. Following the 

procedure must lead to the correct values of the function. Given this understanding of 

effective computability, we can articulate this human version of CTT as following:  
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The Human version of the Church-Turing Thesis (HCTT): Any function 
(of positive integers) that can be computed by a human computer is Turing 
computable. 
 

This does not mean that only human computers can effectively compute the function’s 

values, but only that a human computer can compute these values. 

 This human version of effective computability is supported by two kinds of 

evidence. One pertains to the historical background to the 1936 developments. The 

wider context has to do with the central epistemic role of effective computation in 

logic and mathematics in the decades preceded the establishment of CTT. Starting 

with Frege (and perhaps with Leibniz), and culminating in Hilbert’s program, 

mathematicians sought to justify mathematical theorems within the framework of 

formal systems, those systems whose constitutive condition is that the provability 

relation is effectively computable.5 The more immediate context is Gödel’s 

incompleteness theorems (Gödel, 1931), and the Entscheidungsproblem. Gödel’s 

incompleteness theorems rest on the representation lemma, which asserts that any 

(primitive) recursive relation is representable in any formal system L that includes a 

minimal set of axioms for arithmetic.6 It follows that if the metatheoretic relation “X 

is a proof of y” is recursive (Turing computable), it is representable (where X is a 

finite sequence of Gödel numbers of propositions and y is a Gödel number of a 

proposition in L). But since a condition on such a formal system is that the relation “X 

is a proof of y” must be effectively computable, it was possible, prior to 1936, to think 

that there might be complete formal systems for arithmetic in which the relation “X is 

a proof of y” is effectively computable but not recursive.7 This possibility was 

eliminated only in 1936, when CTT was established: CTT ensures that all provability 

relations are representable. 
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 The Entscheidungsproblem, formulated by Hilbert and Ackermann (1928: 72-

73), concerns the decidability of first-order logic, namely, the question of whether 

there is an effective procedure for computing the validity (or provability) of any given 

first-order proposition.8 Gödel’s incompleteness theorems make it unlikely that there 

is such a decision procedure.9 But again, all decidable relations must be examined to 

establish that none of them can determine whether or not a proposition is 

valid/provable. In order to establish the negative answer to the Entscheidungsproblem, 

one is forced to provide an exhaustive account of the effectively computable relations. 

When such an account became available in 1936, and CTT was established, Church 

and Turing could prove that first-order logic is undecidable (Church 1936a, 1936b; 

Turing 1936).  

Given the mathematical problems that occupied the logicians of the time, it 

would not be implausible to say that they thought of effectively computability in 

terms of human computation. In the wider context of Frege and Hilbert, it is hard to 

make sense of a formal system unless we understand ‘effectively computable’ in 

terms of human computation. It would be of no relevance if the truth of a 

mathematical conjecture could be proven within a formal system with constructive 

rules governed by computational procedures that humans could not, even in principle, 

follow. In the more immediate context, the Entscheidungsproblem, like other 

questions of decidability, is understood as asking if a human can compute whether or 

not any first-order proposition is valid. It would be completely beside the point if no 

human, but some supermachine, could compute the validity of any first-order 

proposition. This might be thought to show that some machines can “solve” the 

Entscheidungsproblem, but inasmuch as the “solution” cannot be arrived at by human 
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computation, it would not be considered a solution in the context of logic and 

mathematics.10  

 The second source of evidence for the claim that Turing and Church thought 

about effective computation in terms of human computation is the way they refer to 

computation in their writings. Turing (1936) often referred to computation in terms of 

human computation,11 in addition to analyzing human computability (see below). 

Church was less explicit about this connection in 1936. But, in his review of Turing’s 

1936 paper, Church made clear that the decision problems are defined in terms of 

human computation: “In particular, a human calculator, provided with pencil and 

paper and explicit instructions, can be regarded as a kind of a Turing machine. It is 

thus immediately clear that computability, so defined, can be identified with 

(especially, is no less general than) the notion of effectiveness as it appears in certain 

mathematical problems (various forms of the Entscheidungsproblem…)” (1937a: 42-

43).  

 Let us now turn to examine the central arguments for CTT put forward by 

Church and Turing. Church’s step-by-step argument for CTT appears in section 7 (pp. 

100-102) of his 1936a. There are two versions of the argument. Following Gandy and 

Sieg, here we shall consider the second only. The argument can be reconstructed as 

follows:  

 Church’s step-by-step argument: 
 

1. A function f is effectively computable iff it is calculable in logic, namely, 
iff there is a logic L such that f is representable in L.  

2. Church’s Central Thesis: The steps of the computation governing the 
proofs in L are recursive.12 

3. Conclusion (CTT): Any effectively computable function is recursive.  
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In the first premise of the argument, Church identifies an effectively computable 

function as one that can be represented in some formal system L. This means that 

effective computability is equated with the provability of the formula representing f in 

L. This identification rests on results by Gödel (1931) and Kleene (1936) to the effect 

that any general recursive function can be represented in the system of Principia 

Mathematica.13 The first premise thus seems to indicate that the logicians thought 

about the effective computable functions in the context of their role in mathematical 

systems such as formal systems or algebraic equations. We find this identification in 

Gödel (1946: 84, note *); we also see it in Turing (1936: 138-139), and in Hilbert and 

Bernays (1939). Given the epistemic nature of formal systems, the first premise of 

Church’s argument attests, in my opinion, to the fact that the real goal of Church’s 

argument is to secure HCTT, that is, to identify the functions computable by human 

computers.14  

 CTT, the argument’s conclusion, clearly follows from the premises. The 

weakness of Church’s argument lies at the second premise – Church’s Central Thesis 

– according to which the relation “X is a proof of y” in L must be recursive. Church 

brings no argument for this premise. This is quite surprising given that he wants to 

rule out the possibility of a formal system in which this relation is effectively 

computable but not recursive. It thus seems viciously circular to assume the premise 

without any argument. But perhaps the verdict is too harsh. Church views the 

argument not as a conclusive proof, but as a “positive justification for the selection of 

a formal definition to correspond to an intuitive notion” (1936a: 100). Furthermore, in 

view of Kleene’s analysis of general recursive functions and their representability, 

and in view of the “constructive” nature of formal systems, it is indeed hard to 
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conceive a formal system in which the steps of a proof are not recursive. Still, this 

defense is not entirely convincing. The move from “it is hard to conceive such a 

logic” to “there is no such logic” calls for a justification. The stumbling block– as 

Sieg refers to it – impeding Church’s argument is removed only if we can justify the 

implicit claim that the rules governing the system must be recursive. As we are about 

to see, Turing removes the impediment.       

 In sections 9 and 10 of his classic 1936 paper, Turing presents three arguments 

for CTT. Here, I consider only the first of these, thought by many to be the most 

convincing argument for HCTT. Gandy even considers this argument to constitute a 

proof of HCTT (1988: 76-78). In this argument, Turing removes the stumbling block 

besetting Church’s argument, by analyzing human effective computation directly. The 

problem with Church’s argument is that it does not explain why the steps of a 

computational process must be recursive. Turing analyzes these steps, demonstrating 

that they must be recursive.  

He begins by recognizing that “the real question at issue is ‘What are the 

possible processes which can be carried out in computing a number?’” (1936: 135). 

He then proceeds to formulate constraints on all such possible computational 

processes, constraints that are motivated by the limitation of human’s sensory 

apparatus and memory. The constraints of determinacy, boundedness, and locality (in 

short, D-B-L) are reformulated in Sieg (1997) as follows:  

(D) The immediately recognizable (sub-)symbolic configuration determines uniquely 
the next computation step.  

(B.1) There is a fixed bound on the number of symbolic configurations that can be 
immediately recognized. 

(B.2) There is a fixed bound on the number of states that need to be taken into 
account.15 

(L.1) Only immediately recognizable symbolic configurations are changed. 
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(L.2) New observed configurations are within a bounded distance of an immediately 
previously observed configuration.16  

 
The determinacy condition asserts that the computational process is deterministic. 

Each operation is uniquely determined by the current symbolic configuration (which 

includes the instruction and the input).17 The boundedness conditions ensure that there 

is a bound on the symbolic configuration that can affect a (local) change, and the 

locality conditions guarantee that there is a bound on the number of local changes (it 

is in fact just one). The conditions themselves are justified, quite convincingly, in 

terms of the limits on human sensory and cognitive capacities. 

 The last step of the argument sketches a proof for the claim that every function 

whose values can be arrived at by a process constrained by D-B-L is Turing 

computable. The proof is straightforward. Conditions D-B-L ensure that each 

computation step involves a change in one bounded part of the relevant symbolic 

configuration, so that the number of types of elementary steps is bounded and simple. 

The proof is completed after demonstrating that each such step can be mimicked, 

perhaps by a series of steps, by a Turing machine.18 We can summarize Turing’s 

argument as follows:  

Turing’s argument: 
 

1. Turing’s Thesis: A human computer must satisfy the restrictive 
conditions D-B-L. 

2. Turing’s Theorem: Any function that can be computed by a computer 
that satisfies conditions D-B-L is Turing computable. 

3. Conclusion (HCTT): Any function that can be computed by a human 
computer is Turing computable. 

 
 Unlike Church, then, Turing does not assume that each step is recursive. 

Rather, Turing demonstrates that each step must be recursive. He analyzes the 
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constraints imposed on each step of the computation, and then proves that each step 

can be carried out by a universal Turing machine.   

 Let me recapitulate: CTT should be understood against its historical 

background. In this context, effectively computable functions are those functions that 

can be calculated by a human computer, that is, by effective human computation, and, 

hence, CTT should be understood in terms of HCTT. Turing provided a highly 

convincing argument (Sieg), perhaps even a proof (Gandy), for HCTT. In this 

argument, Turing analyzes the processes of human computation, demonstrating that 

these processes satisfy certain restrictive constraints, and that functions computed via 

processes satisfying these constraints must be Turing computable. It is, therefore, 

highly likely that HCTT is true.  

 

2.  Effective computation by machines  

 

According to the Gandy-Sieg account, effective computation had been understood and 

analyzed in 1936 in terms of human computation, and Turing argued for a human 

version of CTT by analyzing human computers. The Gandy-Sieg account is, I think, 

correct. As I am about to argue, however, after 1936 the prevailing view of effective 

computation began to change. In current computer science, effective computation in 

general and CTT in particular are understood in terms of finite machine computation, 

where ‘machine’ is taken in its broadest sense, that is, referring to humans, physical 

systems, or abstract automata.   

  When we look at the more recent textbooks in the theory of computation, 

automata, and formal languages, we observe that the notion of effective computation 
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is applied to machines, and CTT is understood as a thesis about computers in general. 

Here are just a few examples: “Today the Turing machine has become the accepted 

formalization of an effective procedure. Clearly one cannot prove that the Turing 

machine model is equivalent to our intuitive notion of a computer, but there are 

compelling arguments for the equivalence, which has become known as Church’s 

hypothesis.” (Hopcroft and Ullman 1979: 147); “Because the Turing machines can 

carry out any computation that can be carried out by any similar type of automata, and 

because these automata seem to capture the essential features of real computing 

machines, we take the Turing machine to be a precise formal equivalent of the 

intuitive notion of ‘algorithm’.” (Lewis and Papadimitriou 1981: 223); “The claim, 

called Church’s thesis or the Church-Turing thesis, is a basis for the equivalence of 

algorithmic procedures and computing machines.” (Nagin and Impagliuzzo 1995: 

611); “The Church-Turing thesis says that, from a theoretical standpoint, all 

computers have the same power. This is commonly accepted; the most powerful 

computers in the world compute the same things that Turing’s abstract machine could 

compute.” (Astrachan 2000: 397).  

 Though the texts are much less explicit about the question of when does a 

machine carry out an algorithm, or when does it compute effectively, they all 

implicitly assume that a machine computes effectively just in case its processes are 

symbolic discrete operations that make use of “finite means” (see the citations below). 

We can thus express the machine version of the Church-Turing thesis as follows:   

The Machine version of the Church-Turing Thesis (MCTT): Any 
function (of positive integers) that can be computed by a finite machine is 
Turing computable. 
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As just stated, there have been, perhaps surprisingly, almost no attempts to analyze 

the restrictions on the processes of finite machine computation. But there are, I think, 

certain ingredients of finite machine computation that can be characterized. Following 

Gandy (1980), we can think of a finite machine as a pair <S,F>. S is a set of, 

potentially, infinitely many states, and F is a state transition operation. We will say 

that <S,F> computes by finite means if and only if it fulfills the following conditions:  

(1) Each computational process can be described as a state transition process S0, 
F(S0), F(F(S0)), … . The process, if terminating, consists of finitely many 
transitions.  

(2) Each state is assembled from finitely many tokens of atomic parts (or, 
alternatively, is a finite symbolic configuration). However, the number of 
atoms (symbols) from which a state is assembled may be unbounded.  

(3) There are finitely many types of atomic parts (a finite alphabet) from which 
the states of S are assembled. 

(4) Each type of state transition can be reassembled from a finite number of 
primitive operations. In addition, there is a bound on the number of types of 
primitive operations from which a state transition can be assembled.  
 

I would like to emphasize that nothing in my argument in this section depends on the 

correctness of this definition. The definition will be used only in the argumentation in 

the next section. Moreover, the definition is not meant to be a precise characterization 

of a finite machine. The definition can be made precise only if we can characterize, 

more rigorously, the terms ‘assembled’ and ‘primitive operation’, but this is not an 

easy task. In fact, the widespread assumption nowadays is that a precise 

characterization of a finite machine cannot be given. We can never rule out the 

possibility that there is a finite machine that we never thought before, but that does 

not satisfy the restrictive conditions we formulate today:  

But since there is no end to the possible variations in detailed characterizations of the 
notions of computability and effectiveness, one must finally accept or reject the thesis 
(which does not admit of mathematical proof) that the set of functions computable in our 
sense is identical with the set of functions that men or machines would be able to compute 
by whatever effective method, if limitations on time, speed, and material were overcome. 
(Boolos and Jeffrey 1989: 20). 
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One example of a finite machine is Turing’s human computer, where each state can be 

seen as a finite string of symbols, and each state transition is restricted by Turing’s 

conditions D-B-L. A Turing machine, where each state transition can be described by 

a finite sequence of quadruples, is yet another example. One more example of a finite 

machine is a discrete neural net, whose size changes with the size of the problem. 

Take for example a net that solves the n-queens problem (Shagrir 1992). An initial 

state of the machine consists of n2 nodes, each representing the presence/absence of a 

queen on a cell of the board, and a matrix of n4 weights between pairs of nodes. The 

machine arrives at a solution through a finite number of state transitions. The 

transitions do not satisfy Turing’s locality and boundedness conditions. Locality is 

violated because, at each state transition, changes can be made in parallel in arbitrarily 

many nodes. Boundedness is violated because each local change (in a node) results 

from the values of all the other nodes. Thus for every bound k there is a state that 

consists of n2 nodes (n>k), in which a change in a node is affected by nodes that are 

not within the bound. Yet the machine is considered to be a finite machine. Each state 

transition is assembled (roughly by summations) from primitive operations of the type 

ai⋅wij, where ai is the value (0 or 1) of nodei at time t-1, and wij is the fixed value of the 

weight from nodej to nodei.  

 This transition in the perspective from human computation to machine 

computation is not very surprising. Turing and Church conceived of effective 

computability in terms of human computation because the problems they aimed to 

solve were defined in these terms. In current computer science, however, the main 

focus is on problems that can or cannot be solved by machines. Yet, I do not mean to 

suggest that, prior to 1936, people thought about effective computation solely in terms 
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of human computation. Hilbert’s student Heinrich Behmann wrote in 1921 that 

“mechanical calculations according to given instructions” could be thought of as 

“mechanical or machinelike thought (Perhaps one could later let the procedure be 

carried out by machine)”.19 Also the identification of effective computation with finite 

computation is already found in the opening sentence of Turing’s 1936 paper: “The 

‘computable’ numbers may be described briefly as the real numbers whose 

expressions as a decimal are calculable by finite means” (p. 116). Church even reads 

Turing as providing the basis for the redefining of effective computation by finite 

machine computation. In his 1937 review of Turing (1936), Church writes: “The 

author proposes a criterion that an infinite sequence of digits 0 and 1 be ‘computable’ 

that it shall be possible to devise a computing machine, occupying a finite space with 

working parts of finite size” (1937a: 42). Church proceeds to claim, in his 1937 

review of Post (1936), that this definition is appropriate: “To define effectiveness as 

computability by an arbitrary machine, subject to the restriction of finiteness, would 

seem to be an adequate representation of the ordinary notion” (1937b: 43).20  

 In fact, I do not even suggest that the extension of ‘effective computability’ 

has changed. Given that any Turing computable function can be computed by a 

human computer, and granted that MCTT is true, the extensions of ‘effective machine 

computability’ and ‘human computability’ is the same. My suggestion, rather, is that 

the intension of ‘effective computability’ has changed. In 1936, and prior to that date, 

logicians thought about effective computation in terms of human computation in the 

sense that effective computation is constrained by what human computers can and 

cannot do. Machines that satisfy these constraints compute effectively, and machines 

that do not satisfy these constraints do not compute effectively. In current computer 
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science, however, effective computation ceases to be constrained by what human 

computers can and cannot do. Effective computation is constrained, rather, by what an 

arbitrary finite computer can do. 

Other sources of evidence for the claim that there was a shift, after 1936, from 

human computation to machine computation, are the arguments for CTT. While it is 

widely recognized that Turing’s is the best argument for CTT, when effective 

computation is understood in terms of human computation, this recognition has no 

echo in the textbooks in computer science. The two arguments for CTT that appear in 

most textbooks are the argument from confluence and the argument from non-

refutation. The argument from non-refutation states that CTT has not been refuted, 

even though it is refutable: “Church’s Thesis could be overthrown at some future date, 

if someone were to propose an alternative model of computation that was publicly 

acceptable as fulfilling the requirement of ‘finite labor at each step’ and yet was 

provably capable of carrying out computations that cannot be carried out by any 

Turing machine. No one considers this likely” (Lewis and Papadimitriou 1981: 223). 

“Although this thesis (‘Church’s thesis’) is unprovable, it is refutable, if false… it is 

refutable by finding a counterexample; and the more experience of computation we 

have without finding a counterexample, the better confirmed the thesis becomes” 

(Boolos and Jeffrey 1989: 20). The argument from confluence states that many 

characterizations of computation, which differ in their goals, approaches, and details, 

encompass the same class of computable functions: “Turing machines can be imitated 

by grammars, which can be imitated by µ-functions, which can be imitated by Turing 

machines. The only possible conclusion is that all these approaches to the idea of 

computation are equivalent” (Lewis and Papadimitriou 1981: 224). “Indeed, given 
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any other plausible, precise characterization of computability that has been offered, 

one can prove by careful, laborious reasoning that our notion is equivalent to it in the 

sense that any function which is computable according to one characterization is also 

computable according to the other” (Boolos and Jeffrey 1989: 20). Even Church’s 

step-by-step argument is nowadays considered to be a more general argument for 

CTT than Turing’s (Shepherdson 1988: 538). Thus, on the one hand, it appears that 

the dominant arguments for CTT nowadays are the arguments from confluence and 

non-refutation. While on the other hand, even though the arguments from confluence 

and non-refutation were well known in 1936, they were not at the front of Turing’s 

and Church’s argumentation.21  

The transition in the centrality of arguments for CTT can be explained by the 

transition from human to machine computation. The arguments from confluence and 

non-refutation are very different from Turing’s. They are not based on an analysis of 

the properties underlying effective computation, but rest on a query of the 

computational powers of given different mathematical systems and machines. As 

such, they are inherently inconclusive. It is always possible that all the precise 

characterizations examined so far address the same proper subclass of the effectively 

computable functions. In particular, all these characterizations rest on the very 

intuitive, but unanalyzed assumption – Sieg’s stumbling block – that the most 

elementary steps of the computation are Turing computable. Given that Turing’s 

analysis removes this obstacle, by analyzing the conditions underlying human 

computation, and proving that any computation restricted by these conditions falls 

under the limits of Turing computability, it is not surprising that Turing’s argument is 

conceived as a far more convincing argument for HCTT.22 
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The situation is quite different when effective computation is understood in 

terms of machine computation. Turing’s argument for MCTT is unsatisfactory, since 

it encompasses only a proper subclass of finite computers. From the perspective of 

machine computation, that is, Turing analyzed only one species of finite computers, 

i.e., human computers. This does not mean that Turing’s analysis is irrelevant to other 

sorts of finite computation. Indeed, the analysis applies to any finite machine the 

computational steps of which involve a local change in one bounded part. In 

particular, Turing’s theorem – the second premise in his argument – applies to any 

finite machine that satisfies conditions D-B-L. Nevertheless, Turing’s analysis does 

not encompass all finite computers. Parallel distributed machines, like the neural net 

described above, are finite machine that do not satisfy conditions D-B-L, and thus do 

not fall within the scope of Turing’s analysis. These machines might compute 

functions that are not Turing computable. To show that such machines do, 

nonetheless, fall within the scope of Turing computability, another argument has to be 

provided.  

The current dominance of the arguments from confluence and non-refutation 

is explained by the fact that many think that the notion of a finite machine 

computation has not been characterized, and perhaps is even open-ended. As long as 

we do not have, and perhaps cannot have, a precise analysis of a finite machine, the 

best we can do is demonstrate that no function computed by any known machine 

refutes MCTT, and that all of the functions computed by such a universal machine are 

precisely the Turing computable functions.  

 In summary, I have suggested that ‘effective computation’ is currently 

understood, at least in computer science, in terms of finite machine computation. My 
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contention is supported by the current formulations of CTT, which always refer to 

machine computation, and by the current argumentation for CTT, which is explained 

by the fact that CTT is nowadays understood in the form of MCTT.  

 I close this section by noting that the notion of computation by a finite 

computer is different from the notion of computation by a physical machine. 

Consequently, MCTT should be distinguished from physical versions of the Church-

Turing thesis. The latter versions address the computational powers of physical 

systems, and assert that the computational powers of physical systems do not 

transcend Turing computability: 

The Physical Church-Turing Thesis (PCTT): Any function (of positive 
integers) that can be computed by a physical system is Turing-
computable.23   
 

 In this context, a physical system is any system, real or potential, such that (a) 

its states occupy a finite space, (b) its terminating dynamics are completed in finite 

real time, and (c) its dynamics are consistent with the laws of physics.  

 PCTT is primarily the concern of physicists interested in the computational 

bounds on physical systems. Though usually careful to distinguish PCTT from the 

Church-Turing Thesis (CTT), some of them mistakenly identify these theses.24 The 

confusion is not surprising. On the one hand, computer scientists are interested in 

finite machines primarily because these are the machines that we can actually build. 

On the other hand, physicists are interested in physical computers that are also “finite” 

in the sense that they occupy a finite space and complete the computation in finite 

time.25 Yet the terms ‘physical computing machine’ and ‘finite computing machine’ 

are not only intensionally different, but also extensionally different, referring to 

different classes of computing machines. There are machines that satisfy conditions 
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(1)-(4), yet are not physically implementable.26 But there are also physical systems 

that satisfy conditions (a)-(c), but not conditions (1)-(4). For instance, there are analog 

systems that occupy a finite space, yet do not satisfy condition (3), since their states 

do not consist of finitely many types of atoms.27 More interestingly, there are discrete 

physical systems that complete a computational process in a finite real time, yet do 

not satisfy condition (1), since these processes consist of infinitely many steps.28   

 

 

3. Computation by Gandy machines 

 

According to the Gandy-Sieg account, Turing analyzed human computation, not 

machine computation. Analyses of machine computation, advanced much later, are 

different: “It has been claimed frequently that Turing analyzed computations of 

machines. That is historically and systematically inaccurate, as my exposition should 

have made abundantly clear. Only in 1980 did Turing’s student Robin Gandy 

characterize machine computations” (Sieg 2001: 396). Sieg in fact builds on Gandy’s 

work as a basis for “a characterization of computations by machines that is general 

and convincing as that of computations by human computors given by Turing” 

(forthcoming: 245). Gandy, who was aware that “Turing’s arguments can be applied 

indifferently to men or machines”, also observed that “there are crucial steps in 

Turing’s analysis where he appeals to the fact that the calculation is being carried out 

by a human being” (1980: 124). In what follows, I briefly review Gandy’s 1980 

analysis of machine computation, focusing on the conceptual framework, and 

omitting the many technical details.29 I then consider the question of what kind of 
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machines Gandy is really analyzing, and, in particular, whether the machines he 

analyzes are the finite machines discussed above. 

 Gandy explicitly seeks to provide an argument for the following thesis:   

“Thesis M. What can be calculated by a machine is [Turing] computable” 
(1980: 124).  

 
 Thesis M requires clarification. First, by ‘machine’ Gandy means a physical 

machine such as “the parts of Babbage’s ‘Analytical Engine’, which are preserved in 

the Science Museum at South Kensington” (1980: 125). Next, Gandy does not 

consider all physical computing machines, but only discrete deterministic mechanical 

devices. Discrete computers “are, in a loose sense, digital computers” (p. 126). Gandy 

thus excludes analog computers from his analysis. A deterministic computer is one 

whose subsequent behavior “is uniquely determined once a complete description of its 

initial state is given.” (p. 126). ‘Mechanical device’ refers to “the nineteenth century 

meaning” of machine (pp. 125-6). Here Gandy apparently refers to physical 

computing machines that we could devise, at least in principle. These include discrete 

deterministic machines whose calculations might not satisfy Turing’s constraints on 

human computation, that is, calculations that do not proceed as sequences of 

elementary steps, but might, say, print an arbitrary number of symbols 

simultaneously. The more interesting machines that fall within Gandy’s 

characterizations are parallel machines, namely, machines whose computation steps 

involve parallel changes in arbitrarily many overlapping parts. We will call these 

discrete deterministic mechanical devices Gandy machines. We can now formulate 

Gandy’s thesis more accurately: 

Gandy’s thesis: Any function that can be computed by a discrete 
deterministic mechanical device (a Gandy machine) is Turing computable. 
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 Gandy’s argument for the thesis deliberately reproduces the structure of 

Turing’s argument. Gandy first argues that each physical discrete deterministic device 

satisfies certain constraints: principles I-IV. Gandy then proves the theorem that any 

function that can be computed by a device that satisfies principles I-IV is Turing 

computable. The argument can thus be expressed as follows:  

Gandy’s argument: 
 

1. “Thesis P. A discrete deterministic mechanical device satisfies principles I-IV 
below.” (1980: 126) 

2. “Theorem. What can be calculated by a device satisfying principles I-IV is 
[Turing] computable.” (1980: 126)  

3. Gandy’s Thesis. What can be calculated by a discrete deterministic 
mechanical device is [Turing] computable.  
 

Principles I-IV approximate to these: 

(I) Form of description: Any discrete deterministic mechanical device M 
can be described as <S,F>, where S is structural class (a subclass of the 
hereditarily finite sets HF over an infinite set U of atoms that is closed under 
isomorphic structures), and F is a structural operation from Si to Sj. Thus, if S0 
is the initial state, then F(S0), F(F(S0)),… are its subsequent states. 
(II) Limitation of Hierarchy: the set theoretic rank of the states is bounded.  
(III) Unique Reassembly: Any state Si of S is assembled from parts of 
bounded size. 
(IV) Local causation: Parts from which F(x) can be reassembled depend 
only on bounded parts of x.  

 
 Thesis P, then, asserts that the abstract principles I-IV are a precise 

mathematical formulation of the limitations on Gandy machines. Principles I-III are 

meant to capture the discrete and deterministic nature of Gandy machines. They 

provide one precise characterization of conditions (1)-(3) on finite machines, with one 

exception: they do not explicitly state that a terminating process must consist of 

finitely many steps. Principle IV (local causation) puts restrictions on the type of 

operations available. It says that each changed part of a state is affected by its local 

“neighborhood”, which is bounded. The principle abstracts from two physical 
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presuppositions: “that there is a lower bound on the linear dimensions of every atomic 

part of the device and that there is an upper bound (the velocity of light) on the speed 

of propagation of changes” (p. 126). The first is a physical constraint on discrete 

devices; the second arguably applies to all physical machines. The constraints imply 

that each changed part can be affected by a bounded number of atoms. Since the 

propagation of information is bounded, an atom can transmit and receive information 

in its bounded neighborhood (in bounded time). Since there is a lower bound on the 

size of the atoms, the number of atoms in this neighborhood is bounded. It thus 

follows that F(x) is assembled from bounded, though perhaps overlapping, parts of x.  

 Gandy’s Thesis P parallels Turing’s thesis in that it specifies constraints on a 

class of computers. While Turing’s thesis asserts that conditions D-B-L are restrictive 

conditions on human computers, Gandy’s Thesis P states that principles I-IV are 

restrictive conditions on Gandy machines. Gandy’s next step – the Theorem – also 

parallels the second step in Turing’s argument – Turing’s Theorem. While Turing’s 

theorem asserts that any function computed by an abstract device that satisfies the 

conditions D-B-L is Turing computable, Gandy’s Theorem states that any function 

computed by an abstract device that satisfies principles I-IV is Turing computable. 

But Gandy’s Theorem is far more comprehensive. From a formal point of view, 

computers that satisfy D-B-L are species of computers that satisfy I-IV (Gandy 1980: 

145-146, Sieg 2001: 400-402). In computers that satisfy D-B-L, each step consists of 

a change in one bounded part of the symbolic configuration. In computers that satisfy 

I-IV, each step of the computation can consist in arbitrarily many bounded, and 

sometimes even overlapping, parts. Thus, like Turing, Gandy does not assume that 

each step of the computation is Turing computable. The Turing computability of each 
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change derives from the finiteness constraints I-IV. These constraints arguably ensure 

that at each step a Gandy machine modifies arbitrarily many bounded parts, that each 

bounded part consists of finitely many atoms, and that there are, overall, finitely many 

types of local modifications of bounded parts. It thus follows that all possible changes, 

of which there are infinitely many, consist of finitely many types of bounded 

modifications, each of which is Turing computable. 

 Despite Gandy’s careful analysis, I suggest that there is an ambiguity with 

regard to the types of machine he is postulating. I offer three interpretations, which 

differ in their scope and limitations, and finally conclude that none of them provide 

the basis for claiming that Gandy characterized finite machine computation.  

 

Gandy machines as physical machines: On one interpretation, Gandy’s thesis is a 

variant of PCTT, namely, a thesis about the computational bounds of a subclass of 

physical machines, namely, discrete deterministic physical devices. This interpretation 

is supported by the manner in which Gandy presents and argues for the thesis, and 

which is described above. Under this interpretation, however, Gandy’s thesis seems to 

be fallacious. Elsewhere, Pitowsky and I provide an example of a discrete 

deterministic mechanical device, the dynamics of which are compatible with the 

principles of general relativity, that satisfies Gandy’s physical presuppositions: its 

computational processes always terminate in finite ‘local’ time (though some of its 

terminating computations require an infinite number of computation steps).30 Yet the 

device computes a function that is not Turing computable. Which premise is then 

false? Thesis P – which states that any discrete deterministic mechanical device 

satisfies principles I-IV – is consistent with General Relativity. In particular, it is 
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consistent with our counterexample to Gandy’s thesis. If anything, Gandy notes, local 

causation is inconsistent with Newtonian mechanics: “Principle IV does not apply to 

machines obeying Newtonian mechanics. In these there may be rigid rods of arbitrary 

lengths and messengers travelling with arbitrary large velocities, so that the distance 

they can travel in a single step is unbounded” (1980: 145). The second premise -

(Gandy’s Theorem) – which asserts that every function that can be computed by a 

device that satisfies principles I-IV is Turing computable – rests on the implicit 

assumption that the number of steps in a terminating computation is finite. Without 

this assumption, our device is a counterexample to the Theorem: it satisfies principles 

I-IV, but it computes functions that are not Turing computable. 

 

Gandy machines as finite-physical machines: On a second interpretation, Gandy is 

speaking of finite-physical computing machines. According to this interpretation, 

Gandy meant by ‘a discrete machine’ finite machines, namely, machines that satisfy 

conditions (1)-(4). Gandy machines, then, are finite machines that are physically 

implementable, at least in principle, and Gandy’s thesis asserts that any function 

computed by a finite and physical device is Turing computable. In that case, Gandy 

should have explicitly mentioned finite number of steps (in principle I), as this 

constraint is not motivated by “physical presuppositions”. The two physical 

presuppositions rather justify the stricter constraints on the type of operations 

available, which guarantee that there is a bound on the number of types of operations 

from which any state, F(x), is assembled. This interpretation is perhaps closer to 

Gandy’s intended meaning, given that his Theorem assumes that a finite process 

consists of finitely many steps, not just terminating in finite real time. This 
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interpretation also makes it more likely that Gandy’s thesis is true. The alleged 

counterexample to Gandy’s thesis and theorem, Pitowsky and I suggest, is blocked, 

since one condition on finite machines is that any terminating process must consist of 

finitely many steps.  

 

Gandy machines as a mathematical notion: Another way to view a Gandy machine 

is as a mathematical notion defined by principles I-IV. Gandy’s work is viewed as an 

attempt to provide a mathematical definition of a machine that abstracts from the 

properties of a certain class of computations by finite machines. The mathematical 

principles I-III aim to provide a precise characterization of conditions (1)-(3), and the 

mathematical principle IV (local causation) aims to impose constraints on the types of 

operations available. This interpretation is advanced, for example, by Sieg, who does 

“no longer take a Gandy machine to be a dynamical system” (2001: 398), but to be 

“an ‘abstract’ mathematical definition that embodies generally accepted properties of 

parallel computations” (2001: 400).31 I am not sure that this interpretation is faithful 

to Gandy’s intended meaning. I also think that a condition about finitely many steps, 

which is implicitly assumed in the characterization of a Gandy machine, should be 

made more explicit. However, this interpretation draws attention to the true 

significance of Gandy’s work, namely, providing a precise characterization of a large 

and important class of finite machines, that includes, among other machines, all the 

finite physical parallel machines that we can devise, either de facto or in principle. 

The chief difference between this interpretation – which takes a Gandy 

machine to be a mathematical object characterized by principles I-IV – and the two 

former interpretations – which takes a Gandy machine to be a physical object – is the 
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following. On the former interpretations, the aim of Gandy’s work is to characterize a 

certain class of physical machines, and to prove that the functions computed by these 

machines are all Turing-computable. A central claim in the argument is that principles 

I-IV capture the basic computational properties of these physical machines (Thesis P). 

On the third interpretation, Thesis P is dropped as irrelevant. The goal of Gandy’s 

work is to characterize a wide class of finite machines – physical or abstract – whose 

computations proceed in parallel. Principles I-IV are motivated by physical 

presuppositions, but are not justified by them. The main question of interest is not 

whether Thesis P is true, but what are the machines that satisfy principles I-IV. A 

physical machine that does not satisfy principles I-IV, does not refute the principles, 

but falls outside their scope.  

 

We have looked at three interpretations of the notion of a Gandy machine. On one 

interpretation, the notion applies to physical machines including some that are not 

necessarily finite. On a second, the notion applies to a subclass of finite machines, 

namely, to finite physical machines. On the third, the notion applies to a mathematical 

object defined by principles I-IV. It is interesting to observe, however, that on all 

three interpretations, the class of Gandy machines is extensionally different from the 

class of finite machines. The neural net for the n-queens problem, described in section 

2, is considered to be a finite machine, yet it is at odds with local causation. Each 

node from which a state F(x) can be reassembled depends on the values of the nodes 

of the state x. Thus if the states x and F(x) are large enough (each consisting of n2 

nodes), any node of F(x) will depend on a part of x that exceeds the bound. This may 

explain why Gandy’s analysis has never become the prevailing model of machine 
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computation, and Gandy’s thesis as the machine version of CTT. Whereas the notion 

of effective computation has been understood in computer science in terms of finite 

machine computation, and CTT as a general thesis about the computational powers of 

finite machines, Gandy’s analysis applies at best to a proper subclass of finite 

computers, namely, to those satisfying I-IV.32 
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Notes 

 
1 Though I take algorithms and effective procedures to be synonymous, algorithms are sometimes 
presented as abstract entities, and effective procedures as symbolic representations of algorithms.   
2 See Gandy (1988) for the historical background to the formulation, and Sieg (1994, sections 2.1 and 
2.2) for Kleene’s systematic development of the definition of recursive functions from Gödel’s and 
Herbrand’s 1931 notions of recursion. 
3 Church’s formulation is: 

We now define the notion, already discussed, of an effectively calculable function of positive 
integers by identifying it with the notion of a recursive function of positive integers (or of a λ-
definable function of positive integers). This definition is thought to be justified by the 
considerations which follow, so far as positive justification can ever be obtained for the selection of 
a formal definition to correspond to an intuitive notion (1936a: 100). 

Turing’s is:  
No attempt has yet been made to show that the “computable” numbers include all numbers which 
would naturally be regarded as computable. All arguments which can be given are bound to be, 
fundamentally, appeals to intuition, and for this reason rather unsatisfactory mathematically (1936: 
135). 
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Turing’s definition of computability over real numbers is equivalent to the definition over functions of 
positive integers. Indeed, the reference to positive integers simplifies matters but is not essential. We 
can compute other functions whose arguments and values can be represented by a ‘reasonable’ symbol 
system. Note too that many also state the reverse inclusion. However, this side of the thesis is not 
addressed in this paper.  
4  See also Sieg (1994, 2001), who emphasizes Turing’s analysis of a human computer. Gandy and Sieg 
refer to a human computer as a computor. 
5  See Sieg (1984: 72-77) for a discussion of the role of effective computation in mathematics in the 
years preceding 1936. 
6  A relation R(x1,…xk) of positive integers is representable in L if there is a formula A(x1,…xk) in the 
language of L, such that for any tuple of positive integers <n1,…nk>, if R(n1,…nk) then A(n1,…nk) is 
provable in L, and if ¬R(n1,…nk) then ¬A(n1,…nk) is provable in L (ni is the constant whose 
interpretation in the standard model is ni). 
7  Kleene refers to this unlikely possibility: “In 1931, one could be uncertain whether Gödel’s 
incompleteness theorem applies to systems quite remote in their details from Principia Mathematica” 
(1988: 43). 
8  The problem appears to have been formulated by Behmann as early as 1921 (Mancosu 1999: 320-
321). 
9  See Gandy 1988: 63-64. 
10  A physical super-machine that “solves” the halting problem is presented in Shagrir and Pitowsky 
(forthcoming). A similar machine can also “solve” the Entscheindungsproblem.  
11  See Turing 1936, particularly sections 1 and 9. Post (1936: 291) also describes effective computation 
in terms of human computation.  
12  I will follow Church in using recursive functions here, instead of Turing computability.  
13  It is now known that the recursive functions can be represented even in a simple first-order theory 
(Boolos and Jeffrey: Chapter 14). 
14  Church also presents effectively computable functions in terms of provability in other places. In a 
response to an alleged counterexample to CTT, Church writes that such an example would require “an 
utterly new principle of logic, not only never before formulated, but also never before actually used in 
mathematical proof.” (Sieg 1997: 168). 
15  In his argument, Turing refers to “states of mind” (1936: 136). But further on he points out that we 
can “avoid introducing the ‘state of mind’ by considering a more physical and definitive counterpart of 
it.” (p. 139), namely, a finite set of written instructions. See also note 16. 
16 Sieg formulates these constraints by extrapolating on the ideas found in Turing, and the 
representation of Turing machine as Post’s production systems. A mathematical definition of Turing’s 
Computor (assuming the computer satisfies D-B-L) is given by Sieg (forthcoming: 247-249). 
17   It was later shown that the assumption of strong determinism is not essential (Sieg 1984: 95). 
18  A detailed proof is provided in Sieg (2001, forthcoming). 

19  Translated in Mancosu (1999: 321).  
20 Church’s reading of Turing 1936 is criticizes by Sieg, who comments that “Church’s apparent 
misunderstanding is rather common.” On Sieg’s view, “Turing analyzed … a mechanical computor, 
and that provides the basis for judging the correctness of the finiteness conditions.” (1994: 94-95). But, 
in my view, Church did not think that Turing analyzed machine computation. Church observed, rather, 
that the formulation of the finiteness conditions makes the human computer less relevant. After the 
finiteness conditions are judged to be correct, it does not matter any more whether the computer that 
satisfies these conditions is a human or another machine. Church observed, in other words, that 
Turing’s analysis provides the basis for the identification of effectiveness with a finite machine that 
satisfies Turing’s finiteness conditions. Thus Church basically identifies effectiveness with Sieg’s 
abstract notion of Turing Computor (Sieg 2001). Church’s observation constitutes the first stage of the 
transition from human to machine computation, but it still falls short of identifying effectiveness with 
machine computation. Stretching the notion of effective computation to finite machines that do not 
satisfy Turing’s restrictive conditions, occurred only later, with the appearance of machines that do not 
satisfy the conditions D-B-L, yet compute effectively. 
21 Church (1936a) mentions the argument from confluence in note 3 (p. 90). At the time, he was aware 
of the confluence of the definitions of the λ-definable functions and the recursive functions. Turing’s 
second argument (1936: 138-139), where computability is identified with calculation in logic, is also 
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intended as an argument from confluence (Gandy 1980: 75-76). In section 10, Turing gives examples 
of effectively computable functions that are Turing computable. In the appendix to (1936), Turing 
proves the extensional equivalence of λ-definable and Turing computable sequences. 
22 This explanation partly rests on Gödel’s reaction to CTT (see Sieg 1994, 1997, 2001). While Gödel’s 
first reaction, apparently in 1934, to Church’s suggestion to identify effectiveness with λ-definability, 
was that it is “thoroughly unsatisfactory”, Godel was much more positive towards the identification in 
1946. He opens his “Remarks Before the Princeton Bicentennial Conference of Problems in 
Mathematics” as follows: “Tarski has stressed in his lecture (and I think justly) the great importance of 
the concept of general recursiveness (or Turing’s computability). It seems to me that this importance is 
largely due to the fact that with this concept one has for the first time succeeded in giving an absolute 
definition of an interesting epistemological notion.” (1946: 84). In the postscriptum to the lecture Gödel 
attributes this identification to Turing’s work, writing that: “Turing’s work gives an analysis of the 
concept of ‘mechanical procedure’ (alias ‘algorithm’ or ‘computation procedure’ or ‘finite 
combinatorial procedure’). This concept is shown to be equivalent with that of a Turing machine.” 
Gödel, however, found the other definitions of computability (recursiveness and λ-definability) “much 
less suitable for our purpose.” Their importance is due to their equivalence with Turing-computability, 
but the equivalence itself is not mentioned as a reason for accepting CTT.        

23  Early versions of the physical thesis are formulated in Wolfarm 1985, Deutsch 1985, and 
Pitowsky 1990.  

24  “But is [CTT] true? Well, it will be if there is at least one physically Turing machine and if there are 
no physically possible non-Turing computers.” (Hogarth, 1994: 134); “Extensive efforts have been 
made to prove the Church-Turing thesis, which suggests that all realizable dynamical and physical 
systems cannot be more powerful than classical models of computation.” (Siegelmann, 1995: 545). 

 25  There is still the question of why does computer science focus on finite computers, and not on 
physical computers. Cleland (1993, forthcoming), for example, criticizes computer science for 
being concerned with finite computers. She argues that the emphasis on finitude is mistaken, and 
the true nature of effective procedures emerges from a careful analysis of quotidian procedures, 
which specify a temporally organized arrangement of causal interventions in the course of nature.  

26  For example, the neural net for the n-queens problem (described above) does not satisfy Gandy’s 
principle of local causation (see below). 
27  See for example Siegelmann (1995), though the physical reality here is questionable. 
28  See for example Pitowsky (1990), Hogarth (1994), and Shagrir and Pitowsky (forthcoming).  
29  Readers interested in these details are referred to Gandy (1980), Sieg and Byrnes (1999), and Sieg 
(2001, forthcoming). 
30 Shagrir and Pitowsky (forthcoming). 
31  This interpretation is also held, I believe, by other theoreticians and computer scientists. See, for 
example, Shepherdson (1988), where the presentation of Gandy machines depends solely on finiteness 
conditions and not on physical constraints. 
32 There are, however, a few computer scientists who interpret CTT as a thesis about finite-physical 
machines: “any algorithmic problem for which we can find an algorithm that can be programmed in 
some programming language, any language, running on some computer, any computer, even one that 
has not been built yet but can be built…is also solvable by a Turing machine. This statement is one 
version of the so-called Church/Turing thesis” (Harel 1992: 233). On that interpretation of CTT, 
Gandy’s analysis does capture the essence of effective machine computation.  
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