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We study the impact of the wetting properties on the immiscible displacement of a viscous fluid in
disordered porous media. We present a novel pore-scale model that captures wettability and dynamic
effects, including the spatiotemporal nonlocality associated with interface readjustments. Our simulations
show that increasing the wettability of the invading fluid (the contact angle) promotes cooperative pore
filling that stabilizes the invasion and that this effect is suppressed as the flow rate increases, due to viscous
instabilities. We use scaling analysis to derive two dimensionless numbers that predict the mode of
displacement. By elucidating the underlying mechanisms, we explain classical yet intriguing experimental
observations. These insights could be used to improve technologies such as hydraulic fracturing, CO2

geosequestration, and microfluidics.
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Fluid-fluid displacement in porous media is important
in natural and industrial processes at various scales, from
enhanced energy recovery, CO2 geosequestration, ground-
water contamination, and soil wetting and drying to dyeing
of paper or textiles and microfluidics. Fluid displacement
is governed by the interplay between quenched disorder,
short-range cooperative effects, and long-range pressure
screening, which depends on a large number of parameters,
including the wettability—the relative affinity of the fluids
to the solid. Consequently, the displacement patterns
can range from a stable, compact front to highly ramified
with preferential flow paths (fingers) [1]. Fluid invasion is a
member of a broad class of problems characterized by
competitive domain growth and nonlinear interface dynam-
ics, including magnetic domains, biological films, and
flame front propagation [2]. The interface evolution in
these systems is often modeled as a competition between
the energy associated with the interaction between phases
and constraints arising from disorder; the relative impor-
tance of the two can be tuned by properties such as
wettability in fluid displacement or local random inter-
action fields in magnetic domains [3]. Understanding the
impact of wettability on fluid invasion—the topic of this
Letter—is therefore relevant to a wide range of phenomena
of scientific and technological importance.
Immiscible displacement can be classified according to

the wettability into drainage or nonwetting invasion, where
the displaced fluid preferentially wets the solid (contact
angle θ < 90°, measured through the defending fluid), or
imbibition of a wetting fluid (θ > 90°). Intensive research
has provided a basic understanding of drainage, identifying
different invasion behaviors and explaining their depend-
ence on the flow velocity, fluid viscosities, interfacial
tension, and the degree of pore-scale disorder (see [4–7],

and references therein). Increasing θ was found to stabilize
the displacement and reduce trapping in forced and gravity-
driven drainage experiments [8,9].
In contrast, relatively few works have studied imbibition,

mostly for the stable case of a more viscous invading fluid
[4,5,10]. For unstable viscosity ratios, experiments showed
a marked difference between viscous fingering in drainage
and more stable patterns with thicker fingers in imbibition
[11]. Stabilization was also captured in simulations
which introduced viscous effects stochastically [12] and in
lattice Boltzmann simulations [13]. Quasistatic simulations
(neglecting dynamic effects) illustrated that increasing θ
enhanced the occurrence of a nonlocal, cooperative pore
filling mechanism, resulting in a compact pattern [14].
These intriguing results were only recently explored
systematically by experiments in which the wettability
was altered while keeping the same fluid pair [15]. The
authors demonstrated that increasing θ stabilized the
displacement, leading to a compact front in slow imbibition
despite the high, unfavorable viscosity ratio [15]. Many of
these important observations remain unexplained, primarily
because of nonlocal pore filling dynamics that is inacces-
sible experimentally and not well characterized by existing
models [15,16]. In this Letter, we present a novel pore-scale
model that exposes the competing effects of wettability
and flow rate, thereby explaining the aforementioned
observations.
We develop a two-dimensional, discrete model of immis-

cible displacement in a random medium with fluids of
arbitrary viscosities and contact angles. Our model is briefly
described below and in further detail as Supplemental
Material [17]. Amechanistic description of the displacement
dynamics with both capillary and viscous forces is obtained
by combining two modeling approaches: (a) grain-based
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[14,24], resolving meniscus stability from pore geometry,
and (b) pore-based [7,25], resolving fluid pressures and
fluxes from the pore topology and geometry. Through
consideration of viscous dissipation, our model captures
the nonlocal nature of interface dynamics: the effect of local
pore invasion on the interface configuration elsewhere, the
disparate time scales of pore filling and bulk flow [26,27],
and the associatedmechanisms of pressure screening [28,29]
and interface readjustments [26,30]. These mechanisms are
crucial even in slowly driven systems, limiting the volume
invaded in a single event (avalanche) [26,30] and increasing
trapping [31], and, for the conditions considered here—high
disorder and porosity, small throat to pore size ratio, and large
viscosity ratio—have a stronger impact on the displacement
than other mechanisms such as film flow, snapoff, and
contact angle variations [1,5,31]. Furthermore, modeling
contact line and contact angle dynamics is strongly debated
and requires consideration of details down to the molecular
level [1,16]. Considering the relative impact of these mech-
anisms, as well as the complexity and ambiguity involved in
their implementation, we emphasize viscosity-related mech-
anisms and exclude liquid films and contact line or angle
dynamics (see [17] for elaborated discussion). Consequently,
our model provides the coupled effects of wettability and
dynamics in large, disordered domains, improving upon
existing models which either ignore dynamics and/or
wettability effects or are limited by computational cost to
small domains [16,31].
We construct a disordered medium by placing cylindrical

solid particles on a triangular lattice (spacing a) and selec-
ting the particle diameters d from an assigned distribution;
here uniform, d ∈ ½1 − λ; 1þ λ�d̄, where λ ∈ ð0; 1Þ is the
degree of disorder and d̄≲ a is the mean diameter. The
triangular cell delimited by a particle triplet defines a pore
of volume V, connected to three neighbors via throats of
width 2ρ≲ a (Fig. 1). The fluid-fluid interface is repre-
sented by a sequence of circular arcs (menisci); each arc
intersects a pair of particles at the prescribed contact angle θ
[32], with a radius of curvature R ∼ γ=Δp related to the
capillary pressure Δp via the Young-Laplace law, where γ
is the interfacial tension.
We consider three types of capillary instabilities [14]:

(i) Haines jump or burst, when the curvature exceeds a
threshold; (ii) touch, when a meniscus intersects a third
particle; and (iii) overlap of adjacent menisci, destabilizing
each other [Figs. 1(c)–1(e)]. Overlap (termed “Melrose
event” in Ref. [24]) is a nonlocal, cooperative mechanism
affected by the menisci in multiple pores, smoothing the
interface [14].
Meniscus instability causes its incipient advancement.

Both the stability and advancement rate depend upon the
pressure difference across each meniscus. Pore pressures
and filling rates are provided by the fluids’ viscous
resistance, evaluated from the flow throughout the network
of contiguous pores occupied by the same fluid and through

throats with unstable, advancing menisci. Flow is resolved
via conservation of fluid mass in each pore,

P
jqj ¼ 0

(summing over all neighboring pores j). Assuming Stokes
flow, q ¼ C∇p provides the interpore flow rate, where
C ∼ ρ4=μeff is the conductance and ∇p ¼ ðpj − pÞ=ρ. An
effective viscosity μeff ¼ ðμi − μdÞΦþ μd allows the use
of q to evaluate both the flow of a single fluid between
two pores and the filling rate [4]. Here μd and μi are the
defending and invading fluid viscosities, respectively.
The filling status of the invaded pore, 0 ≤ Φ ≤ 1, is
updated according to the inflow from throats with unstable
menisci qinv ¼ P

uqu at each time step t, Φðtþ ΔtÞ ¼
ΦðtÞ þ qinvðtÞΔt=V. Front readjustments are incorporated
by considering partially filled pores, which can reempty
upon reversal of the meniscus advancement direction.
When pore invasion is completed (Φ ¼ 1), the interface
configuration is updated [17]. The above provides a simple
description of the invasion dynamics without explicit
geometrical calculations of changes in the fluid volume
from changes in the menisci curvature. We enforce a
constant injection rate from a radial region of several pores
(inlet), stopping the simulations when a boundary (outlet)
pore is invaded.
Our simulations exhibit the experimentally observed

invasion regimes [15]: viscous fingering in rapid injection
irrespective of the wettability, capillary fingering in
slow drainage, and stable, compact displacement in slow
imbibition [Fig. 2(a)]. For a fixed fluid pair (constant
μd=γ), the dimensionless flow rate is provided by the
capillary number Ca ¼ μdv=γ, computed from the velocity
v ¼ ðV tot=ttotÞ=Aout, where V tot is the volume drained
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FIG. 1 (color online). Model schematic. (a) We simulate radial
displacement, tracking the fluid-fluid interface (black line) and
fluid pressures (increasing from blue to red). (b) Enlargement
showing the lattice of particles and pores. The interface is
represented as a sequence of circular menisci, touching particles
at contact angle θ, with the curvature set by the local capillary
pressures. Menisci can be destabilized by (c) burst, (d) touch, or
(e) overlap. Brown arrows indicate the direction of advancement,
the destabilized arc as dashed lines.
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during the simulation time ttot, through the outlet cross-
sectional areaAout. To simulate the injection of air intowater-
glycerol saturated beads in Ref. [15], we used the following
parameters: γ¼ 67×10−3 N=m, μi ¼ 1.8×10−5 Pa · s,
μd ¼ 5×10−3 Pa · s, a¼ 500 μm, d̄ ¼ 0.54a, system size
L ¼ 260a (260 × 300 particles), and λ ¼ 0.81 (providing
the wide variation of aperture sizes in random bead
packs [14]).
We characterize the patterns quantitatively via the length

of the fluid-fluid interfaces (including trapped regions)
normalized by the invaded area Linter [33] and the mean
finger width w (in lattice units a [34]). Viscous fingering is
characterized by thin fingers of a single pore width w ≈ 1
and long, highly irregular interfaces Linter ≈ 1, whereas
compact displacement provides a smooth, rounded front
Linter ≪ 1with a diverging finger width w ≫ 1. In capillary
fingering, trapping provides long, fractal interfaces, which
a patchy, thick pattern composed of multiple thinner,
contiguous fingers [Figs. 2(b) and 2(c)]. The robustness
of our characterization is demonstrated by the consistency
among four realizations (same particle size distribution).
Our simulations capture the decrease in the finger width
with the imbibition rate, providing w ∼ Ca−ν with ν ≈ 0.6
[θ ¼ 120°; see the inset in Fig. 2(c)]. While the small
difference from ν ¼ 0.51 in Ref. [11] can be explained by
the use of different fluids (and θ), we note that saturation
of w → 1 at high Ca exacerbates the quality of fit. We also

find that the sweep efficiency decreased sharply between
compact displacement, capillary, and viscous fingering,
however nonmonotonically [13].
The crossover between the invasion regimes depends

on the interplay between three mechanisms: (i) continuous
growth of thin fingers; (ii) intermittent interface advance-
ment at different locations, trapping the defending fluid
behind; and (iii) simultaneous advancement of large parts
of the interface, keeping it smooth. Finger growth in (i) is
driven by destabilization of the entire interface at high Ca,
where high defending fluid pressure in the “gulfs” between
fingers allows only the finger tips to advance. This screen-
ing effect [demonstrated by the pressure halo in Fig. 1(a)],
where Laplacian-driven growth dominates over hetero-
geneity [28,29], promotes viscous fingering [see Videos
1(a) and 1(b) in [17]]. In (ii), disorder in the entry pressures
leads to capillary fingering at low Ca and θ (Video 2 in
[17]). At low Ca and high θ, the dominance of overlaps
(Fig. 3) enhances mechanism (iii), where invasion in one
location destabilizes the interface in adjacent pores (Video
3 in [17], experimentally observed in [15]), resulting in
compact displacement. We emphasize that, although bursts
are the dominant invasion mechanism at low θ irrespective
of Ca (Fig. 3), the change in driving mechanism [from (i) to
(ii) as Ca is decreased] leads to different patterns.
We rationalize the invasion behavior by evaluating the

magnitude of the forces driving mechanisms (i)–(iii). We
predict the transition between viscous fingering and capil-
lary fingering or compact displacement through a capillary
number modified to account for the contact angle,
NCa ¼ δp⊥=δp∥. Here δp⊥ is the pressure drop driving
growth of individual fingers perpendicular to the interface
(along the direction of the externally applied pressure
drop), and δp∥ is the capillary pressure promoting lateral
growth of the interface. We evaluate δp⊥ from the pressure
drop in the viscous defending fluid over a characteristic

FIG. 2 (color online). (a) Simulated invasion patterns, charac-
terized by (b) interface length Linter and (c) finger width w.
Rapid injection (high Ca) leads to viscous fingering (VF) with
irregular interfaces (Linter ≈ 1) and thin fingers (w ≈ 1). As Ca is
decreased, the patterns transition towards capillary fingering (CF)
with multiple trapped clusters and relatively long interfaces in
drainage (low θ) or compact displacement (CD, Linter ≪ 1,
w ≫ 1) in imbibition (high θ). The inset in (c) shows a fit of
w ∼ Ca−ν for θ ¼ 120° providing ν ≈ 0.6. Error bars show the
standard deviation among four realizations.

FIG. 3 (color online). Occurrence of nonlocal, cooperative pore
filling (the number of overlaps out of all instability events) from
208 simulations (gray dots). Increasing θ enhances overlaps,
manifested macroscopically by a more stable displacement.
Dashed lines mark the theoretical phase boundaries predicted
by scaling (see the text).
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length L⊥, δp⊥ ∼∇p⊥L⊥, where ∇p⊥ ∼ μdv=k with
permeability k ∼ a2 and L⊥ ∼ a. We use the critical burst
curvature Rc [Eq. (S2) in [17]] to evaluate the capillary
force, δp∥ ∼ γ=Rc, providing

NCa ¼ Cað
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~l2sin2θ

p
− ~l cos θÞ; ð1Þ

where ~l ¼ d̄=a is the dimensionless microscopic character-
istic length.
For slow injection, we explain the transition between

capillary fingering and compact displacement via the
“cooperative number” Ncoop, a dimensionless parameter
evaluating the likelihood for pore filling by overlaps,

Ncoop ¼ cos
ϕ

2
− ~lsin2θ þ cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~l2sin2θ

p
; ð2Þ

where Ncoop ¼ 0 is the geometrical condition for two arcs
to overlap exactly at their threshold (burst) curvature, such
that Ncoop > 0 implies overlap preceding burst [17]. Here ϕ
is the local front shape, defined by the angle between two
adjacent menisci [Fig. 1(e)]. Since the macroscopic pattern
is a consequence of numerous invasion events occurring at
ϕ which vary in time and space, Ncoop represents the
instability statistics of the entire sample and simulation
time: a larger Ncoop value implies a higher fraction of
overlaps; said differently, for a given Ncoop value, not all
pores will be invaded by the same instability (Fig. 3). Here
we compute Ncoop using ϕ ¼ 120°, which we found to be
most representative for our system [17].
Our scaling analysis predicts the mode of invasion. For

rapid injection, NCa ≫ NCa
� implies dominance of viscous

forces leading to viscous fingering. Here, the critical value
scales asNCa

� ∼ ðL=aÞ−1 ≈ 4 × 10−3, suggesting a depend-
ence on the macroscopic characteristic length—the system
size [6,7]. For slow injection, NCa ≪ NCa

�, capillary forces
govern and invasion becomes strongly dependent on the
wettability: for nonwetting invasion, Ncoop < 0 predicts
capillary fingering caused by disorder in capillary (burst)
thresholds, whereas for wetting invasion Ncoop > 0 implies
cooperative motion of large parts of the interface (overlaps)
and a compact pattern, in agreement with our simulations
(Fig. 4) and experiments [15].
The displacement depends on the underlying medium

geometry, including disorder, mean particle size, and
porosity, in a nontrivial manner, as it affects, together with
the wettability and flow rate, the portion of the pore space
sampled by invasion. For example, more pores would be
invaded as disorder and Ca are decreased, while decreasing
Ca and increasing θ restrict invasion to smaller pores.
For the current geometry with high porosity (∼0.67)
and disorder (λ ¼ 0.81), NCa is relatively insensitive to
θ, increasing by a factor of ∼2.5 from 5° to 120°. According
to Eqs. (1) and (2), the sensitivity of NCa to θ increases and
the threshold angle (corresponding to Ncoop ¼ 0, here
θ ¼ 87°) decreases with particle size ~l.

In this Letter, we have studied the unstable case of high
disorder and viscosity ratio. Noteworthy perspectives,
which we intend to study with our model, include the
impact of the medium geometric properties, viscosity ratio,
gravity, and matrix deformations. Our preliminary simu-
lations suggest that decreasing the disorder stabilizes the
displacement, in agreement with Refs. [5,14]. Increased
stability is also expected by decreasing the viscosity ratio
[4,5,13] or introducing gravity [9]. Particularly interesting
is the coupling with fracturing and particle rearrangements,
which significantly affects nonwetting invasion into granu-
lar media [7,35,36].
In conclusion, we elucidate the combined impact of

wettability and dynamics on immiscible displacement in
disordered media. Our novel model provides the spatio-
temporal nonlocal effects of interface dynamics, which are
crucial even for slow flows due to the intrinsic time scale of
interfacial jumps which can be orders of magnitude smaller
than of the bulk flow [26], thereby explaining classical yet
unresolved observations. We show that increasing the
wettability of the invading fluid promotes cooperative pore
filling that stabilizes the invasion and that this effect
weakens as the flow rate increases and viscous instabilities
become dominant. Our analysis quantifies the competition
between mechanisms governing the displacement stability,
insight that could be exploited in technologies such as
microfluidics, hydraulic fracturing, and oil recovery
[9,37,38]. Furthermore, our approach—a set of local rules
providing a minimal description of the microscopic physics
in a sufficiently large domain to capture the emergent
macroscopic behavior—could provide a new modeling
paradigm for other problems of front propagation in
disordered media, in which competition between local
disorder, short-range cooperativity, and global screening
play a role, such as active media and spin glasses [2].

FIG. 4 (color online). Phase diagrams of immiscible displace-
ment: (a) interface length Linter and (b) finger width w. At high
flow rates, NCa ≫ NCa

� predicts VF with long, fractal interfaces
and thin fingers (Linter ≈ 1, w ≈ 1). At low rates, NCa ≪ NCa

�,
invasion is controlled by the wettability: for drainage, Ncoop < 0
implies CF, whereas for imbibition Ncoop > 0 indicates CD
(Linter ≪ 1, w ≫ 1) due to smoothing by cooperative pore filling.
Dashed lines show phase boundaries from scaling analysis,
NCa ¼ NCa

� ≈ 4 × 10−3 and Ncoop ¼ 0. Dots mark data from
208 simulations at various Ca and θ.
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