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Here we provide the essential details of the pore-scale model and the derivation of the dimensionless groups Nca and Ncoop,
and movies showing the displacement dynamics.

Pore-scale model of the displacement dynamics at arbitrary wettability

We present here a novel pore-scale model of immiscible fluid-fluid displacement in a disordered porous medium, with fluids
of arbitrary viscosities and contact angle. A two-dimensional (2-D) heterogeneous medium is constructed by placing cylindrical
solid particles on a triangular lattice with spacing a, selecting the particle diameters d from an assigned distribution; here we use
uniform distribution, d ∈ [1 − λ, 1 + λ]d̄, where λ ∈ (0, 1) represents the degree of disorder, and d̄ . a is the mean diameter
[Fig. S1(a)]. Each particle triplet defines a pore with volume V connected to three neighboring pores by throats with aperture
0 < 2ρ . a; to avoid particle overlap we enforce d̄ < a/(1 + λ). A triangular lattice is chosen for its simplicity, allowing
only up to two menisci to invade an unfilled pore, thus capturing the essence of cooperative pore filling at minimal algorithmic
complexity (e.g. avoiding the ambiguity associated with resolving a burst on a square lattice [1]).

We model the fluid-fluid interface by a sequence of circular menisci, intersecting pairs of particles at the prescribed contact
angle θ, with a curvature 1/R = ∆p/γ supporting a capillary pressure ∆p [Fig. S1(a)]. In our 2-D model, the meaning of
R depends on the model geometry. For elongated particles with height (measured into the page) much larger than diameter,
h� d, the meniscus geometry can be assumed 2-D since the in-plane curvature is much larger than the out-of-plane curvature,
Rin � Rout, providing R = 1/

(
R−1

in +R−1
out

)
≈ Rin. Otherwise, if h ≈ d and h ' 2ρ, the meniscus can be approximated as

hemispherical, with Rin / Rout and R ≈ 2Rin. Here we consider the former, R = Rin.
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Figure S1. (color online). Geometrical details of our model. (a) Each meniscus (in blue) intersects a pair of particles at the prescribed contact
angle θ and has a curvature 1/R (the complementary angle, β = 180 − θ is marked in pink). Overlap precedes burst (while R > Rc) when
χ = φ − η2 − η3 < 0 (in purple), see text. Once pore invasion ends, we update the meniscus configuration, as shown in (b) and (c) for two
cases of overlap at φ = 180◦, complicated due to a succession of events (allowing demonstration of other, simpler cases). Two menisci m1

and m2 separating invaded (Φ = 1) pores p4 and p5 and non-invaded (Φ = 0) pores p1 and p2 are destabilized by overlap. The interface
progression is determined by fusing m1 and m2 into a single arc, m3. In (b), m3 is further destabilized by touching grain g1, causing the
filling of pore p1 (also of p2 if g2 was touched); once filled, the interface configuration is updated by replacing m3 with two new arcs, m4

and m5. Here, m5 is further destabilized by overlap with m2 (at φ = 120◦); they are replaced by a fused arc (not shown) destabilized by
touching grain g2, causing filling of both p2 and p3. The final stable configuration is obtained by replacing m2 and m5 with m6 and m7.
In (c), the fused arc of curvature 1/R is geometrically inadmissible, causing advancement of both m1 and m2 to fill p1 and p2 (at different
rates, depending on the local fluxes), after which they are replaced with m3–m7. Arcs m4 and m5 are immediately destabilized by overlap
(φ = 60◦) that causes filling of p3, and eventually replaced by m7.
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Menisci are tested for three types of instabilities [1]: (1) burst (Haines jump), when the curvature exceeds a threshold set by
local geometry; (2) touch, when a meniscus intersects a third, downstream particle; and (3) overlap of adjacent menisci, destabi-
lizing each other (Fig. 1 in the Letter). While a meniscus can become unstable according to several criteria simultaneously, the
order by which the instabilities are treated was found to have a minor effect on our results; similar findings were reported by [2]
for the model in [1].

Destabilized menisci incipiently invade the downstream pores. As discussed in details below, our model captures the crucial
spatiotemporal nonlocal nature of pore invasion, by evaluating the rate of pore filling from the viscous resistance in the fluids. The
front is defined as the set of throats (menisci connecting particle pairs) separating fully-invaded pores (Φ = 1) from accessible,
non-invaded (Φ = 0) or partially-filled (0 < Φ < 1) pores, where Φ is the filling status. Accessibility is determined from the
topological connection with the outer boundary, so that trapped inclusions of defending fluid can form and persist. Meniscus
stability and rate of advancement are set by the local pressure difference across the two pores it separates, and the aforementioned
geometrical conditions.

We evaluate the pore pressures and consequent filling rates by resolving the flow throughout the network of contiguous pores
occupied by same fluid and through throats with an unstable, advancing menisci (neglecting changes in fluid volume due to
small interfacial advancement in stable menisci). Flow is evaluated from the conservation of mass for an incompressible fluid
in each pore (Kirchhoff’s law)

∑
j qj = 0, summing over all connected pores j. The volumetric flow rate into a pore from its

neighbor j is evaluated by assuming Stokes flow, qj = Cj∇pj , where C ∼ ρ4/µeff is the conductance [Fig. S1(a)]. The gradient
∇pj = (pj − p)/∆xj is evaluated from the pressure difference between the two pores (the capillary pressure if they contain
different fluids), assuming that most of the resistance occurs in the pore constriction, over a distance ∆xj = ρj . Using an
effective viscosity, µeff = (µi − µd)Φ+ µd, where µd and µi are the defending and invading fluid viscosities, allows us to use
q for fluid flow between two pores containing the same fluid as well as pore filling [3]. The interpore conductance C therefore
depends on the connecting throat aperture, ρ, as well as the filling status of the downstream pore, Φ. Front readjustments are
incorporated by allowing partially-filled pores which can also re-empty upon reversal of the direction of meniscus advancement
(p > pj and qj < 0).

We track the displacement progression using a staggered, adaptive Euler time-stepping: at each time step we (a) locate the
position of the front from the filling status Φ, and define the flow network; (b) evaluate the pore pressure p and flow rate q;
(c) check for new meniscus instabilities and update the flow network accordingly; and (d) update the filling status of each
invaded pore (downstream of unstable menisci) by Φ(t+ ∆t) = Φ(t) + qinv(t)∆t/V , where qinv =

∑
u qu is the invading fluid

inflow (summing over all throats with unstable menisci). The timestep ∆t is chosen adaptively so that only a fraction a pore
volume is filled; this allows us to capture the disparate timescales of pore filling and bulk flow [4, 5], a major computational
challenge [6, 7]. When pore invasion ends (Φ = 1), the new interface configuration is resolved by replacing the unstable arcs with
new ones that touch the upstream particle, as shown in Fig. S1(b–c) for overlap at φ = 180◦, complicated due to a succession
of events (therefore allowing demonstration of other, simpler cases). This description provides the nonlocal interaction between
menisci and the times of meniscus advancement and pore invasion in a simple, computationally efficient manner as it excludes
the cumbersome explicit geometrical evaluation of the changes in fluid volume associated with curvature changes.

We enforce a constant injection rate by setting the hydraulic resistance of the injection region (a disk of size of several pores)
to be orders of magnitude larger than elsewhere, and fixing a large pressure drop between the inlet and outermost (outlet) pores;
this ensures a practically constant pressure gradient regardless of front position. The simulations are terminated when an outlet
pore is invaded. For further details of our numerical algorithm see the attached pseudocode.

Modeling the dynamics of fluid displacement

The intricate displacement dynamics, including interface readjustments, residual films and snapoff, contact line and contact
angle dynamics, are subject of intensive research [6–9]. In particular, contact line and angle dynamics and hysteresis are
highly sensitive to physical and chemical heterogeneities which are hard to characterize, requiring microscopic models up to the
atomistic level [6, 9]. Here, we focus on the essential mechanisms associated with the cooperative, nonlocal interface dynamics,
including the spatial nonlocal effect of pore filling on the interface configuration in other locations, and temporal effect due to the
separation of timescales of pore filling and bulk flow [4, 5], by accounting for viscous dissipation in computing the pore filling
rates. Consequently, our model provides the crucial effects of pressure screening [10, 11] and interface readjustments [4, 12, 13]
associated with rapid interface advancement which increases the pressure of the defending fluid, thereby decreasing the capillary
pressures along the front. Pressure screening occurs at high flow rates, where the entire interface is destabilized but only the tips
of the most advanced fingers propagate, due to the high defending fluid pressure in the “gulfs” between the fingers. Interface
readjustments are caused by rapid redistribution of the defending fluid along the invasion front together with flow of invading
fluid from nearby interfacial sites, reducing the capillary pressure and causing the meniscus to recede as the local curvature
decreases. This crucial mechanism explains the disparate timescales of pore filling and bulk flow, and the limitation of avalanches
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(simultaneous invasion of multiple pores) sizes by suppressing further invasion until the excess pressure in the defending fluid
is dissipated by flow [4, 5, 12–14].

While our model considers these crucial mechanisms, it excludes other details including film flow, snapoff, and velocity-
dependence of the contact angle. This simplification is justified because these details have a smaller impact on the displacement
behavior for the problem considered here, and, since the models describing them are being strongly debated [6, 8, 9], including
them in our model may actually weaken our results, in addition to making computations intractable [6, 7]. Specifically, we
note that film flow and snapoff have a minimal effect for the type of medium and conditions considered here: high disorder and
porosity, small throat to pore size ratio, and large viscosity ratio [7, 15–17]. We also find that introducing an empiric correction
in the form of a dynamic contact angle does not significantly affect our results. A noticeable difference between static and
dynamic angles occurs only at the highest Ca considered here, where the angle has a minor effect, and only for small angles;
at lower Ca the difference is minor, whereas at small angles the invasion is relatively insensitive to θ (Fig. 2 in the Letter).
The fact that our model predicts the experimentally-observed invasion behavior across a large range of contact angles and flow
rates [18, 19] implies that it incorporates the essential mechanisms, and that details we have simplified are less important. By
modeling only the most essential mechanisms in a computationally efficient manner, our model provides, for the first time, the
simultaneous effects of dynamics and wettability in a large, disordered domain, overcoming a computational challenge that has
restricted simulations of partially-wetting invasion to either quasi-static (e.g. [1, 20]) or small, homogenous domains [6, 7]).

Derivation of the dimensionless numbers by scaling analysis

Characteristic critical burst curvature

Considering a positive curvature (higher invading fluid pressure), we find the bursting threshold,R = Rc, from the geometrical
conditions for the existence of a stable arc intersecting the particles at an angle θ [1]:

Rc = (α1 + a
√
α2) /2α3 (S1)

where

α1 = r1

(
r2
1 − r2

2 − a2
)

cos θ − r2

(
r2
1 − r2

2 + a2
)

cos θ

α2 = a2
(
a2 − 2r2

1 − 2r2
2

)
+
(
r2
1 − r2

2

)2
+ 4r1r2

(
a2 − r2

1 − r2
2

)
cos2 θ + 2 (2r1r2 cos θ)

2

α3 = a2 − [(r1 − r2) cos θ]
2
.

The critical curvature used in the derivation ofNca andNcoop is obtained by replacing r1, r2 with the normalized mean diameter
l̃ = d̄/a,

Rc =
a

2

(√
1− l̃2 sin 2θ − l̃ cos θ

)
. (S2)

Geometrical conditions for overlap preceding burst

Overlap of menisci is expressed by the geometrical condition χ < 0◦ or χ > 360◦, where χ = φ− η2 − η3 and φ = ∠ABF
is the local front shape, which for our triangular lattice can take one of five values, φ = n · 60◦ with n = 1÷ 5 [Fig. S1(a)]. In
our simulations, disorder may cause the curvatures of the two overlapping menisci to differ, therefore we consider the general
case of η2 6= η3. Here, to derive Ncoop we consider a homogenous lattice (uniform r) and similar curvatures R in the two arcs,
providing η2 = η3 = η, where

η = cos−1

(
r +R cos θ√

R2 + r2 + 2Rr cos θ

)
. (S3)

Considering only the most common case of overlap, χ < 0, and noting that χ is a monotonically decreasing function of R
for all values of φ, r and θ, if χ < 0 at the critical burst curvature Rc [Eq. (S2)] then χ = 0 for some lower pressure R > Rc,
implying that an overlap would occur before burst. The geometrical condition for overlap at exactly the bursting curvature,
χ = φ− η2 − η3 = 0, is found by substituting R = Rc in Eq. (S3),

η = cos−1

[
r [1− cos(2θ)] + cos θ

√
a2 − 4r2 (1 + cos θ)

a

]
. (S4)
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Finally, we define the “Cooperative number” as

N coop = cos
φ

2
− l̃ sin 2θ + cos θ

√
1− l̃2 sin 2θ, (S5)

such thatN coop = 0 coincides with the geometrical condition χ = 0 (using the invertibility of the cosine within 0◦ ≤ η ≤ 180◦),
and N coop > 0 implies overlap preceding burst. We stress that the local front shape φ varies in time and space, and that the
condition for overlap preceding burst χ = 0 was derived here for a homogenous system with equal curvatures of the overlapping
arcs; therefore, in a disordered system not all pores will be invaded by the same instability at a given N coop. Since the overall
pattern is a consequence of many invasion events,N coop should be considered in a statistical sense: a largerN coop value implies
a higher fraction of overlaps, and therefore a more compact pattern. Here we computed N coop using φ = 120◦ [two menisci
advancing into two adjacent pores, Fig. S1(a)] which we found to be most representative for our system [21].

Videos showing the invasion dynamics

The dynamics of fluid invasion leading to the emergence of the patterns in the different regimes (boxed in red in Fig. 2(d) in
the Letter) is demonstrated by videos. Invaded pores appear in gray, highlighting in red the active front (pores currently invaded).
The injection region is marked by a black circle.

1. Video 1a (Ca = 3.2· 10−3, θ = 5◦) and 1b (Ca = 3.2· 10−3, θ = 120◦): Viscous fingering—continuous advancement of
individual fingers towards the outlet, splitting at their tips. The final pattern is radial with thin fingers and highly irregular
interfaces, exhibiting little trapping of the defending fluid. Occurring at high injection rates, irrespective of θ.

2. Video 2 (Ca = 1.3· 10−5, θ = 5◦): Capillary fingering—intermittent propagation of different parts of the interface,
leading to a asymmetrical pattern with a fractal interface and multiple trapped clusters. Occurring at slow drainage (low
Ca and θ).

3. Video 3 (Ca = 1.3· 10−5, θ = 120◦): Compact displacement—simultaneous advancement of large parts of the interface,
providing continuous, radial growth of a dense pattern with a stable, smooth interface. Occurring at slow imbibition (low
Ca, high θ).
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