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Mechanical properties of granular materials: A variational
approach to grain-scale simulations
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SUMMARY

The mechanical properties of cohesionless granular materials are evaluated from grain-scale simulations.
A three-dimensional pack of spherical grains is loaded by incremental displacements of its boundaries. The
deformation is described as a sequence of equilibrium configurations. Each configuration is characterized
by a minimum of the total potential energy. This minimum is computed using a modification of the
conjugate gradient algorithm.

Our simulations capture the nonlinear, path-dependent behavior of granular materials observed in
experiments. Micromechanical analysis provides valuable insight into phenomena such as hysteresis,
strain hardening and stress-induced anisotropy. Estimates of the effective bulk modulus, obtained with
no adjustment of material parameters, are in agreement with published experimental data. The model is
applied to evaluate the effects of hydrate dissociation in marine sediments. Weakening of the sediment is
quantified as a reduction in the effective elastic moduli. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The mechanical properties of cohesionless granular materials are important in many applications,
making them the subject of intensive research [1]. When a granular material undergoes deformation,
its bulk response is determined by the interactions among discrete grains. This property makes
grain-scale numerical simulations a valuable tool [2–5]. For instance, such simulations provide
contact forces in three-dimensions which are currently unavailable from experiments [5], and
enable insight into the mechanical response of granular matter [6].
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Interactions between grains are modeled by contact laws, relating the loads at the grain contacts
to their relative displacements and deformations. For elastic deformations, the force component
acting normal to the contact interface can be calculated by the Hertzian model [7], which has been
verified by experiments [8]. To evaluate loads related to intergranular friction such as shear, the
model by Mindlin and Deresiewicz [9] (M-D) is considered adequate [10]. Since it is cumbersome
to implement M-D theory for multiple contacts, simplified versions are used for computations,
e.g. [10]. However, simulations show that the normal components of the contact forces dominate
many aspects of the bulk response [11–14]. Thus, essential aspects of the mechanics of granular
materials can be captured by using a ‘frictionless’ contact law, accounting for the normal contact
forces only [15].

Deformation can be described by a quasi-static model, as a sequence of equilibrium configura-
tions corresponding to incremental changes of the boundary conditions. These configurations are
found by using a discrete, grain-scale model. Most grain-scale simulations are based on the discrete
element method (DEM) [16]. In DEM, interactions between the grains are treated as a dynamic
process, accounting for the grain inertia. The equilibrium configurations are found by numerical
integration over time. The tight constraints imposed on the time step used in the integration [17]
make DEM simulations time consuming. To accelerate computations and damp grain oscillations,
material parameters such as the density of the grains and their contact stiffness are often adjusted
[13, 18] to unrealistic values.

In this paper, we present a technique that does not include such adjustments. The input parame-
ters in our model are the sizes, densities and elastic moduli of the grains, obtained from published
experiments. We use a quasi-static model, where each load increment is followed by a static
equilibrium. The contact forces are determined by the Hertzian model, assuming frictionless
contacts. Thus, all forces can be obtained as gradients of a potential field. Employing a vari-
ational approach, we seek equilibrium configurations of the grains by minimizing their total
potential energy. A variational approach in the context of granular mechanics was proposed in
[19, 20].

Three-dimensional (3D) micromechanical analysis is used to demonstrate mechanisms leading
to phenomena such as hysteresis and stress-induced anisotropy. Macroscopically, our simula-
tions capture the nonlinear, path-dependent response observed in experiments. With no adjust-
ment of material parameters, our estimates of the effective bulk modulus are in agreement with
published experimental data. However, the shear modulus is underestimated; this is attributed
to the frictionless contact model employed. Elsewhere [21], we extend our variational approach
to account for intergranular friction. This extension produces more accurate predictions of the
moduli.

Our model is applied to evaluate the mechanical response to dissociation of gas-hydrates
in marine sediments. Hydrate dissociation caused, for instance, by hot fluids produced from
deep formations, can destabilize the ocean floor and lead to landslides [22], posing risk to
nearby equipment such as offshore platforms. The mechanical properties and structure of hydrate-
bearing sediments (HBS) are not well-known, due to difficulties in sampling, imaging and testing
[23, 24]. We quantify the degradation of strength in an HBS sample by a reduction in elastic
moduli.

The outline of this paper is as follows. Section 2 describes our model and simulation method-
ology. Grain- and sample-scale observations from our simulations are presented in Section 3. In
Section 4, we quantify the effects of hydrate dissociation in marine sediments. We discuss our
results in Section 5.
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2. SIMULATING DEFORMATION OF GRANULAR MATERIALS

We simulate loading of cohesionless grains packed in a rectangular container. Load is applied by
incremental displacements of the container walls, allowing the grains to reach a static equilibrium.
Each equilibrium configuration is computed by minimizing the total potential energy of the pack.
The initial conditions are the positions of the grains prior to the simulated test. The positions
and orientations of the container walls determine the boundary conditions, from which the strains
are evaluated. By applying uniform or different normal strains in three principal directions, we
simulate an isotopic or a polyaxial test. A uniaxial test is simulated by loading in a single
direction.

2.1. Grain pack model

We model granular matter as a heterogeneous, irregular (‘random’) 3D packing of spherical grains,
see Figure 1. Each grain is homogeneous and isotropic. To model heterogenous materials such
as clastic sediments, we assign the grain sizes and elastic moduli from a given distribution. The
deformations are assumed to be small and localized near the contacts, allowing for the shape of a
deformed grain to be approximated by a sphere.

In a fixed coordinate system, the geometry of the pack is fully described by the coordinates
of the grain centers and their radii. The orientations of the grains are of no importance under the
assumption of frictionless contacts. Thus, for a pack of N grains, each configuration has 3N degrees
of freedom, i.e. the grain center coordinates. Labeling all grains with a single index, i =1,2, . . .,N ,
we denote the radius-vector of the center of grain i by ri . Given a reference configuration in
equilibrium, we perturb the boundary conditions, forcing the grains to deform and rearrange to a
new equilibrium configuration (‘current’). Let ui denote the displacement of grain i : ui =ri −ri(0),
where subscript (0) denotes the reference configuration, see Figure 1. The radius of grain i is Ri ,
its mass is mi , and Young’s modulus and Poisson’s ratio of its material are Ei and �i , respectively.
Subscript w denotes a boundary wall.

We hypothesize here that in a tight packing, the macroscopic stress is mostly affected by the
normal component of the contact forces [11–14]. This assumption is based on the argument that

B
oundary w

Grain j

Grain i

Figure 1. Left: a typical pack with 5036 grains used in the numerical simulations. Right: schematic
description of the contact geometry. The reference configuration of the grains is marked with gray dotted

lines. The dashed lines show the shapes of the undeformed grains in the current configuration.
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the size of the asperities that resist lateral or angular displacements is much smaller than the size
of the grains themselves. Thus, we only account for the normal force components.

2.2. Contact model: force–displacement relation

According to Hertzian contact theory [7], the magnitude of the compressive normal force acting
at the contact between a pair of grains, i and j , is

‖Pi j‖= 4
3 E

∗
i j (R

∗
i j )

1/2(hi j )
3/2 (1)

where ‖a‖= (a ·a)1/2 is the magnitude of a vector a. Parameters

R∗
i j =

(
1

Ri
+ 1

R j

)−1

and E∗ =
[

(1−�2i )

Ei
+ (1−�2j )

E j

]−1

are the effective radius and elastic coefficient associated with that contact, respectively. Equation
(1) is applicable to a grain–boundary contact, by modeling the latter as a grain of infinite radius.
The contact deformation is measured by the overlap hi j�0,

hi j = Ri +R j −‖ri j‖ for grain–grain contact

hiw = Ri −(ri −xw)·nw for grain–boundary contact
(2)

where ri j =ri −r j , the initial contact point with the wall w is xw and nw is an inward unit normal
to the wall, see Figure 1. As long as the orientation nw is held fixed, xw can be chosen arbitrarily
on the boundary w. The force acting on grain i at the contact with another grain j or a wall w is
directed along ri j or nw, respectively. No moment relative to the center of the grain is developed.

2.3. Obtaining equilibrium configurations

At equilibrium, the balance of forces for each grain yields three scalar equations, a total of 3N
equations for N grains. The unknowns, grain displacements, can be written as a column vector
h=[u1 . . .uN ]T. Here ui is a row vector and superscript T is the transpose. The exponent of 3

2 in
Equation (1) makes the system of equations nonlinear.

We seek an equilibrium configuration by employing a variational formulation. Namely, an
equilibrium configuration is characterized by a set of displacements h corresponding to a minimum
of the total potential energy of the pack. This minimum is found numerically using a modification
of the conjugate gradient (CG) algorithm [25], see Appendix. The total energy is a function of the
deformation (strain energy) and the gravitational energy of the grains. The elastic strain energy
of a pair of grains in contact is equal to the sum of work done on each grain to deform it. This
work equals the dot product of the force with the displacement increment, integrated over the total
displacement. Thus, the strain energy, Ui j , stored in the deformed contact region between grains
i and j is (cf. Equation (9.15) in [26]):

Ui j (ui ,u j)= 8
15 E

∗
i j (R

∗
i j )

1/2(hi j )
5/2 (3)
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The total potential energy of the pack is the sum of the strain energy of all contacts and the
gravitational potentials of all grains

�(h)=
N∑
i=1

⎡
⎣1

2

Ni
g∑

j=1
Ui j +

Ni
b∑

w=1
Uiw +mig(ri · êz−z∗)

⎤
⎦ (4)

Here z∗ is an arbitrary fixed reference elevation, êz is a unit vector pointing opposite to the direction
of gravity and g is the gravity acceleration. By Ni

g and Ni
b we denote the number of contacts

of grain i with other grains and boundaries, respectively. The coordination number of grain i is
Ni
g+Ni

b . Note that the set of contacts for each grain varies with the deformation of the pack,
introducing additional nonlinearity.

The gradient of � with respect to h is a column vector, ∇h�=−[F1 . . .FN ]T, where the row
vector Fi is the sum of forces on grain i ,

Fi =
Ni
g∑

j=1
Pi j +

Ni
b∑

w=1
Piw −migêz (5)

Thus, the vanishing gradient of � is equivalent to the balance of forces.

2.4. Initial grain pack generation

To simulate deformation of a grain pack, a sufficiently dense initial configuration is required
[27, 28]. Such an initial configuration could be obtained from a physical sample, using advanced
imaging [29, 30]. Alternatively, an initial configuration could be generated numerically using
either ‘constructive’ or ‘dynamic’ algorithms. Constructive algorithms are based on geometry
alone and thus require relatively small computing time; however, these algorithms may produce
3D arrangements with low coordination numbers, gaps or anisotropic structure [28]. In dynamic
algorithms, a loose packing is created by placing a relatively small number of grains in a bounded
domain. Then, the packing density is increased by either expanding the grains or moving the
boundaries closer together. A static equilibrium configuration is found by simulating intergranular
interactions, e.g. using DEM. The large number of collisions and grain rearrangements makes such
a procedure time-consuming [28].

Instead, we use a quasi-static algorithm. Here, we start by selecting a portion of a pack generated
by DEM [31], bounding it with a rectangular domain. This packing is loose, with many grains
supported by less than four contacts, rendering them mechanically unstable. To obtain a denser
packing we first expand the unstable grains, until their coordination numbers is at least 4. Then,
we shrink the pack by displacing its boundaries, and apply our variational algorithm to obtain an
equilibrium configuration. This process is repeated until practically all grains have coordination
number of 4 or more, and appreciable contact forces develop.

2.5. Evaluating macroscopic parameters

2.5.1. Stress and strain. There are several methods for transforming between discrete, grain-scale
parameters and continuum, macroscopic stress and strain (e.g. [32, 33]). We consider the pack to
be a representative volume of a larger medium, and compute the average stress and strain within
this volume as described below.
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The external normal forces applied on the boundaries are calculated from the sum of the contact
forces on the container walls. The average normal stresses are evaluated by dividing these external
forces by the area of the respective walls. To confirm the validity of our stress evaluation procedure,
we also calculate the averaged Cauchy stress, taking into account the entire set of contact forces
within the sample volume [32]. This calculation yields values similar to those obtained from our
procedure.

To estimate numerically the macroscopic strains, e=[∇xu+(∇xu)T]/2, we replace the deriva-
tives with finite differences. In the last equation, x is a radius-vector to an infinitesimal volume, and
u is its displacement [26]. For a rectangular domain, the normal strain in the l-direction (l=1,2,3)
reduces to [Ll −Ll(0)]/Ll(0) , where Ll and Ll(0) are the current and the reference (undeformed)
length of the domain in that direction, respectively. In our simulations, the strains determine the
boundary conditions, enforced by displacing the container walls.

2.5.2. Elastic moduli. To describe the mechanical properties as they evolve with the deformation,
we discretize the load path and assign a set of constant effective elastic moduli for each loading
interval. The moduli for each interval are evaluated by fitting the stress–strain results with Hooke’s
law. Hooke’s law for a homogeneous, isotropic medium is r=� tr(e)Î+2Ge, where r is the stress
tensor, tr(e) is the trace of e and Î is a identity second-order tensor. The moduli � and G are
Lame’s constant and the shear modulus, respectively. Other elastic moduli can be evaluated from
� and G [26].

The moduli evaluated using the procedure above are the bulk-averaged, effective moduli corre-
sponding to an effective homogeneous and isotropic elastic medium. Because the moduli depend
on the loads, stress-induced anisotropy can develop when loads in different directions are signifi-
cantly different [34]. This phenomenon is observed in our simulations, see Section 3.3. To verify
whether a grain pack is isotropic, we simulate a polyaxial test and compare the moduli for each
pair of principal directions. If they are similar within a given tolerance, we consider the response
isotropic. We minimize stress-induced anisotropy by applying relatively isotropic strains, evaluating
the moduli at different loads by a uniaxial test.

Macroscopically isotropic systems may exhibit local anisotropy, if the number of grains within
the selected volume is too small [15]. To avoid such scale-related anisotropy, we use packs with
sides not smaller than ∼15 grain diameters. This length scale depends on the properties of the
grains and their spatial arrangement, and was determined by trial and error. As a result of using
the above measures, the estimates of the moduli in different directions are practically identical.

3. SIMULATIONS

3.1. Model parameters

To verify our model, we compare our simulation results with published experiments. In particular,
we compare our results with experiments on glass beads, since they are relatively spherical and
smooth. Thus, the elastic moduli of the grains are assigned mean values of Ē=70GPa for Young’s
modulus and �̄=0.2 for Poisson’s ratio (corresponding to bulk and shear modulus of K̄ =38.9GPa
and Ḡ=29.2GPa, respectively), similar to glass beads [35]. In other simulations, quartz sand is
modeled by assigning Ē=100GPa and �̄=0.15 (K̄ =47.6GPa and Ḡ=43.5GPa) [36, 37]. The
elastic moduli are normally distributed with a standard deviation of 10% of the mean. The radii of
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Figure 2. The distribution of grain sizes (left) and Young’s modulus values (right) for pack
G5036, representing a sample made of 5036 glass beads.

the grains used to generate the initial pack are distributed uniformly between 0.07 and 0.13mm.
Since the initial pack generation procedure involves expansion of the unstable grains, the final
grain radii slightly deviate from this distribution. The density of glass and quartz grains is taken to
be 2.42 and 2.65g/cm3 [36]. The number of grains is 5036 and 2654 for the glass beads and quartz
sand, denoted by G5036 and Q2654, respectively. The distribution of grain sizes and Young’s
modulus values for G5036 are plotted in Figure 2.

3.2. Macro-mechanical analysis

3.2.1. Stress–strain. To capture hysteresis and stress-induced anisotropy, we simulated a loading–
unloading cycle in a polyaxial test on sample Q2654. The porosity and mean coordination number
varied as 35.8–30.5% and 7.23–8.26, accordingly, with stresses of ∼60–300MPa. The stress–
strain curves calculated for Q2654 are plotted in Figure 3. The abrupt changes in the slopes are
associated with variations in the complex network of contacts (‘fabric’) and contact forces. Some of
these microstructural variations are irreversible, contributing to the hysteretic response observed in
experiments [38]. This hysteresis is evident in Figure 3 as different loading and unloading curves.

3.2.2. Elastic moduli. To verify our model against experiments we simulated isotropic compression
of sample G5036, evaluating the macroscopic elastic moduli for different loads by an incremental
uniaxial loading. In these simulations, the porosity and mean coordination number were 37.4–
35.1% and 6.24–7.15, accordingly, with confining stresses of ∼1–35MPa. Our moduli estimates
are plotted in Figure 4 vs. the confining stress �c, defined by the mean of the lateral stresses
perpendicular to the principal loading direction. Figure 4 also shows results of acoustic experiments,
DEM simulations and effective medium theory (EMT) by [35, 36, 39] using glass bead samples
with micro-properties similar to those used in our simulations. The DEM and EMT calculations
in [35] employed a contact law that prohibits sliding of grains, i.e. assigning infinitely large
intergranular friction.

Our bulk modulus (K ) estimates are in good agreement with the published experimental data,
with some values slightly lower than the data. In addition, except at �c<2MPa, our evaluated shear
modulus (G) growth agrees with the experimental data, showing faster growth rate than the power
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Figure 3. Stress–strain curves obtained from the simulations of a polyaxial loading–unloading cycle on
sample Q2654. Hysteresis is evident as different loading and unloading curves. This hysteresis is related

to the abrupt change in the slopes (encircled).
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Figure 4. The effective bulk (left) and shear (right) modulus vs. confining stress, �c. The evaluated
moduli from simulations on sample G5036 are compared with published results of acoustic experiments
in glass beads [35, 36, 39], in addition to DEM and effective medium theory (EMT) predictions [35]. The

numerical values of data from [35, 39] have been obtained by digitizing Figure 1 in [35].

law �c1/3 predicted by EMT [40]. The discrepancy between the EMT predictions and experimental
data is discussed in [35, 41, 42].

At the same time, our shear modulus strongly underestimates the experimental data. In particular,
the evaluated shear modulus drops sharply at low stresses. Loss of shear rigidity is observed as
the mean coordination number approaches 6 and the porosity exceeds ∼37%. However, loss of
rigidity is expected to occur at lower packing densities, as intergranular friction strengthens the
pack [43]. We associate the discrepancies between our predictions and the data with the frictionless
contact assumption. Unlike the bulk modulus, the shear modulus greatly depends on intergranular
shear [43].
Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2008)
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3.3. Micromechanical analysis

Relating grain-scale parameters to macroscopic, continuum parameters can improve our under-
standing of the complex behavior of granular materials [14]. The effect of the spatial distribution
of grain-scale parameters cannot be captured by averaged, macroscopic quantities. For example,
by tracking the contact forces larger than a certain threshold, we observe force chains, as most of
the load is carried by relatively few grains. This can lead to fracturing and failure of the material,
which cannot be predicted from the average stress. Force chains have been observed in exper-
iments using photoelastic disks (e.g. [44] and references within) and in DEM simulations (e.g.
[3, 6, 12, 15, 43]).

Correspondence between abrupt changes in the slopes of the stress–strain curves and substantial
variations in the contact network and the force chains is noticed in our simulations. A similar
correlation was observed between deviator stress drops and microstructural variations [3]. Some of
these variations are irreversible, contributing to the hysteretic bulk response. Tracking hysteresis via
grain-scale parameters can be performed quantitatively using the fabric tensor [38]. Qualitatively,
we observe that these noticeable variations are correlated to relatively large displacements expe-
rienced by several grains. These displacements are possible at particular combinations of contact
forces and geometry, as grains are ‘pushed’ through constrictions. Following such events, the local
sets of contacts and the shapes of these constrictions are altered significantly, so that a reverse
perturbation of the boundary conditions cannot restore the original configuration. In loading, these
rearrangements create an overall stiffer pack, which may be interpreted as strain hardening.

Stress-induced anisotropy is observed in simulations of highly anisotropic loading on sample
Q2654. To investigate the mechanisms leading to such anisotropy, we analyzed the directions of the
contact forces that were larger than the mean. Under isotropic loads these directions are uniformly
distributed. In contrast, under anisotropic loads corresponding to anisotropic moduli, these forces
are preferentially aligned with the main loading direction. Similar observations were made from
experiments [44] and simulations [12].

4. IMPACT OF HYDRATE DISSOCIATION IN MARINE SEDIMENTS

4.1. Modeling hydrate dissociation

We apply our model to quantify the mechanical response to hydrate dissociation in HBS. Gas-
hydrates are solid materials formed under a range of high pressures and low temperatures. Disso-
ciation converts them into liquid water and free gas. The volumetric expansion of gas can lead
to an appreciable increase in pore pressure [22], reducing the effective stress. Thus, dissociation
impacts the mechanical properties of HBS by reducing both the solid fraction of the sediment and
the effective stress. We quantify the effect of dissociation via the evolution of elastic moduli.

The pressure increase varies with factors such as dissociation rate, sediment permeability and
initial pore pressure [22]. Predicting the excess pressure as a function of dissociation is outside the
scope of this paper. Here, we consider a number of dissociation scenarios. A range of dissociation
amounts and excess pressures, taken from other models [22], is used as input parameters in
our simulations.

The distribution of hydrates within the pore space depends on their formation mechanism, among
other factors, and a variety of distribution models exists [23]. To model interactions between the
host sediment and the hydrate, we consider methane-hydrate formed preferentially in the larger
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pores, rather than in the pore-throats. This type of hydrate distribution can occur if small amounts
of hydrate are slowly introduced in the aqueous phase [24]. Such a distribution makes hydrates a
part of the solid skeleton, i.e. load-bearing solid particles.

We quantify the amount of dissociation by the decrease in hydrate saturation, from S to S+�S,
where �S<0. The hydrate saturation is S=V h/V , where V h is the volume occupied by hydrate
and V is the total pore volume (including the hydrates). We model the reduction in solid fraction
due to dissociation by shrinking the hydrate grains, assuming that all grains experience similar
volumetric strains. The impact of the excess pore pressure, pex, is modeled at both the grain and the
sample level. We assume uniform pore pressure within the sample. Since the contact area is much
smaller than the surface area of the grains, we isotropically compress the grains, neglecting the
net force applied by the fluid pressure. The volume of grain i , Vi , is changed by �Vi<0. For small
changes in volume, �Vi/Vi is approximately equal to the volumetric strain, and can be determined
by pex=−Ki�Vi/Vi . Here Ki is the bulk modulus of grain i . At the sample scale, the reduction in
effective stress is modeled by applying a tensile macroscopic strain, �kk>0, expanding the sample
isotropically. This strain is determined from the poroelastic constitutive equation �b pex=K �kk ,
where �b is the Biot–Willis coefficient [45].

4.2. Elastic moduli following hydrate dissociation

The initial state of an HBS sample is modeled as a dense arrangement of 2740 spherical grains,
where some of the smallest grains are methane-hydrate. Hydrates are assigned the elastic moduli
of Ei =6.6GPa and �i =0.32 (Ki =6.1GPa and Gi =2.5GPa), and a density of 0.9g/cm3 [46].
To model quartz sand as the host sediment, the other grains are assigned the properties of quartz,
see Section 3.1, and �b=0.8 [47]. The initial porosity and hydrate saturation are �≈45% and
S=0.215. The effective stress for this state, determined from the contact forces on the walls (see
Section 3.2.1), is ∼21MPa. The initial pore pressure may be larger than hydrostatic pressure if the
sediment is confined by a low-permeability layer. The resulting total stress, which is considered
fixed in our simulations, can exceed the lithostatic stress if the sediment carries the weight of a
nearby offshore platform.
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Figure 5. Reduction in bulk (dashed line) and shear (solid line) modulus vs. hydrate dissociation. Left:
increasing excess pore pressure, pex, for a fixed saturation decrement, �S=−0.01. Right: decreasing the

saturation for a fixed excess pressure, pex=1MPa.
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By varying the excess pressure and the saturation decrement independently, we produce a series
of configurations, covering a range of possible scenarios. For each configuration, the elastic moduli
are evaluated by simulating a uniaxial test. In Figure 5 (left), these moduli are plotted against the
excess pressure, for a fixed saturation decrement, �S=−0.01. Conversely, Figure 5 (right) shows
the moduli vs. �S, for a fixed excess pressure pex=1MPa. The initial moduli prior to dissociation
are plotted in the left-most parts of both figures.

Weakening of HBS is evident from a reduction in elastic moduli, as the sediment becomes
looser and softer. This observation is in qualitative agreement with experiments [23, 24] and other
numerical simulations [48]. Further dissociation may lead to a significant decrease in the solid
support, with a possible loss of shear rigidity. In such a state, the sediment is more susceptible to
landslides and subsidence, threatening the safety of adjacent offshore platforms.

5. DISCUSSION

A technique for estimating the mechanical properties of cohesionless granular materials from
numerical simulations has been presented. We model granular matter as a 3D disordered packing
of elastic spherical grains, bounded by a rectangular container. Using a quasi-static model, the pack
is loaded by incremental displacements of the container walls. The contact forces are calculated
using Hertzian contact theory. Each equilibrium configuration is found by minimizing the total
potential energy of the system. A modification of the CG algorithm is used to obtain this minimum.
This approach results in an efficient computational procedure, which is also used to generate a
dense initial arrangement.

By micromechanical analysis we demonstrate mechanisms responsible for hysteresis, strain
hardening and stress-induced anisotropy. Macroscopically, our results capture the nonlinear and
path-dependent response observed in experiments. We have verified our physics-based model
against published experimental data, using similar grain properties. All material parameters used
in simulations are obtained from published experiments. The good agreement between predicted
and measured values of the macroscopic bulk modulus is achieved with no adjustments of
parameters.

These results confirm that the normal contact forces play an important role in determining the
overall response, and that grain-scale elasticity is suitable to describe many features of the inelastic
response of granular materials. The bulk modulus, for example, mainly depends on the normal
contact forces, which are adequately described by the Hertzian theory. Nevertheless, our model
underestimates the shear modulus. We attribute this deficiency to the frictionless contact model
employed. Extension of our variational approach to account for shear and sliding at the contacts
provides more accurate predictions of the moduli [21].

We apply our model to quantify the effect of hydrate dissociation in marine sediments. Hydrates
are modeled as load-bearing solid particles within the pores. To model dissociation, we reduce
the solid fraction by shrinking the hydrate grains. The effect of the related excess pore pressure is
modeled by expanding the sample to account for the decrement of effective stress and compressing
the grains. A series of possible dissociation scenarios has been simulated, showing degradation in
sediment strength as a reduction in the macroscopic elastic moduli. This trend agrees qualitatively
with the published results of experiments and simulations. Further dissociation might lead to
loss of solid support of the skeleton, causing seafloor landslide and subsidence. To predict such
instabilities and their impact on offshore platforms, our model can be used to provide constitutive
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relationships for large-scale simulations (e.g. [48]). To quantitatively verify our predictions, more
experimental data are required.

APPENDIX A: MINIMIZATION ALGORITHM

Each equilibrium configuration is found numerically, using a modified CG algorithm. We seek
displacements h, which provide a local minimum of the functional �. Iterative updates hk+1=
hk−�kpk are performed until the displacements converge to provide a local minimum of � within
a desired accuracy. Superscript k denotes the iteration index. The updates are performed in the
so-called search directions pk =Rk−�kpk−1, where �k =−(‖Rk‖/‖Rk−1‖)2. The residual vector
Rk equals the gradient of �, Rk =−[Fk

1 . . .Fk
N ]T.

We use the steepest descent method, finding a value for the scaling coefficient �k , which provides
a minimum for �(hk−�kpk). To avoid nonphysical artifacts such as grain permutations, the value
of � is restricted within each iteration. The iterations are stopped if at least one of the following
holds true:

�k−�k+1<ε1�
k or ‖Rk+1‖2<ε2N(Ē R̄2)2 (A1)

where R̄ is the mean grain radius. For example, for sample Q2654, Ē=1011 Pa and R̄=1.003×
10−4m. The tolerance parameters were chosen to be ε1=10−10 and ε2=10−3. These values
provide for each grain a residual force Fi , which was smaller than the maximum contact force on
that grain by at least 3 orders of magnitude. Note that due to inevitable round-off error, the chosen
tolerance cannot be arbitrarily small.

For a linear system of the order 3N with a positive-definite matrix, CG is proven to yield an exact
solution within 3N iterations [25]. However, the nonlinearities related to the force–displacement
relation and variations in the fabric, in addition to accumulated round-off error, may cause loss of
convergence, as updating hk in the direction of pk may not reduce the value of �. To avoid this
behavior, we refresh the CG algorithm by performing an update in the direction of the gradient
Rk . The frequency of this operation is determined by trial-and-error.
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