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SUMMARY

The mechanical properties of a cohesionless granular material are evaluated from grain-scale simulations.
Intergranular interactions, including friction and sliding, are modeled by a set of contact rules based on
the theories of Hertz, Mindlin, and Deresiewicz. A computer-generated, three-dimensional, irregular pack
of spherical grains is loaded by incremental displacement of its boundaries. Deformation is described
by a sequence of static equilibrium configurations of the pack. A variational approach is employed
to find the equilibrium configurations by minimizing the total work against the intergranular loads.
Effective elastic moduli are evaluated from the intergranular forces and the deformation of the pack.
Good agreement between the computed and measured moduli, achieved with no adjustment of material
parameters, establishes the physical soundness of the proposed model. Copyright © 2009 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

In this paper, we present a micromechanical model of a cohesionless particulate material, evaluating
its mechanical properties by numerical simulations. The abundance of related applications and their
large socioeconomic impact have motivated intensive research in the field of granular mechanics
(see the references within [1, 2]). Technical difficulties associated with grain-scale measurements,
together with the shortcomings of continuum macroscopic models, make micromechanical simu-
lations a prominent tool.
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Obtaining the equilibrium configurations of a grain assembly requires solving a large non-linear
system of equations. In the widely used discrete element method (DEM) [3], these equations
are solved by explicit numerical integration over time. Constraints imposed on the time step
make DEM simulations time-consuming [4, 5]. To enhance convergence to a static equilibrium, a
damping parameter is often introduced, and its value together with other grain-scale parameters are
adjusted [6—10], sometimes to unrealistic values. Such adjustments affect the computed mechanical
properties of the pack, and may result in ‘over-damping’ of the grain motion, leaving a substantial
number of grains out of a stable equilibrium [11]. These difficulties have motivated the development
of implicit methods. For example, a model of a pack of disks based on the discontinuous deformation
analysis (DDA) method [12] was proposed in [11]. DDA employs minimization of potential energy
and the penalty method to solve for the displacements of blocks. Consequently, a system of linear
equations is solved at each time step [11].

A computational technique to simulate deformation of a granular material and evaluate its
mechanical properties, denoted hereafter as Quasi-Static Granular Model (QuSGM), has been
presented in [1]. In QuSGM, a three-dimensional (3D) irregular pack of spherical grains is loaded by
incremental displacement of its boundaries. Deformation is described by a sequence of equilibrium
configurations, and time integration is avoided. According to the principle of minimum potential
energy [13], each equilibrium configuration is sought by minimizing the potential energy of the
pack with respect to the grain displacements using a modified conjugate gradient (CG) method.
The macroscopic stress, strain, and elastic moduli are evaluated from the intergranular forces and
the deformation of the pack.

The model in [1], denoted as ‘frictionless’, neglects intergranular friction, thus accounting for
normal contact forces only. These forces are evaluated by the Hertzian contact model, which, for
small deformations of relatively stiff particles, has been verified by experiments and numerical
simulations [14, 15]. The results in [1] confirm that the resistance of a grain pack to volumetric
compaction, characterized by the bulk modulus, mainly depends on the normal contact forces
[6,16], and that the assumption of grain-scale elasticity can capture inelastic deformation of a
granular pack [17]. For instance, micromechanical analysis reveals the mechanisms responsible
for hysteresis, strain hardening, and stress-induced anisotropy [1].

While the model in [1] supports the idea that microscopic friction is not the sole mechanism of
macroscopic shear resistance [10], it underestimates the shear modulus. We associate this deficiency,
in part, with the assumption of negligible intergranular friction [1]. In this paper, QuSGM is
extended to account for friction.

Friction resists relative displacements and rotations of grains through shear forces and torsional
couples (‘frictional loads’) at the contacts. For small grain deformations, the models of Mindlin
and Deresiewicz [18, 19] adequately describe intergranular shear ([14,20,21] and the references
therein) and torsion [14,22]. Slip between the grain surfaces dissipates energy, making load-
displacement relations path-dependent. In [18, 19], this path-dependency is modeled by tracking
the load history in incremental steps [14,23]. At each step, the contact compliance evaluation
accounts for the load increment, the reference load prior to the application of that increment, and the
maximum load experienced prior to unloading or reloading of that contact. The complexity of the
Mindlin and Deresiewicz models motivated the development of simpler approaches to computation
of the grain pack response [20, 23]. For instance, in [20, 24] the tangential force is computed by
accounting for a reduced number of load scenarios. Since the contribution of torsional couples
to the averaged stress in cohesionless materials is negligible [2, 25], intergranular torsion is often
neglected in simpler models.
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In this study, the Mindlin and Deresiewicz models are simplified through a set of incrementally
path-independent constitutive relations. The capability to predict the mechanical properties of a
granular sample from its grain properties, with no adjustment of parameters, demonstrates the
physical soundness of our approach.

The outline of this paper is as follows. Section 2 describes the model and the simulation
procedure. Section 3 presents the results of simulations. The values of the model parameters used in
the simulations are specified in Section 3.1. The generation of a numerical grain pack is discussed
in Section 3.2. In Section 3.3, the model is verified against experimental data. The sensitivity
of the model’s predictions to the initial packing, the size of the incremental load step, and the
intergranular friction coefficient are examined in Sections 3.4-3.6. Section 4 provides summary
and conclusions. The numerical algorithm is outlined in Appendix A.

2. A MICROMECHANICAL MODEL OF A GRANULAR MATERIAL

A granular sample is modeled as a 3D irregular packing of spherical grains, bounded by the solid
walls of a rectangular container. Simulations begin with a sufficiently dense irregular arrangement,
denoted hereafter as the initial configuration. An irregular pack is used since a regular arrangement,
uncommon in natural materials [26,27], deforms in a fundamentally different manner than an
irregular one [28, 29].

We use a quasi-static model, describing deformation as a sequence of static equilibrium config-
urations. Starting from a reference configuration, a load is applied by incremental displacement
of the pack’s boundaries. Following such perturbations, the grains deform and rearrange into a
new (current) equilibrium configuration. The current configuration of the previous step serves as
the reference configuration of the next step. In the following sections we discuss the characteriza-
tion of a grain pack, the constitutive relations that are used to compute the intergranular loads, a
methodology of obtaining the equilibrium configurations, and the evaluation of the macroscopic
parameters.

2.1. Characterization of a grain pack

This section provides a quantitative description of the configuration of a grain pack. Each equi-
librium configuration is characterized by the translations and rotations of the grains relative to
a reference configuration, which satisfy the force and moment balance equations for each grain.
While the pack geometry is fully described by the radii and centers of the grains, the grain rotations
are required to compute the intergranular shear and torsional loads. Thus, a pack of N grains has
6N degrees of freedom.

Labeling each grain with a single index, i =1,2,..., N, we denote the displacement of grain
i by u;=r; —r?, where r; is the radius-vector of the grain center, and superscript O denotes the
reference configuration, cf. Figure 1(a). The vector £; denotes the rotation of grain i by an angle
|€2; ||, around an axis passing through the grain’s center and directed along €2;, using the right-hand
convention. Here, ||| = (&@)U 2 is the magnitude of a vector &. To make the units of the variables
uniform, the rotation of each grain is multiplied by its radius, R;. Thus, a vector of generalized
coordinates, O0=[u; ... uy QR ... QyRy], where u; and Q; are row vectors, describes the
grain pack configuration.

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 81:1259-1280
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Figure 1. (a) Schematic description of the contact geometry. The reference configuration of the grains and

boundaries is marked with gray dotted lines. The dashed lines show the shapes of the undeformed grains

in the current configuration. (b) The loads on grain i due to its contact with grain j, at the reference and

current configuration, marked by dashed and solid arrows, respectively. The reference loads are projected
onto the current contact area to account for its rotation.

This study considers a dense pack of relatively stiff grains, analogous to quartz. In such a pack,
grains exhibit very little damage unless exceedingly high stresses are applied [26,27]. Thus, the
grain deformations are often assumed to be small and localized near the contacts [14]. In our
model, each grain consists of a homogeneous and isotropic elastic material with Young’s modulus
and the Poisson ratio denoted by E; and v;, respectively. The density of the grain material, p;, has
little effect on the equilibrium configuration; while gravity stabilizes a loose packing, its effect is
negligible relative to the contact forces in a dense, stressed pack.

The pack’s boundaries are represented by elastic planar walls that interact with the outermost
grains. We align the domain with a Cartesian coordinate system, labeling each boundary with a
single index, w=1,2,...,6. The position of a planar boundary w is determined by its orientation,
which is specified by an inward unit normal, n,,, and an arbitrary point on the plane, x,,, see
Figure 1(a). The displacement of the boundary is denoted by u,,. Young’s modulus and the Poisson
ratio of the boundary material are denoted by E,, and v,,.

2.2. Intergranular constitutive relations

2.2.1. Normal contact forces. At each contact, we resolve the contact force into normal and
tangential components. Following [18, 19], we assume that the normal component is independent
of the other load components, and evaluate it using the Hertzian model. This assumption has been
justified analytically for the case of identical grains [14], and numerically for dissimilar grain
properties [15]. For a pair of spherical grains, i and j, the contact area is modeled as a planar disk
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of radius a;;,
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where R} = (1/Ri+ 1/Rj)_1 and Ej;= [(1 —v?)/Ei+ (1 —v? )/E ] are the effective radius
and elastic coefficient associated with this contact [14]. The above equations are also applicable to
a grain—boundary contact by assigning an infinite radius to the planar wall, R} = R;. The normal
compression is quantified by the mutual approach, h;;>0,

hij=Ri+Rj— ||r,- i || for a grain—grain contact (3a)
hiw = R; —(r; —Xy) -0y, for a grain-boundary contact (3b)

where r;; =r; —r, see Figure 1(a). The normal forces acting on grain i at the contact with another
grain j and a wall w are directed along r;; and f,,, respectively. Thus, a zero moment relative to
the center of the grain is associated with the normal force.

2.2.2. Tangential contact forces. The shear (‘tangential’) force associated with frictional resistance
is computed from the relative lateral displacement and rotation of a pair of contacting grains,
through a constitutive relation based on the Mindlin—Deresiewicz model [18].

Consider a reference configuration with a pair of contacting grains, i and j. Grain i is loaded
by a force Q?j, which is tangential to the contact plane, and a normal force, P?j, cf. Figure 1(b).
We assume that incremental boundary displacements cause small linear and angular grain displace-
ments. These displacements correspond to a relative tangential displacement of grain i with respect
to j, w;j(s), which alters the tangential force. The tangential force, Q;;, is calculated by incre-
menting the reference value,

Q;j =ij —kij)Wijs) 4

where k;j;) denotes the shear resistance (‘stiffness’) of the contact. Subscript (s) denotes a
parameter associated with shear. Following [30], the reorientation of the contact interface is
accounted for by aligning the force on with the direction of the current contact area, Q’j =

|

t;;, see Figure 1(b) The unit vector t, i=T; ,Ql j / HT, ,QO ” denotes the direction of the

and ® denotes the tensor product. For a contact W1th a boundary w, Tip= | n,, ®n,. The relative
tangential displacement is

Ujj(s) = Tij (lli —Uj) +Q; x Rij —Qj X Rji for a grain—grain contact (5a)
Uy (s) = Tiw (W, —uy,) +€; xR;y,  for a grain—boundary contact (5b)

. 1/2 N .
The radius-vectors R;j = —r;; (Rl2 — A?j) and R;,, = —n,, (R; —h;,,) connect the center of grain
i to the center of the contact area with another grain j and a boundary w, respectively. The parameter
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Ajj= [(R,' —R; —r,-j) (—R,‘ +R; —r,-j) (R,‘ +R; —r,-j) (R[ +R; +r,-j)]1/2 / (2r,-j) denotes the radius
of a disk defined by the intersection of the undeformed grain surfaces, where rij=|r;;|; see
Figure 1(a). The vector product is denoted by x.

If intergranular slip occurs, the force—displacement relation becomes path-dependent [18]. In
the Mindlin—Deresiewicz model [18], slip is accounted for by varying the shear stiffness with the
current load and the load history. Here, we formulate a linear, path-independent, incremental force—
displacement relation. The linearization is justified by the assumption of small grain displacements
[31]. With this linear approximation, we neglect the effect of the normal force increment on Q;;,
so that Q;; is a function of the reference value, P?.. At each load increment, we assume that a
contact experiences either perfect stick (‘no-slip’) or complete slip (‘sliding’). According to the
Coulomb friction model, the tangential force cannot exceed Qmax—,u, ] ||Pl jll, where y;; is the
intergranular fncuon coefﬁc1ent Sliding occurs when the shear force reaches this threshold, and
leax. To model this hysteretic

behavior, we evaluate the stiffness by

max

Kijs): ” Q;;
kijs)= (6)
Koy HQU op™

where Q;."j :Qipj —k;*j(s)u,- j(s)> cf. Equation (4), and

2—v;  2—v;\7!
k;"j(s)z&zij( -+ ’) (7a)

G: | G,
12
) oo ] } o

2
kijis) = % {Qf}'lb’j(s)"‘[(lej ~ul'j(s)) +(< max) HQU
wijeo

Here, G; is the shear modulus of the material of grain i. The value of k;*j ©) is predicted in [18] for
the case of negligible slip. Negligible slip is expected at the onset of either loading or unloading, as
the tangential force either increases from zero or decreases after a monotonic loading, cf. Figure 2.
Sliding is accounted for by reducing the stiffness as the force magnitude, |Q,~ i|> approaches
Qf?ax. The reduced value, klf s)? makes the shear force equal to Q;‘}ax; thus, klf s vanishes if the
sliding threshold has been reached. Physically, the stiffness coefficient is non-negative. Thus, we
put &/ )_O if the term inside the square brackets in Equation (7b) becomes negative.

ij(s

With the linear approximation, we use the unperturbed force, P?., rather than P;; in Equations (6)
and (7). Similarly, we use the corresponding unperturbed values of the radius of the disk of
intersection, AO, and the contact radius, a . To justify the latter we expand the expression in

Equation (1) as a Taylor series near h;; _h , noting that the linear term in the expansion can be

i< 1. Here, h is the reference value of A;;.

neglected since ‘hi =
Finally, the force Q, i 1s assoc1ated with a moment relative to the center of grain i,

M;j)=Rij xQ;j (®)
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Figure 2. Left: the intergranular shear force, , vs the relative shear displacement since contact is
(tot)

is)" 30
is established, ng(?) The loads are computed using the models in Sections 2.2.2-2.2.3 and in [18, 19],

for a loading—unloading—reloading cycle (see arrows) while fixing the normal force. The plot shows the
magnitudes of the respective vectorial quantities, normalized to a non-dimensional form. The shear and
torsional stiffness, k;j(s) and k;j(), correspond to the slope of the lines.

0ij

Right: the intergranular torsional couple,

established, u , vs the relative torsion since contact

2.2.3. Torsional couples. Relative torsion between a pair of grains creates a torsional couple at
their contact [19, 32]. In Section 2.4, we demonstrate that the contribution of the intergranular
torsion to the macroscopic stress is negligible. However, in a cemented grain pack, torsion may
determine the strength of each contact [33]. To enable future extension of the model to account
for cemented grains, a torque—rotation relation based on the model in [19] is formulated below,
using an approach similar to that in Section 2.2.2.

Consider a pair of grains, i and j, loaded by a torsional couple, M’

ij(t)
P?j. Subscript (¢) denotes a parameter associated with torsion. Following a perturbation of the
boundaries, relative torsion between the grains, €;;;), modifies the torque,

and a normal force,

Miji =M} ) —kiji Qij )

where the stiffness k;j(;) describes the resistance of the contact to torsion. The effect of the rotation

. . p _ O
of the contact interface is modeled by M, = HMl 10

a contact with a boundary w, M? "= ‘ M?w(t) sgn M?w(t) -ﬁw> n,,. Here, sgn denotes the sign
function. The relative torsion is evaluated by

sgn (M?j(t) -f'ij> I;j, see Figure 1(b). For

Qi) =[(Q —Qj) Fij]Fj for a grain—grain contact (10a)
Qi) = (Qi-hy,)hy,  for a grain-boundary contact (10b)

Slip may occur in a circumferential direction, making the torque—rotation relation path-dependent
[19]. Linearization of the torque—rotation relation decouples the torque from the normal force
increment. At each load increment, a path-independent torque—rotation relation is formulated by

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 81:1259-1280
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assuming either no-slip or sliding. The torque magnitude is limited by M Ir;’?t’; =(@3n/16)aiju;; H P;i|,
which is the expected value in sliding [32], by defining

G M| <M
kijy= (11)
Kijys HMU o || >Mijo)
where MU(I) Mf}(t) —k;“j(t)ﬂij(,), cf. Equation (9), and
16 11\
* = —a; I + — 12a
HO T3 (Gi G, (20
Ko=—— M . M 90)
ij) = 2\ Mijo) S+ ( i) ij(t))
| |
712
+ ((MII?E%) — M7, ) [240] } } (12b)
Here, k¥, is the stiffness in the case of negligible slip, expected at the onset of torsional loading

ij ()
or unloading [19], see Figure 2. To enforce the torsional threshold, the stiffness is reduced to klj(t),
which vanishes at sliding. Similar to Equation (7b), we put k; i =0 if the term inside the square
brackets in Equanon (12b) becomes negative. With the linear approximation, the unperturbed

values PO and a . are used in Equations (11) and (12) to determine M mz‘t’; and k;j).

2.3. Equilibrium configurations

This section describes a methodology to obtain an equilibrium configuration. Each configuration
is characterized by a set of generalized coordinates, 0, which satisfy the force and moment balance
for each grain,

Ni N}

Fi=Y (P;j+Qij)+ > (Piw+Qiw)—m;gé.=0 (13a)
j=1 w=1
Ni N}

M; =3 (Mij)+Mijin) + Y (Miwes) +Miw) =0 (13b)
j=1 w=1

The sums of forces and moments acting on grain i are denoted by F; and M;, respectively.
Employing a variational approach, each equilibrium configuration is obtained by finding a local
minimum of an energy functional, I1, with respect to 0. In the absence of friction, IT equals
the total potential energy of the pack [1]. Here, the total energy of the pack is not potential. By
the principle of least work [13], we seek a minimum of the mechanical work done against the
intergranular loads following a perturbation of the boundaries:

N 1 N' NI
_Z = ZW1J+ Z Wiw— ig(ui'éz) (14)
i-1| 2= w=1
Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 81:1259-1280
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where g is the acceleration due to gravity, €; is a unit vector pointing opposite to the direction
of gravity, and the grain mass is m; =(4/3) 71:Ri3 p;- We denote by N, and N, the number of

contacts of grain i with other grains and with boundaries, respectively, so that N' =N é +N li is the
coordination number. In Equation (14), W;; is the work done against the loads acting on grain i
due to its contact with grain j,

Wij =Wijon + Wijs) +Wijay (15)

Here W;jn), Wij(s), and Wjj () are the mechanical works against the normal and tangential contact
forces, and torsional couples, respectively. We evaluate W;;(,) from the increment of elastic strain
energy associated with the normal compression [34],

Wijn = —%E?} (R7}> 1/2 [(hij)s/z - (h?j)5/2i| (16)

The works against the shear and torsional loads are evaluated by integrating these loads over the
relative shear and torsional displacements, respectively. These integrals are evaluated numerically
using a midpoint rectangular rule,

1 2
Wijes) = Qi wij) = 5kijeo [wijeo | (17a)

1 2
Wi =Mjj ) Qijor = skijo [ Qijo | (17b)

In sliding, the stiffness vanishes and Equation (17) evaluate the work of fixed inelastic force and
torque with respect to the displacements. Following [20], we assume that friction is the only means
of energy dissipation.

We obtain a local minimum of IT numerically (see Appendix A). At a minimum, the gradient
of IT with respect to the generalized coordinates, 0,

VolI=—[F; ... Fy Mi/R; ... My/Ry] (18)

vanishes. Thus, the zero gradient of IT means the balance of forces and moments.

2.4. Macroscopic parameters

For each equilibrium configuration, we evaluate the average strain (g¢) and stress (o) within the
sample, and the effective elastic moduli. The evaluation procedure is summarized below.

2.4.1. Strain. The strain is evaluated from the boundary displacements [1]. The normal strain
in the [-direction (I=1,2,3) is (LZ—LE’=O) /szo, where L; and Ll“=0 are the length of the
domain in that direction, in the current and undeformed configurations, respectively. Here, the
term undeformed refers to the configuration in which appreciable stresses first appear following
compaction of a loose packing [1].

We simulate an experiment in which the strains are enforced, and the corresponding stress is
computed. To simulate isotropic or polyaxial loading, identical or different normal strains are
enforced in three perpendicular directions. A triaxial test is modeled by applying two identical
strains in two perpendicular (‘lateral’) directions. Simulation of uniaxial strain (denoted hereafter
as ‘uniaxial test’) mimics loading of a laterally confined pack. We use the convention of positive
stress and strain in compression.

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 81:1259-1280
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2.4.2. Stress. The normal stresses are estimated from the sum of the normal contact forces acting
on each boundary, divided by its area [1]. This method is simpler than integrating the product of
the force and branch vectors over the sample’s volume [35], yet produces very similar results.

The presence of frictional loads implies that the resultant load on the boundaries may include
shear and torsion, corresponding to shear stresses. However, in isotropic materials, application
of normal principal strains yields normal principal stresses. Thus, if the simulated pack behaves
isotropically, the resultant shear and torque must vanish. To verify that no appreciable shear stresses
develop, we compute the total moment applied by the normal and tangential contact forces on
the boundaries with respect to the pack’s center. The averaged shear stress is evaluated from an
equivalent force couple. Since this force is at least two orders of magnitude smaller than the
resultant normal forces, we neglect the shear stresses.

The smallness of the contact area [14] makes the arm of an intergranular torsional couple much
smaller than the size of a single grain. Unless torsion acts very close to the pack’s center, the torque
it applies is negligible relative to that of a contact force. Thus, the contribution of intergranular
torsion to the averaged stress is negligible; see also [25].

2.4.3. Elastic moduli. To describe the evolution of the mechanical properties of the pack with
loading, we evaluate effective elastic moduli for each load interval. The moduli are found by fitting
each stress—strain interval with Hooke’s law for a homogeneous, isotropic material [1].

3. SIMULATIONS OF A DEFORMING GRANULAR SAMPLE

3.1. Material properties of the grains

The grain properties for the numerical simulations discussed below are taken from [36, 37]. To
model heterogeneous materials such as clastic sediments, we assign the grains radii from a uniform
distribution of 0.07-0.13 mm, and elastic moduli from a normal distribution with a standard
deviation of 10% of the mean. A heterogeneous pack of 2740 glass beads (see Figure 3), denoted
by G2740, is modeled by assigning the grain moduli with mean values of E=70GPa and v=0.2,
corresponding to K =38.9 and G =29.2GPa. Here, the overbar denotes the arithmetic mean and
K is the bulk modulus. The grain density is set equal to 2.42g/cm>. To minimize the deflections
of the boundary walls, they are assigned stiffer moduli: E,, =100E and v, =0.495.

While the grain sizes, densities, and, to some extent, their elastic moduli can be readily evaluated
from experiments, the intergranular friction coefficient, y;;, is not a well-defined parameter [38, 39].
For a small contact area, for example between slightly deformed spherical grains, the applicability
of Coulomb’s law of friction is questionable [38,40]. The difficulty in estimating the value of y;;
stems from the fact that intergranular frictional resistance depends on several parameters, such as
grain surface roughness, contact area, and velocity, as well as on molecular interactions [40]. As
a result, the friction coefficient may vary with the deformation, and with the type of experiment
from which it is obtained [39].

Because of the uncertainties associated with the friction coefficient, we run a series of simulations
for a range of admissible values, and perform a sensitivity analysis in Section 3.6. For glass
beads, values of 0.1-0.3 were measured [40, 41], and used in simulations [6, 10,40, 42]. In most
simulations, we use u=0.3 for both grain—grain and grain—boundary contacts, where u denotes

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 81:1259-1280
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Figure 3. A typical pack used in the simulations with 2740 glass beads, denoted by G2740.

a uniform coefficient for all contacts. Additional simulations using ¢=0.5, as well as a pack of
5036 ideally smooth (u=0) glass beads (G5036), are presented.

3.2. Initial packing

To make the simulations sensible, the initial grain pack must be sufficiently dense [1]. Such a
packing can be acquired by tomography imaging of a physical sample or numerically [1, 2]. Here,
the numerical procedure to generate such a pack includes two phases: (a) creating a dense irregular
arrangement, accounting for normal contact forces only [1] and (b) transition to a frictional model,
introducing frictional loads.

The generation procedure starts with a loose irregular arrangement. Here, a loose arrangement
is obtained from DEM simulations [43]. In phase (a), the packing density is increased by isotropic
compaction of the pack, and expansion of grains with coordination number of N’ <4, until N >4
for all grains. Note that the grain expansion slightly modifies the originally uniform grain size
distribution. Finally, an equilibrium configuration is computed using the frictionless model in [1].
The stress at the end of phase (a) is denoted by aé” =0

In phase (b), a uniaxial compression of the sample is simulated while accounting for friction.
Uniaxial compression causes relative lateral and angular grain displacements, introducing intergran-
ular shear and torsional loads. Simulations of isotropic compression results in smaller grain rear-
rangements, and thus smaller frictional loads. This result can be explained by the following analogy:
in a lattice-type pack, isotropic compression creates self-similar deformation, with only normal
compression between the grains. Similar correlation between the degree of loading anisotropy and
grain rearrangements is expected in an irregular pack.

At the beginning of phase (b), frictional loads rapidly build up. In Figure 4 we plot the computed
shear modulus, G, vs the confining stress, o.=tr(c) /3, where tr denotes the trace of a tensor.
The computed response is stiffer than typical experimental values. As phase (b) continues, the
initially high G values decrease with o.. The sample generation procedure is completed when this
abnormal behavior stops: once frictional loads are ‘well-developed’, the moduli increase with o.
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from sample G2740 with intergranular friction of ©=0.3, during: (1) sample generation procedure,
phase (b) and (2) uniaxial test simulation. The two stages are distinct by a dash-dot line.

The progress of phase (b) is monitored through the relative number of contacts which slide.
The ratio of sliding contacts to total number of contacts is plotted in Figure 4. A contact ij is
considered sliding if ||Q,- J H = Q?}ax. At the beginning of phase (b), the tangential forces are zero,
with no sliding. As the generation procedure continues, the tangential forces increase, initially
faster than the normal forces, leading to a rapid increase in the sliding ratio. The shear modulus
decreases with the increasing sliding ratio. When the transition to the frictional model is complete,
this artificial growth of the tangential forces stops and the sliding ratio becomes relatively constant,
~0.09—-0.11. This ‘saturation’ of the sliding ratio, also observed in the simulations reported in
[6, 10], is the ending criterion for the generation procedure.

3.3. Verification against experiments

We test the physical soundness of our model by comparison with published data from acoustic
experiments on glass beadst [36,37,44]. We note that analytical solutions for the macroscopic
parameters are only known for the special case of a lattice-type packing, under the assumption of
infinitely small perturbation [45] or self-similar deformation [2].

Two uniaxial strain tests are simulated using initial packs generated by: (a) isotropic compres-
sion of sample G2740 to o*é” =0 —4 and o((;“ =0 = 10MPa, followed by (b) uniaxial compression
with a friction coefficient of £=0.3 to 6.,=9 and o, = 19MPa, respectively. Two additional simu-
lations are presented: (1) reproduction of the latter simulation GEH =0 _ IOMPa) with u=0.5 and
(2) uniaxial strain applied to sample G5036 with =0 [1]. Figure 5 shows the stress—strain curves
from which we computed the effective moduli. These curves resemble the experimental and numer-
ical curves presented in [46]. The moduli from our simulations and from the published experiments
are plotted in Figure 6 vs confining stress, o.. Also plotted are the results of DEM simulations and
effective medium theory (EMT) reported in [37] using a contact model that assumes y— co.

¥The numerical values of the data from [37, 44] have been obtained by digitizing Figure 1 in [37]. The data from
[36] are computed from the velocities reported by the author, see [2].
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1=0.5, and on sample G5036 with u=0 [1]. The stress—strain data from these simulations are used in
evaluating the effective moduli presented in Figure 6.
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Figure 6. The effective bulk modulus (K, left) and shear modulus (G, right) vs confining stress, ..

The moduli evaluated from the simulations on sample G2740 with intergranular friction coefficient of

1#=0.3 and ©=0.5, and on sample G5036 using a frictionless model (x=0) [1], are compared with

the results of acoustic experiments in glass beads, as well as DEM and EMT predictions using u— oo.

Superscripts 1-3 refer to the data published in [36, 37, 44], respectively. Good agreement between our

estimates and the experimental data, achieved with no adjustment of material parameters, demonstrates
the physical soundness of our model.

Our estimates and the measured moduli are in good agreement, which has been achieved with
no adjustment of material parameters. We stress that the effective moduli are not uniquely defined
by the grain properties alone; they also depend on the spatial distribution of these properties and,
possibly, on the loading history. Predicting the effective properties is difficult because of the sensi-
tivity of the bulk response to small perturbations, often referred to as ‘emergent behavior’: small

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 81:1259-1280

DOI: 10.1002/nme



1272 R. HOLTZMAN, D. B. SILIN AND T. W. PATZEK

variations in grain configurations can result in significantly different properties ([1, 2, 38] and the
references therein). Inevitable uncertainty in characterizing the grain configurations and the loading
history of each contact results in large scatter in experimental data, e.g. see Figure 6, making exact
reproduction of an experiment by numerical simulations impossible.

Our simulations show a gradual decrease in the rate of moduli growth with confining stress,
from a power law of ¢24° to ¢33, This transition, while observed in experiments and justified
by theory, is not predicted by the classical EMT [47]. Our model provides additional theoretical
interpretation for this transition. Increasing the confining stress increases both the packing density
and stiffness, while decreasing their growth rates. As the pack gets denser, further compaction
becomes more difficult. The relation between the contact stiffness and o, can be predicted from
the Hertzian contact law, cf. Equation (2): the normal contact stiffness is the derivative of the force
magnitude, ||P;; ‘, with respect to the deformation, h;;, where the latter is expected to increase

with the confining stress. Therefore, the growth rate of the normal stiffness is proportional to the
-1/2

second derivative of HPi i “ with a power law of (hi j) , which indicates an inverse relation
between the stiffness and o.. Since the moduli increase with both the packing density and the
contact stiffness, the transition in power law is expected.

3.4. Sensitivity of the effective moduli to the initial configuration

The sample generation procedure in Section 3.2 involves ‘activation’ of frictional resistance through
uniaxial loading, which can affect the sample properties. In this section, we examine the effect of
the initial packing on the effective moduli. By the term ‘initial packing” we refer to the configuration
of the grains, the intergranular loads, and the sample generation procedure.

To generate a number of different initial packs, sample G2740 has been compacted isotropically

up to stresses of 0((;” =0 =4, 10, 20, 41, 54 and 74 MPa in phase (a), followed by the application
of uniaxial strain with a friction coefficient of ¢ =0.3 in phase (b). The resulting initial packs are
denoted by G2740(4), G2740(10), G2740(20), G2740(41), G2740(54), and G2740(74), respec-
tively. Although the packs are composed of identical grains, the microstructure of the samples,
and consequently their mechanical properties, may differ due to different loading paths [48].

Figure 7 shows the effective moduli of these packs plotted vs confining stress, ., evaluated
during: (1) phase (b) of the generation procedure; and (2) uniaxial test simulation. Comparing
the moduli evaluated at similar confining stresses, we observe that the bulk modulus is lower
for samples with higher 02“ =0 values. While the difference between the bulk modulus evaluated
for G2740(4) and G2740(10) is only ~ 1%, the difference with other samples, e.g. G2740(41),
increases to ~ 10%. The shear modulus estimates are less sensitive to the initial pack, with relatively
small variations among the different simulations.

To interpret these seemingly counterintuitive observations, we calculate the mean normal contact

force within the pack, P. At a given confining stress, P is found to be higher in packs with lower

aﬁ“ =0 This difference reflects the different load paths in the generation procedure: for a sample

with lower aﬁ” =0 , uniaxial strain loading starts at a lower stress, indicating larger axial stress and
lower lateral stress. As discussed in Section 3.2, stronger loading anisotropy results in more grain
rearrangements. Rearrangements increase the packing density and consequently the growth rate of
the normal contact forces. Since the bulk modulus is mainly affected by the normal contact forces
[1], it increases with P, while the shear modulus, which strongly depends on the intergranular

friction, shows smaller sensitivity.
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Figure 7. The effective bulk modulus (K, left) and shear modulus (G, right) vs confining stress,
0., evaluated during: (1) sample generation procedure, phase (b) and (2) uniaxial compression test
simulations using sample G2740 with a friction coefficient of y=0.3. Six simulations were conducted
on initial packs generated with different stresses during phase (a), ag’ =9 Ata given o, K is lower
for samples with higher 65" =9 values, for example, it is lower for G2740(41) than for G2740(10),

whereas G shows less sensitivity to aE.” =0,

3.5. Sensitivity to the size of the load increments

The tradeoff between the size of the load increments and the total number of increments imposes
constraints on the increment size. To examine sensitivity of the model to the increment size, we
compare the simulations on sample G2740, applying different strain increments, Ag,. In Figure 8§,
the moduli evaluated during: (1) phase (b) of the generation procedure and (2) uniaxial test
simulation are plotted vs confining stress. We present results from two simulations using Ae, =
5-1075 and Ae, =5-10~%, in addition to a simulation in which the strain increments were reduced
from Ae, =5-10"* during the generation procedure to Ag, =5-107> during the uniaxial test. The
similarity of the curves implies that the results are robust with respect to Ag,. In the simulations
presented in the previous sections, increments of Ae, =10"% or smaller were used.

3.6. Effect of the intergranular friction coefficient

The effects of the intergranular friction on the bulk response, the microstructure, and the spatial
distribution of the contact forces have been studied in [6, 10, 38, 39,42, 49, 50]. For example,
experiments and simulations show that the shearing resistance correlates with the intergranular
friction coefficient [10, 39,49, 50]. Note that intergranular frictional resistance is not uniquely
determined by the friction coefficient. In our model, this resistance is associated with: (1) the
friction coefficient, u, and the magnitude of the normal force, HP,- j‘, if sliding occurs and (2)
the tangential and torsional stiffnesses, k;;(s) and k;j(, if the contact does not slide. The sliding

threshold, Qg?ax, and, on the verge of sliding, the reduced stiffness values, kl/. ) and k; iy depend

on y and |P;|.
The sensitivity of the effective moduli to the friction coefficient is investigated by comparing the
moduli predicted from two uniaxial test simulations <a§“ =0 _ IOMPa), using ©=0.3 and £=0.5,
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increments of Ag, =5- 1074, Aey,=5- 1073, and their combination. The small differences demonstrate the
robustness of the results with respect to the size of the load increments.
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Figure 9. The effective bulk modulus (K, left) and shear modulus (G, right) vs confining stress, o,
evaluated from two simulations on sample G2740, using different intergranular friction coefficients, u=0.3
and p¢=0.5. The effective moduli, in particular G, increase with the friction coefficient.

see Figure 9. As expected, the moduli, in particular the shear modulus, increase with the friction
coefficient. The bulk modulus is less sensitive to the intergranular friction.

To complete this analysis, we study the effect of extreme p values. A frictionless model (u=0)
underestimates the stiffness and strength of the pack, in particular under shear; for example, it
predicts loss of shear rigidity, G — 0, at relatively high packing densities [1,37]; cf. Figure 6.
Conversely, a model that prohibits sliding by assuming pu— oo overestimates G [37]. Note that
macroscopic stiffness and strength do not increase significantly when the friction coefficient
increases above a certain value (e.g. £=0.6 in [42]). Similar saturation of the contact force distri-
bution and the mean coordination number with respect to ¢ has been observed in simulations [6]
and experiments [51].
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4. SUMMARY AND CONCLUDING REMARKS

A micromechanical model of a cohesionless particulate material with intergranular friction has been
presented. We simulate the deformation and evaluate the macroscopic elastic properties of a gran-
ular pack using a computational technique denoted by QuSGM. In QuSGM, a three-dimensional,
irregular pack of spherical grains is loaded by incremental displacement of its boundaries. Deforma-
tion is described by a sequence of static equilibrium configurations. The intergranular interactions,
including friction and sliding, are modeled by a set of constitutive relations based on the contact
theories of Hertz, Mindlin, and Deresiewicz. The macroscopic stress, strain and elastic moduli are
evaluated from the intergranular forces and the deformation of the pack. Based on the principle of
least work, a variational approach is employed to find the equilibrium configurations by minimizing
the work against the loads acting on the grains. This minimum is computed using a modified CG
algorithm.

Our model has been verified by assigning experimentally measured grain properties, and
comparing the calculated effective moduli with published experiments. Good agreement between
predicted and measured moduli, achieved with no adjustment of material parameters, establishes
the physical soundness of the quasi-static approach. In addition, the predicted moduli are shown to
be robust with respect to the size of the load increment. Our approach does not involve numerical
damping, which is often used in dynamic models such as the DEM.

QuSGM is used to generate a sufficiently dense, irregular packing. Simulations show that the
bulk modulus estimates are more sensitive to the initial pack formation procedure than the shear
modulus. Thus, the effective elastic moduli are not uniquely defined by the grain properties alone;
they also depend on the spatial distribution of these properties and on the loading history. This
indeterminacy is enhanced by the sensitivity of the bulk response to small variations in grain
configurations. Uncertainty in experimental characterization of the grain configurations and loading
history prevents an exact numerical reproduction of an experiment, and is associated with the
scatter in experimental data.

Sensitivity analysis confirms that the stiffness and strength of a granular pack increase with the
intergranular friction coefficient. The shear modulus is more sensitive to the intergranular friction
than the bulk modulus, which mainly depends on the normal contact forces. We conclude that
proper account of intergranular frictional resistance is required to predict the macroscopic response,
in particular under shear.

In summary, QuSGM is a useful tool to advance the understanding of granular mechanics. Our
simulations complement physical testing of granular materials, and develop insights into the design
of new experiments. Elsewhere [1, 2], we have applied our approach to model cohesionless and
weakly cemented sediments, accounting for hydrate dissociation and cementation of grain contacts.
The current model can be extended to account for inelastic grain deformations (e.g. [52]), as well
as for irregular grains that can fracture or break. The irregular grains can be modeled as clusters
of spherical grains bonded at their contacts [53]. Such extensions will allow QuSGM to elucidate
the micromechanics of a wide range of complex geological systems.

APPENDIX A: NUMERICAL ALGORITHM

This appendix outlines the numerical algorithm used in the simulations. Following each load
increment, simulated through displacements of the pack boundaries, a modified CG algorithm [54]
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is employed to find a new (current) equilibrium configuration of the grains. The algorithm searches
for a local minimum of an energy functional, Il. According to the principle of least work [13],
IT is computed from the work against the intergranular loads, cf. Equations (14)—(17). The force and
moment balance equations, Equations (13), are non-linear, and IT is not quadratic, for the following
reasons: (a) non-linearity of the intergranular constitutive relations and (b) variations in the contact
network. The modifications of the classical CG algorithm to accommodate the nonlinearity of
the balance equations are summarized below. For further discussion on implementation of CG in
granular mechanics, see [55].

A.l. Initial guess

The iterative minimization procedure begins with an ‘initial guess’: here, 0=0=0 is chosen, where

superscript k denotes the iteration. We use a fixed Cartesian coordinate system aligned with the pack
boundaries, with an origin at the pack geometric center, xc 7. Application of each load increment
is modeled by symmetric displacements of each pair of parallel boundaries, wy,—; =—u,=;13,
where /=1, 2, 3 denotes the coordinate directions. These displacements are applied in several sub-
increments, every ki, iterations, see Figure Al. After each incremental boundary displacement,
we select a new initial guess for the grain displacements and positions: for each direction /, the
update for grain i is computed from the displacement of the boundaries scaled by the ratio between
the distance of the grain to the pack’s center and the side length,

k A
Xcm—r. )€
Auf.‘(,)z—“ k‘) |Au§;:, (A1)
2L,
where L, A“ﬁ;:l’ and €; are the pack’s length, the incremental displacement and a unit vector
associated with the nearest boundary in the / direction, respectively. The incremental boundary

1. Tnitial guess (k = 0): 0= = 0. Set p"=0 = VoTl|gu_o.
2. IF k divisible by k;,. AND uﬁ, < Uy, apply sub-incremental perturbation:

(a) Update the boundary positions: ¥

(b) Update the grain displacements (“initial guess”), u
rF—rF 4 Aub, cf. Section A.1.
3. Evaluate VglIl|gk, cf. Eq. (18).
4. IF k=1 OR k divisible by ksp, refresh with a steepest descent step: set gk = 0.
: Volllge | \?
ELSE g = — <”—9 .
[Velllge ]
5. Compute the “search direction” vector, p* = Voll|gr — prEpk-1.
6. Given 6% and p¥, find o that minimizes II (0"" — (,y}“pk)7 c¢f. Section A.2.
7. Update the generalized coordinates, okt = oF — akp¥, and the grain positions,
Rl =k
8. Check convergence:
IF A1 —T1% < 7 [TTF] OR || VeIllge|* < 72N (ER?)? OR k > Fyaa,
STOP.
ELSE, set k « k 4+ 1 and GOTO Step 2.

—xf + AuF and ukf — ukf + Auk

ke uk + Aul and positions,

Figure Al. A modified conjugate gradient algorithm used to simulate application of a load increment, and
to obtain a subsequent equilibrium configuration.
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displacements, AufC , are applied until the total desired boundary displacement for that load incre-
ment, u,,—;, has been achieved.

A.2. Iterative update

Since the criterion I is not quadratic, the update coefficient o* is found numerically by minimizing
II (0k - ockpk) with respect to of. We perform this minimization using the MATLAB function

fminbnd [56], which utilizes the golden section search and parabolic interpolation methods [54].
To avoid numerical artifacts in the form of grain permutations, which correspond to a non-local
minimum of II, we restrict the update of the grain displacements within each iteration. This
restriction is enforced by limiting the value of o so that the displacement of any grain does not
exceed 1073-107" of its radius. The optimal constraint value is found by trial and error.

A.3. Convergence criterion

Theoretically, the CG method yields an exact solution to a system of linear equations with a
symmetric, positive-definite matrix within a number of iterations that does not exceed the dimen-
sions of the system, N [54]. Here, due to the non-linearity of the balance equations, the algorithm
may not work in the same manner as it does for a linear system of equations [55]. To avoid
loss of conjugacy, the iterative procedure is periodically refreshed every kgp iterations by setting
BkzO, equivalent to performing a steepest descent (SD) step, see Figure Al. The frequency of
this operation is determined by trial and error.
The iterations stop if convergence has been achieved within a given tolerance, specified by

Mt <oy || or [ VolTlge | <22V (ER2)2 (A2)

where R and E are the mean grain radius and Young’s modulus. For example, for sample G2740
with E=7-10'" Pa and R =10~*%m, the tolerance parameters are 7| = 10~ and 1) =10"!3. These
values provide for each grain a residual force, F;, and moment, M;, which are smaller than the
maximum contact force and moment on that grain by at least four orders of magnitude. Formally, to
avoid infinite cycling, the number of iterations is constrained by knax. Applying a strain increment
of Ae, =10~* with kine = 10, the number of iterations required to find an equilibrium configuration
is 100-130.

The algorithm in Figure Al was coded in MATLAB [56]. The typical running time to simulate
the application of Ag,=10"% on sample G2740 is ~ 1h, using a standard desktop with Intel
Pentium D 2.80 GHz processor and 2.00 GB of RAM. In [2], the performance of the code has been
evaluated by comparing the numerical prediction with an analytical solution for the special case
of a small, structured packing undergoing self-similar deformations. The relative error, measured
as the deviation from a self-similar deformation, is ~10~11-1072.
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