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Abstract

Micromechanics of sediments: a variational approach to grain-scale simulations

by

Ran Holtzman

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Tadeusz W. Patzek, Chair

The mechanics of particulate materials is studied through grain-scale simulations.

We present a micromechanical model, termed Quasi-Static Granular Model (QuSGM). A

three-dimensional, irregular pack of spherical grains is loaded by incremental displacements

of its boundaries. Deformation is described as a sequence of equilibrium configurations.

These configurations are found by minimizing the total potential energy of the pack with

a modified conjugate gradient method. The macroscopic elastic moduli are evaluated from

the intergranular forces and the deformation of the pack. Our quasi-static variational

approach avoids the difficulties associated with numerical time integration encountered by

dynamic models such as the discrete elements method.

To model cohesionless materials, we formulate constitutive laws based on the

contact mechanics theories of Hertz, Mindlin, and Deresiewicz. Two types of models are

presented: (a) frictionless, assuming ideally-smooth grains; and, (b) frictional, accounting

for intergranular friction. Our simulations confirm that the bulk modulus mainly depends

on the normal contact forces, and that grain-scale elasticity is suitable to describe many fea-

tures of the inelastic response of granular materials. While our frictionless model supports

the idea that microscopic friction is not the sole mechanism of macroscopic shear resis-

tance, it underestimates the shear modulus. The frictional model is verified by assigning

the experimentally-measured grain properties, and comparing the calculated effective mod-

uli with published experiments. Good agreement between predicted and measured moduli,

achieved with no adjustments of material parameters, establishes the physical soundness

of the quasi-static approach.
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Our results shed light on the important interactions between the microscopic and

macroscopic scales. By micromechanical analysis we expose the mechanisms responsible

for hysteresis, strain hardening, and stress-induced anisotropy. Our simulations capture

rare “jump” events, in which few grains move significantly more than others, causing

irreversible variations in the contact force network. Macroscopically, these variations cor-

respond to large stress fluctuations, which significantly affect the bulk properties of a grain

pack. These observations demonstrate the sensitivity of the bulk properties to small per-

turbations in the grain configurations, an intrinsic source of difficulty in predicting the

behavior of particulate materials. Further difficulty is related to memory effects, which re-

quire information about the loading history to characterize a grain pack. Our observations

are supported by published experiments.

We apply QuSGM to geological systems in which micromechanics of sediments is

crucial. We examine the micromechanical origins for nonlinear deformation of the weakly-

cemented sediments. Mechanisms for inelastic contact deformation, such as closure and

opening of microcracks, are modeled by varying the stiffness of each contact according

to the local deformation. Our model shows that account of nonlinear cement deforma-

tion at the grain-scale is required to reproduce the experimentally-observed bulk response.

We use QuSGM to quantify the impact of hydrate dissociation on the mechanical prop-

erties of marine sediments. We deduce a degradation of sediment strength from a re-

duction of its elastic moduli. In conclusion, QuSGM shows great potential for advanc-

ing the understanding of granular mechanics, and modeling complex geological systems.

Tadeusz W. Patzek
Dissertation Committee Chair
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Chapter 1

Introduction

GRANULAR MATERIALS are a collection of discrete particles or “grains”. They consti-

tute a large group of natural and artificial materials, from powders and seeds to sands and

boulders, with scales varying from nanometers to meters. These substances are frequently

encountered in daily life, making understanding of their behavior important in many prac-

tical applications [Jaeger et al., 1996b,a; Behringer & Jenkins, 1997; Herrmann et al., 1998;

Behringer et al., 1999; Bagi, 2004; Hinrichsen & Wolf, 2005].

The subject of this dissertation is the mechanics of granular matter, namely the

evolution of its mechanical properties under deformation. Complex interactions among

grains, together with disordered microstructure and heterogenous stress distribution, lead

to highly nonlinear, hysteretic behavior, where small perturbations can significantly alter

the bulk response [Behringer et al., 1999]. For example, slight changes in packing density

can result in a transition from a solid- to a fluid-like behavior, i.e. loss of shear rigidity, and

vice-versa, i.e. jamming [O’Hern et al., 2003]. Consequently, understanding the mechanics

of granular materials is among the deepest and most interesting unsolved problems in

solid-state physics [O’Hern et al., 2003; Bagi, 2004; Hinrichsen & Wolf, 2005; Walsh et al.,

2007]. This challenge is enhanced by the limited data stemming from experimental and

computational difficulties.

The purpose of this dissertation is to enhance the understanding of granular me-

chanics, with applications to geophysical systems, i.e. micromechanics of sediments and

rocks. To study the underlying mechanisms that determine the behavior of geological ma-

terials, we construct a suite of models. The complex physics of particulate materials poses

certain restrictions on computations, which we address by formulating a novel computa-

tional technique. The results of our simulations delineate relations between grain-scale
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and macroscopic properties. Our model provides important insights into the underlying

physics, advancing our ability to predict the mechanical response of granular matter.

This chapter is organized as follows. In Section 1.1 we motivate the problem,

highlighting its practical importance and the benefits of modeling a granular pack by grain-

scale numerical simulations. The objectives are specified in Section 1.2. In Section 1.3,

we review different approaches to micromechanical modeling. Finally, in Section 1.4, we

discuss the scope, and provide an overview of this dissertation.

1.1 Motivation

Intensive study of granular mechanics has been motivated by its large socioeco-

nomic impact and the intriguing underlying science. Despite the substantial progress in

understanding of granular mechanics, many questions remain unsolved [Behringer et al.,

1999; Bagi, 2004; Hinrichsen & Wolf, 2005], particularly in the context of geologic mate-

rials [Haff, 1997]. Here, we review these unresolved challenges and some of the related

applications, which have motivated the approach taken in this dissertation.

1.1.1 The importance of micromechanical evidence

The mechanical properties of a particulate material are determined by the grain

properties and the intergranular interactions, see, e.g., Oda et al. [1998], Behringer et al.

[1999], Ribière et al. [2005], Muthuswamy & Tordesillas [2006], Kruggel-Emden et al. [2007],

Walsh et al. [2007], Cole & Peters [2007], Tavarez & Plesha [2007], Peña et al. [2008] and the

references therein. Consequently, continuum macroscopic models have limited predictive

capabilities relative to discrete grain-scale models.

Analysis of grain displacements and contact forces provides crucial insight into

mechanisms that control the response of a granular sample. For example, most of the

load within a grain pack is carried by relatively few grains, termed “force chains”, see,

e.g., Behringer et al. [1999], Majmudar & Behringer [2005], Goldenhirsch & Goldenberg

[2005] and the references therein. Minute perturbations of the microstructure, for instance

large displacements of several grains, can lead to large fluctuations in the force network,

with significant consequences for the mechanical properties of the pack [Behringer et al.,

1999; Ribière et al., 2005; Peña et al., 2008]. In cemented materials, heterogenous force

distribution can lead to fracturing and failure of the material, which cannot be predicted
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from macroscopic averaged quantities such as stress [Potyondy & Cundall, 2004]. Relating

the micro- and macro-scale is a fundamental and necessary task in the study of granular

matter [Kruyt & Antony, 2007; Walsh et al., 2007].

1.1.2 Complementing experimental data with computational methods

A major obstacle in understanding granular mechanics is the lack of micromechan-

ical evidence. Technical difficulties restrict measurements at the grain scale, i.e. intergran-

ular forces and grain displacements [Cole & Peters, 2007]. Consequently, computational

methods have become a valuable tool in obtaining such data [Kruggel-Emden et al., 2007;

Walsh et al., 2007; Cole & Peters, 2007; Tavarez & Plesha, 2007; Peña et al., 2008]. A

review of experimental techniques with their shortcomings follows.

The microstructure, e.g. grain shapes and positions, can be evaluated by two types

of procedures: (a) construction of a three-dimensional (3D) image from a sequence of two-

dimensional (2D) microscope images [Lin & Cohen, 1982; Tomutsa & Silin, 2004]; and (b)

3D microtomography by magnetic resonance imaging (MRI) [Ng & Wang, 2001] or X-ray

tomography [Fu, 2005]. In (a), the sequence of sections is usually obtained by polishing with

an abrasive surface. However, the polishing procedure limits the resolution of the sectioning

to a micron scale, insufficient to investigate the pore space of materials such as chalk

[Tomutsa & Silin, 2004]. Alteratively, focused ion beam can be used for successive removal

of layers as fine as ten nanometers [Tomutsa & Silin, 2004]. Regardless of the sectioning

technique, damage is introduced, obscuring the analysis [Jin, 2006]. Additionally, these

methods are cumbersome.

While microtomography offers limited spatial resolution (∼1 micron), it is non-

destructive, allowing to track grain displacements during an experiment. For instance, Ng

& Wang [2001] conducted shear tests inside the magnetic core of MRI equipment. Ribière

et al. [2005] used glass beads immersed in index matching oil containing a laser dye, packed

within a transparent vessel. Confocal microscopy was used to track the motion of the beads,

which appear as dark circles of variable intensity according to their distance from the lens.

Behringer et al. [1999] used transparent boundaries to track motions of photoelastic disks.

Measurements of intergranular forces are restricted to either 2D setting, a single

pair of grains, or along the sample’s boundaries. Forces acting between a single pair of

grains can be evaluated through the deformations on their contact interfaces, which can be
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measured using laser sensors [Cole & Peters, 2007] or atomic force microscopy [Grierson

et al., 2005]. Forces within an assembly of grains can be evaluated using photoelastic

materials. When placed between crossed polarizers, these materials produce light patterns

according to the strain they experience, from which the stress can be evaluated [Behringer

et al., 1999]. Photoelastic surfaces allow force measurements along the boundaries [Corwin

et al., 2005]. A 2D force network can be evaluated by loading an array of photoelastic disks,

see Behringer et al. [1999], Majmudar & Behringer [2005], Goldenhirsch & Goldenberg

[2005] and the references therein.

A methodic investigation of the effect of local microscopic properties on the re-

sponse of a granular pack requires numerous realizations, varying the type of grains, the

microstructure, and the loading scheme, among other factors [Taboada et al., 2006]. The

aforementioned short-comings of experimental techniques together with increasing comput-

ing capabilities make grain-scale numerical simulations an attractive alternative [Li et al.,

2005; Taboada et al., 2006; Kruggel-Emden et al., 2007; Walsh et al., 2007; Cole & Pe-

ters, 2007; Peña et al., 2008]. The ability of such simulations to predict the macroscopic

properties and reproduce microscopic features such as force chains is encouraging.

1.1.3 Limitations of current computational techniques

The large, highly-nonlinear system of equations corresponding to the large num-

ber of grains1 and the complexity of the intergranular interactions require construction of

efficient computational techniques [Vu-Quoc & Zhang, 1999a; Tavarez & Plesha, 2007]. A

delicate balance must be achieved by modeling the complex interactions in a simple man-

ner, while preserving the essential grain-scale physics. For example, the effective medium

theory offers a relatively simple analytical solution based on highly-restrictive simplifying

assumptions, which limit its applicability, see Section 1.3.6.1.

Lacking sufficient experimental data, studies of granular mechanics heavily rely

on numerical grain-scale simulations. Particularly, the Discrete Element Method (DEM)

[Cundall & Strack, 1979] is widely used in modeling many types of granular materials. A

review of numerical methods in granular mechanics is provided in Section 1.3.6.2; here, we

1As an example, a 100x10x10 mm3 sample of sand with average grain radius of ∼0.1 mm, packed
in a simple-cubic lattice (porosity of ∼48%), contains ∼ 2.4 · 106 grains. Obviously, the higher packing
efficiency of natural samples makes the number of grains even larger [Jaeger & Nagel, 1992]. Computational
constraints often restrict simulations to a few thousands of grains.
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highlight some of the principal difficulties in these methods, which motivated us to seek

for an alternative approach.

In DEM, intergranular interactions are modeled as a dynamic process, accounting

for grain inertia. The equilibrium configurations are obtained by explicit numerical inte-

gration of Newton’s equation of motion over time. Constraints imposed on the time step

make DEM simulations time-consuming [O’Sullivan & Bray, 2004; Tavarez, 2005; Tavarez

& Plesha, 2007]. To damp grain oscillations and accelerate computations, a damping pa-

rameter is often introduced, and its value together with those of material properties such as

the grain density and contact stiffness are adjusted [Thornton, 2000; O’Sullivan et al., 2004;

Potyondy & Cundall, 2004; Jin, 2006; Peña et al., 2008], sometimes to unrealistic values.

Such values may lead to “over-damping” of the grain motion, resulting in a substantial

number of grains that are not in mechanical equilibrium. While it is difficult to determine

an appropriate time step for the numerical integration, detection of the related instabilities

may be masked by other energy-dissipative mechanisms [Tavarez & Plesha, 2007]. In this

dissertation, we propose a technique which does not require numerical integration, avoiding

the aforementioned difficulties.

1.1.4 Advantages of modeling geologic materials as granular

Our work is geared towards geophysical applications, involving deformation of

soils and rocks. By “soils” we refer to uncemented sediments such as sands, which fall under

the classical definition of cohesionless granular matter. By “rocks” we refer to cemented

sediments, as well as crystalline and metamorphic rocks. In particular, we focus on the

poorly-consolidated, weakly-cemented sediments, denoted hereafter as cohesive materials.

In these highly-porous materials, the grains are bonded together at their contacts by small

amounts of cement. Here, we briefly discuss the natural occurrence of these substances,

and provide few examples of applications in which knowledge of their mechanical properties

is crucial.

Sediments are formed by deposition (also denoted as “settlement” or “sedimen-

tation”) of mineral grains, either transported or formed in-situ, followed by compaction

and diagenesis [Jin, 2006]. Diagenetic processes include alteration of the minerals by phys-

ical, chemical or biological processes. The compaction process is studied in details in this

dissertation. As a result of diagenesis, the sediment may become cemented. Particularly,
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cement around the contacts can form by deposition of minerals which infiltrate to the pore

space in aqueous solution, see, e.g., Bernabè et al. [1992]; Jin [2006]; Garcia & Medina

[2007] and the references therein, and pressure dissolution [Tada & Siever, 1989; Dewers

& Ortoleva, 1990; Renard et al., 2000; Gratier et al., 2005]. For example, low fluxes of

suspensions containing cementing agents, e.g. clay particles, are attracted by capillarity

to the pore throats, where cement is deposited [Garcia & Medina, 2007]. In pressure so-

lution, stress concentration at the intergranular contacts causes grains to dissolve. The

dissolved minerals can then reprecipitate at adjacent free grain surfaces [Tada & Siever,

1989]. Investigating the mechanical effects of such cementation is an important objective

of this work.

Under special circumstances, sediments can have cohesive strength from sources

other than cement, and thus exhibit behavior which is somewhat closer to that of a ce-

mented material. For example, in powders or clays made of particles smaller than ∼10

microns, van der Waals and electrostatic forces are comparable to other forces, e.g. gravity

[Visser, 1989]. Alternatively, low saturation of fluids can generate strong capillary forces,

enhancing the sediment’s stability [Halsey & Levine, 1998]. Finally, ice and gas-hydrates

can serve as unstable cement material, for instance in marine sediments [Dvorkin et al.,

1999]. The effect of gas-hydrates and their dissociation is explored in this dissertation.

The abundance of related applications and their large socioeconomic impact make

understanding of geologic materials crucial. Examples of natural phenomena and industrial

applications in which soil and rock micromechanics play a decisive role include:

• Depositional and diagenetic processes in sediments. The flow and mechanical proper-

ties of sediments and sedimentary rocks are determined by deposition and diagenesis

[Jin et al., 2003; Jin, 2006; Garcia & Medina, 2007].

• Landslides. A major worldwide hazard, which also has a significant geomorphologic

impact, as it often controls long-term slope erosion rates. Determination of landslide

initiation, travel mode, and size is crucial, yet not well-known [Aharonov & Katz,

2006; Katsman et al., 2006].

• Faulting and activation of faults. Relative shear of fault planes and fault gouges

involve fracturing and grain breakage near the fault plane. Faulting is important in

understanding tectonics and earthquakes [Guo, 2006; Mair et al., 2007].
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• Geotechnical projects. Design and stability analysis of an underground structure,

foundation, landfill, or soil improvement depends on the subsurface mechanical and

flow properties [Tejchman & Wu, 1995].

• Reservoir engineering. Water and oil reservoirs are made of porous sediments and

rocks. Safe and efficient design and operation of these reservoir requires handling

problems such as subsidence, well-bore instability, and sanding, see Saidi et al. [2003]

and the references within.

• Conveying and storing seeds, soils, and powders [Shimizu, 2002].

1.2 Objectives

The main objective of this work is the study of granular mechanics. We wish to

determine the main mechanisms involved in deforming a particulate material, and predict

evolution of its properties. In particular, we seek to relate the microscopic and macroscopic

properties. The following objectives are set forth to achieve these goals:

1. Formulation of physically-based mathematical models of granular matter. Microme-

chanical models are developed for two type of materials: (a) cohesionless, and (b)

weakly-cemented. A crucial component is the formulation of constitutive relations to

model the intergranular interactions. Simple, yet comprehensive rules are proposed,

involving few parameters which can be evaluated experimentally.

2. Delineation of important microscopic mechanisms. Analysis of numerical simulations

with the above models together with published experimental data are used to quantify

the effects of phenomena observed at the meso-scale on the bulk response. Relating

the grain- and macro-scale is considered one of the fundamental challenges in granular

mechanics.

3. Prediction of the mechanical properties of a granular sample. Successful fulfilment

of the former items promotes the ability to predict the macroscopic properties of a

granular sample, which are of interest in most practical applications.

4. Application of granular mechanics to geological systems. We use our models to study:

(a) the impact of cementation on the behavior of weakly-cemented sediments, focus-

ing on the determination of the micromechanical origins for the nonlinear sediment
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deformation; and (b) the consequences of hydrate dissociation in unconsolidated sed-

iments.

5. Development of efficient computational techniques. Finding the equilibrium configu-

rations of the grains requires numerical solution of a large, highly-nonlinear system of

equations. To avoid the difficulties involved in solving these equations by numerical

integration, we develop a variational approach, in which the solution is obtained by

minimizing the pack’s potential energy. A modified conjugate gradient method is

proposed for the minimization.

1.3 Review: micromechanical models for particulate matter

In micromechanical models, also denoted hereafter as “discrete” or “grain-scale”,

the material response is predicted from account of the grain-scale physics. Thus, a grain-

scale model includes information about the geometrical and material properties of the

grains. From these properties, the grain motion is related to the intergranular loads via

a set of constitutive relations. In this section, we review approaches taken to model the

micromechanics of a granular sample, focusing on aspects related to implementation within

numerical simulations. We discuss the characterization of a pack of grains, the constitutive

rules, and analytical and numerical methods employed to compute the bulk response of

the pack.

1.3.1 Dimensionality

Computations and analysis of 2D models are significantly simpler than in 3D,

as the number of degrees of freedom is reduced, and “out-of-plane” motion is prohibited

[Ghaboussi & Barbosa, 1990]. Moreover, 2D settings allow for easier experimental measure-

ments of grain-scale parameters, for instance of the displacements and forces in an array

of photoelastic disks [Behringer et al., 1999]. However, differences in the geometry and

kinematics make extrapolation of material properties obtained from a 2D model into the

actual 3D geometry questionable [Ghaboussi & Barbosa, 1990; O’Sullivan, 2002; Hazzard

& Mair, 2003; Tavarez & Plesha, 2007].
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1.3.2 Evaluation of grain-scale parameters

We distinguish between two approaches: (a) “one-to-one” modeling, where each

physical grain is modeled explicitly, allowing to evaluate the model parameters from mea-

surements of grain-scale properties, see, e.g., Holtzman et al. [2008b,a]; and (b) grains

are model elements used to discretize a porous continuum, in order to compute the effec-

tive bulk properties of a heterogenous medium, see, e.g., Tavarez & Plesha [2007]. Each

“grain” in the model is a volumetric element which may represent both solid grains and

pore space. Thus, the model parameters in (b) are the effective properties of a granular

volume, which may differ significantly from the properties of the grains within that volume.

While approaches (a) and (b) are conceptually different, they can be implemented with

similar computational techniques, e.g., DEM.

The number of grain-scale model parameters depends on the constitutive rela-

tions. Simple relations that are based on established theories, such as those described in

Section 1.3.5, offer the advantage of having fewer model parameters which can be measured

from experiments. In other models, the value of parameters which cannot be measured is

often determined by an ad hoc process of validating the modeling results with a set of exper-

imental data [Tavarez & Plesha, 2007]. Tavarez & Plesha [2007] proposed a methodology

to evaluate such grain-scale parameters from given macroscopic properties. The authors

relate grain-scale and macroscopic parameters through an analytical solution, obtained for

a unit cell containing several particles arranged in a regular manner.

1.3.3 Microstructure

1.3.3.1 Grain shapes

The mechanical properties of a granular sample are affected by the grain shapes.

For instance, experimental comparison between round and angular grains shows that the

bulk stiffness and the slope angle of a poured granular material increase with grain angu-

larity [Murphy, 1982; Robinson & Friedman, 2002]. Interlocking in angular grains makes

the bulk response more anisotropic, see Peña et al. [2008] and the references within, and

can increase the amount of plastic grain deformations at high stresses [Murphy, 1982].

Irregular grain shapes, or large deformations of regularly-shaped grains, make the

contact geometry complex. In modeling a granular sample, such geometry complicates

formulation of the contact detection algorithm [Ghaboussi & Barbosa, 1990; Williams
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& O’Connor, 1995] and the intergranular constitutive rules [Munjiza et al., 1995]. The

large number of grains in a pack increases the challenge in modeling complex geometries.

As a result, the grain shapes are often approximated by spheres (disks in 2D), allowing

characterization of the grain size by a single parameter, its radius [Kruggel-Emden et al.,

2007; Tavarez & Plesha, 2007], or ellipsoids (ellipses) [Rothenburg & Bathurst, 1991; Lin

& Ng, 1997; Vu-Quoc et al., 2000; Jin, 2006]. The small and localized grain deformations

exhibited in many cases [Johnson, 1987] justify such approximations even for deformed

grains. Alternatively, 2D polygons [Alonso-Marroquin & Herrmann, 2002; Peña et al.,

2008], and 3D polyhedra [Ghaboussi & Barbosa, 1990] are used. Irregular grains can be

modeled by clusters of spherical grains, bonded together at their contacts [Jensen et al.,

1999; Vu-Quoc et al., 2000]. Such approach maintains the computational simplicity, while

allowing to model grain damage and fracturing [Jensen et al., 2001; Abe & Mair, 2005].

Modeling grains via simple shapes may not be appropriate when inhibition of

grain rotations and interlocking are crucial, for instance in granular flow of highly-irregular

grains [Ghaboussi & Barbosa, 1990; Tavarez & Plesha, 2007]. Moreover, the assumption

of rounded grains can obscure the effect of other parameters. For example, the importance

of grain size distribution increases with the angularity of the grains [Mair et al., 2002;

Robinson & Friedman, 2002; Guo, 2006]. Nonetheless, the predictive capabilities demon-

strated by models employing simple grain shapes (see, e.g., Walsh et al. [2007], Cole &

Peters [2007], Tavarez & Plesha [2007] and the references within), imply that, at least for

relatively round particulate materials, such a simplification is satisfactory.

1.3.3.2 Packing

Characterization of a disordered packing, e.g. through a fabric tensor [Mehrabadi

et al., 1988], is cumbersome. Conversely, it is much simpler to characterize a structured

packing of uniform grains. In addition, structural symmetries make computations of the

bulk response easier. For example, by assuming infinitesimally-small deformations of a

grain lattice, Duffy [1959] obtained a closed-form analytical solution relating the macro-

scopic stress and strain. O’Sullivan [2002] used structured arrangements to compare ex-

periments and simulations. However, the author reported that material and geometrical

heterogeneities diminished the symmetry once the pack was loaded.

Symmetry is highly uncommon in natural materials [Deresiewicz, 1958a; Vaisnys
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& Pilbeam, 1975; Goldenhirsch & Goldenberg, 2005]. Since microstructure plays a signifi-

cant role in determining the mechanical properties of a grain pack, a regular arrangement

cannot reliably reflect the behavior of a natural material [O’Sullivan, 2002; Bagi, 2003].

For these reasons, in most models a disordered (“random”) packing is used. In particu-

lar, random packing of spherical grains is considered appropriate to model many natural

granular systems [Finney, 1970; Bagi, 2003, 2005; Zhang & Makse, 2005; Jin, 2006].

To simulate deformation of a grain pack, a sufficiently dense, irregular initial equi-

librium configuration is required [O’Sullivan, 2002; Bagi, 2005]. The density of the packing

is usually characterized through the coordination number of the grains [Saidi et al., 2003].

A dense, irregular configuration could be obtained by advanced imaging of a physical sam-

ple. However, imaging procedures are cumbersome. Alternatively, an initial configuration

could be generated numerically, using either “constructive” or “dynamic” algorithms [Bagi,

2005]. Constructive algorithms are based on geometry alone and thus require relatively

small computing time; however, these algorithms may produce arrangements with low

coordination numbers, gaps, or anisotropic structure [Bagi, 2005].

In dynamic algorithms, a loose packing is created by placing a relatively small

number of grains in a bounded domain. Then, the packing density is increased by either

expanding the grains or moving the boundaries closer together. A static equilibrium con-

figuration is found by simulating intergranular interactions, e.g. with DEM. The large

number of collisions and grain rearrangements makes such a procedure time-consuming

[Bagi, 2005]. A more efficient procedure based on a quasi-static compaction model is pre-

sented in Section 2.7.2.

1.3.4 Boundaries of a grain pack

The boundaries in a model of a grain pack represent the outermost parts of the

pack, which are in direct interaction with the surroundings. We use the term boundary

conditions to refer to the mechanical and geometrical properties of the boundaries. External

loading on the pack is modeled by moving the boundaries, forcing the grains to rearrange

and deform.

We distinguish between two types of conceptual models, in which the domain

represents: (a) an entire sample, such as that used in a triaxial test; and (b) a representative

volume element (RVE) of a larger medium, such as a small volume within an in-situ geologic
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strata or large sample. The different external environment experienced by the outermost

grains in (a) and (b) imply that different boundary conditions should be assigned.

In a triaxial test, the sample is encapsulated within the solid walls of a load

cell [Jaeger & Cook, 1979]. Regardless of the type of test, if the sample is cohesionless,

external physical boundaries are required to keep the pack intact. The regular shape of

such boundaries, e.g. a load cell, make it convenient to place the model boundaries at

the cell’s walls. Since these walls may have properties different than those of the grains,

the model parameters and type of interactions between the boundaries and the outermost

grains can differ significantly than those which are assigned for the grains within the pack.

Conversely, in an RVE, the interactions with the boundaries represent the physical

interactions with the external grains surrounding the RVE, and thus should be as similar

as possible to those within the pack itself [Mesarovic & Padbidri, 2005]. The concept of

an RVE is often introduced when the size of the domain of interest is too large for direct

modeling of its constituents. In granular materials, the large number of grains makes such

approach essential.

Common types of boundaries used in modeling an RVE are: (1) solid walls, (2) a

peripheral layer of particles, and (3) periodic boundary conditions. The simplest approach

is bounding the RVE by solid walls, which are assigned material properties similar to those

of the grains. The grains along the boundaries interact with the walls, presumably in a

manner similar to the interactions with neighboring grains. However, the different kine-

matic constraints posed by solid walls introduces boundary effects. These effect may be

partially reduced by replacing the solid walls with a peripheral layer of particles, displacing

the boundaries by affine motions of these particles [Heyliger & McMeeking, 2001]. Never-

theless, such an irregular surface may lead to the undesired concentrated stresses near the

boundaries, caused by interactions with the protruding boundary grains.

In many types of problems, periodic boundary conditions reduce the boundary

effects. To model a rectangular granular pack, Martin et al. [2003] proposed the following

approach: when a particle protrudes outside the RVE through a given face, an additional

“mirror” particle is generated on the opposite face. The mirror particle interacts with other

particles on that face. However, mirror particles may still introduce artificial concentrated

loads at the boundaries [Mesarovic & Padbidri, 2005].

Boundary effects can lead to quantitative errors, such as overestimated bulk stiff-

ness due to protruding grains, and qualitative errors, where phenomena such as localization
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are not reproduced [Procopio & Zavaliangos, 2005; Mesarovic & Padbidri, 2005]. In addi-

tion, the analysis of micromechanical models involves evaluation of the macroscopic stress

and strain from the grain-scale parameters, which may also be affected by the boundaries

[Holt, 2001]. The effect of the boundaries on the interior parts of the pack is reduced by

increasing the size of the domain [Mesarovic & Padbidri, 2005]. To limit the influence on

the subsequent analysis, e.g. on the evaluation of macroscopic properties, the analysis can

be performed on a smaller subdomain, far from the boundaries [Holt, 2001; Mesarovic &

Padbidri, 2005].

Finally, we note that in a triaxial test, the presence of the load cell affects the test

results [Jaeger & Cook, 1979]. Thus, a relatively large sample is used to minimize these

effects. In simulating a triaxial test, the computational constraints on the number of grains

may amplify the influence of the boundaries. Furthermore, for simplicity, simulations often

use a rectangular domain, while most experiments are performed on cylindrical samples

[Jaeger & Cook, 1979]. However, using rectangular samples allows application of three

different loads in three perpendicular direction (“polyaxial loading”), as opposed to two

only in triaxial2 tests on a cylindrical sample. The importance of the intermediate load in

determining the sample’s strength, led to the development of experimental techniques for

polyaxial testing on rectangular samples [Chang & Haimson, 2000].

1.3.5 Constitutive relations for intergranular interactions

External loading on the boundaries of a grain pack causes the grains to rearrange

and deform. Deformation of the grains, and, in a cemented pack, of the cement material,

is accompanied by stresses. Micromechanical models use a set of constitutive rules which

relate the deformations, evaluated from the relative motion between the grains, to the

resultant forces and moments.

If grains experience large, inelastic deformations, the contact geometry and the

intergranular interactions become highly complicated [Johnson, 1987]. In such cases, in-

elastic grain deformations can be modeled through the intergranular constitute rules, see,

e.g., Vu-Quoc & Zhang [1999b] and Zhang & Vu-Quoc [2007]. Alternatively, finite ele-

ments method (FEM) approximation of each contact region can be employed to compute

the force-displacement relations [Munjiza et al., 1995]. In modeling stiff grains, e.g. sands,

2The naming is somewhat misleading: strictly speaking, in a triaxial tests the load is biaxial, with
identical loads in two principal directions. Accordingly, a polyaxial test is often called “true triaxial”.
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it is often assumed that grains experience small deformations, with negligible grain dam-

age or fracturing. This assumption is based on the experimental observation that, unless

exceedingly high stresses are applied, individual grains exhibit very little damage [Dere-

siewicz, 1958a; Vaisnys & Pilbeam, 1975]. Similarly, in cemented grain packs, most of the

damage occurs within the cement material [Bernabè et al., 1992; Yin & Dvorkin, 1994;

Holt, 2001; Saidi et al., 2003].

Using linear-elasticity to model grain deformations, together with simplified grain

and contact geometry, allows development of closed-form, analytical expressions for the

constitute rules. In particular, the contact theories of Hertz [1882], Mindlin & Deresiewicz

[1953] and Deresiewicz [1954] are often employed in constructing quasi-static rules. For a

wide range of materials undergoing small deformations, the Hertzian model is considered

an adequate description of the force component acting normal to the contact interface, see

Johnson [1987], Dintwa et al. [2008] and the references therein. Similarly, the models of

Mindlin and Deresiewicz adequately describe intergranular shear (Johnson [1987], Dobry

et al. [1991], Vu-Quoc & Zhang [1999a] and the references therein) and torsion [Johnson,

1987; Segalman et al., 2005].

In this dissertation, we formulate constitutive rules based on the theories of Hertz,

Mindlin, and Deresiewicz. Below, we summarize the underlying assumptions and main con-

cepts employed in these theories, where the essential formulae are provided in Sections 2.4

and 3.3. In Chapter 4 we develop constitutive rules for cemented grains; a literature review

of such rules follows in Section 1.3.5.3.

1.3.5.1 Hertzian contact theory

The Hertzian contact theory accounts for the normal compressive force developed

at the interface between two bodies (grains) pressed against each other. The following

assumptions are employed in this theory:

(1) Ideally smooth (“frictionless”) contact surfaces.

(2) Stresses are highly concentrated in a region close to the contact interface.

(3) The contact area is much smaller than the size of each grain.

(4) The contact area is much smaller than the radius of curvature of the grains.

(5) The deformation of each grain is small enough to be approximated by linear-elasticity.
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(6) The material of each of grain is isotropic and homogeneous.

From the first assumption, it follows that only normal tractions are transmitted

across grain contacts. The contact surfaces are considered sufficiently smooth to ignore the

effect of microscopic irregularities, e.g. asperities, which could lead to high variations in

the contact stresses. To simplify the mathematical formulation, the geometry of the grain

surface near the contact interface is approximated by a second-order polynomial.

Assumption (2) is based on the physical observation that stresses decrease rapidly

with the distance from the contact interface. Thus, the stresses in the contact region

do not critically depend upon details far away from that region, such as shape of the

distant portions of the grains or the way they are supported. This insensitivity allows to

approximate each grain as infinite in size relative to the contact region. Combining the

latter approximation with assumptions (3) and (4), the geometry of each grain is modeled

by a half-space, semi-infinite in extent and bounded by a planar surface. The contact area

(circular for spherical grains) is modeled as a plane which lies within this planar surface.

Based on the former assumptions, together with (5) and (6), the stresses and

strains developed away from the contact region are neglected, assuming remote parts of the

grains experience rigid body motion. Furthermore, if a grain is compressed against several

grains, the locality of the small stresses allows the forces to be evaluated independently. To

obtain an analytical solution using the theory of linear elasticity, a boundary-value problem

is formulated with the following boundary conditions: at the contact interfaces, prescribed

normal displacements; along the other boundaries, zero tractions. Analytical expression is

obtained by adopting a known solution in terms of the stresses satisfying these conditions.

The solution admits an axisymmetric pressure distribution, and the resultant force is found

by integration over the contact area.

Hertzian theory is often used to evaluate the normal force component acting

between non-smooth particles, assuming that the effect of the loads caused by frictional

resistance on the normal component is negligible [Johnson, 1987]. This hypothesis was

verified numerically [Dintwa et al., 2008], and justified theoretically for the spacial case

of identical grain properties, as well as for dissimilar properties if the coefficient of static

friction between the grains, µ, is much less than unity [Johnson, 1987].

An extension of Hertz’s theory to more general settings, accounting for dynamics,

inelastic deformations and rough surfaces, can be found in Johnson [1987]. For a review of
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such “extended” models, and their implementation in numerical simulations, see Kruggel-

Emden et al. [2007].

1.3.5.2 Mindlin-Deresiewicz contact theory

A model for the loads associated with frictional resistance at the contact between

two bodies, denoted hereafter as “frictional loads”, was presented by Cattaneo [1938] and

independently by Mindlin [1949]. The authors considered the special case of monotonic

tangential load applied with a fixed normal compression. Extensions for simultaneous

variations in the normal and tangential loads [Mindlin & Deresiewicz, 1953] and torsional

oscillations [Deresiewicz, 1954] are described below. Since intergranular torsion has little

effect on the macroscopic stress, see Section 3.5, we focus here on the tangential component.

In developing their theory, Mindlin and Deresiewicz adopted some of the assump-

tions listed in the previous section. Each grain is modeled as a linear-elastic half-space,

undergoing small and localized deformations. The effect of the frictional loads on the nor-

mal force is assumed negligible, such that the normal force component can be computed

independently, using Hertz’s theory. Two modes of contact are considered: (a) stick (or,

“no-slip”); and (b) slip. If the entire contact area is in stick, the contact surfaces do not

move relative to each other. Thus, relative lateral motion of the bodies deforms the region

around the contact in shear. In slip, portions of the contact surfaces move relative to each

other. Employing Coulomb friction model, if the entire surfaces slip (“slide”), the resultant

tangential force Q is evaluated by Q = µP , where P is the normal force. Thus, sliding is

expected if the angle between the oblique force and the contact area exceeds tan−1(µ).

With the assumption of no-slip, kinematic boundary conditions computed from

the relative displacements between the grains are prescribed. Solution of a boundary-

value problem with these conditions predicts infinite stress at the edge of the contact area

[Mindlin, 1949]. Thus, “partial slip” (otherwise denoted by “micro-slip”) is considered: a

portion of the contact area is slipping, while the remainder is in stick3. The slipping area

is found by assuming Coulomb’s model holds point-wise, meaning that the tangential trac-

tions can be computed as the product of the normal tractions and the friction coefficient,

µ. Under fixed normal compression, the model predicts slip at the outer edges of the con-

3Partial slip is not expected if the grains are loaded by an oblique force with the ratio of tangential
to normal forces held fixed: if this ratio is smaller than µ, slip will occur over the entire contact area;
otherwise, it will not occur at all [Walton, 1978; Johnson, 1987]
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tact area, spreading inwards as the tangential load is increased4. As the tangential force

approaches the product of the normal force and the friction coefficient, the stick region

shrinks to a point, and the bodies slide.

Experiments show that slip causes energy dissipation, related to plastic deforma-

tion by shearing of surface asperities [Johnson, 1987]. Dissipation makes the deformation

process path-dependent, where forces depend on the loading path. As an example, consider

loading by a fixed normal force, while increasing the tangential force. Slip will spread from

the outer annulus inwards, directed along the direction of the tangential force. Now, if the

tangential load is subsequently decreased, the process does not simply reverse. Instead,

slip in the opposite direction begins at the edge of the contact [Johnson, 1987]. In con-

sideration of this path-dependency, the contact tractions are determined by following, in

incremental steps, the load history [Johnson, 1987; Elata & Berryman, 1996]. At each step,

the compliance relating the incremental force and displacement is evaluated according to

the loading scheme, e.g. if the normal and tangential components increase, decrease, or

remain fixed.

In a similar manner, Mindlin [1949] and Lubkin [1951] solved for the torsional

couples induced by monotonic rotation between two bodies. The authors show that slip in

a circumferential direction can develop at the edge of the contact area. The latter work

was extended for small oscillatory loading by Deresiewicz [1954]. In these models, torsion

is assumed to be decoupled from the tangential component.

1.3.5.2.1 Related models. The path-dependency makes implementation of the theory

of Mindlin and Deresiewicz in problems involving multiple contacts cumbersome [Vu-Quoc

& Zhang, 1999a]. Computational difficulties led to the development of simpler models,

which reduce the path-dependency [Elata & Berryman, 1996]. For example, Vu-Quoc &

Zhang [1999a] considered fewer loading schemes, and demonstrated implementation of their

model in DEM simulations. Walton & Braun [1986] proposed a model which ignores the

effect of the normal force increment, considering only tangential loading or unloading. A

further simplification is obtained by ignoring partial slip, i.e. assuming either perfect stick

or sliding [Chang et al., 1992; Jenkins & Strack, 1993], or ignoring slip altogether by as-

suming an infinitely large friction coefficient [Johnson & Norris, 1997]. Such simplifications

make the force-displacement relation path-independent.

4For spherical bodies, slip will occur in an outer annulus.
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The large number of grains requires a balance between accuracy and efficiency.

While some of the models described above may not be appropriate if the details of an

individual contact are of interest [Elata & Berryman, 1996], the importance of some of

these details is reduced when a large grain pack is considered. For instance, models using

a contact law which ignores frictional loads can describe many features of the inelastic

response of granular materials [Goldenhirsch & Goldenberg, 2005; Holtzman et al., 2008b].

The model of Vu-Quoc & Zhang [1999a] was extended in Vu-Quoc & Zhang [2001]

and Zhang & Vu-Quoc [2007] to account for inelastic grain deformations. For theories

accounting for dynamic loading and inelastic grain deformations, see Johnson [1987].

1.3.5.3 Constitutive relations for cemented grains

Here, we review constitutive rules which are used to model cemented particulate

materials. In most models, the complex geometry of cement deposited around the grain

contacts [Jin, 2006; Brouste et al., 2007] is approximated by simpler shapes. Additionally,

cement is often assumed to deform as linear elastic. The validity of the last assumption is

examined in Chapter 4.

Most often, the cemented contacts are modeled by a spring of fixed stiffness.

For example, to simulate brittle failure of rocks, Jin et al. [2003] represented interactions

between each pair of cemented grains by an elastic spring, modeling cement failure by

removing the spring. In Jiang et al. [2006], a set of springs distributed within the contact

area is used to evaluate the rolling resistance between grain pairs.

To evaluate the stiffness and strength of the cemented contacts, Potyondy &

Cundall [2004] developed a “parallel bond” model. The authors evaluate the loads in the

grain-grain and grain-cement portions of each contact independently, through two sets of

constitutive rules. The total load at each contact is computed by superimposing the two

components. This approach allows to use contact mechanics theories for the grain-grain

portion. The cemented portion is modeled by a linear-elastic beam, evaluating its strength

and stiffness from existing analytical solutions. Potyondy [2007] extended the model in

Potyondy & Cundall [2004] to represent corrosion due to cement dissolution in silicate

rocks, by assigning a damage-rate law for each bond.

The widely-used models of Dvorkin et al. [1991, 1994] are based on contact me-

chanics theories. Dvorkin et al. [1991] developed force-displacement relations for two elastic
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grains bonded by an elastic cement layer, with either: (a) an arbitrarily-shaped cement

layer loaded by relative normal and lateral grain displacements, ignoring the grain defor-

mations; and (b) a straight cement layer loaded by normal grain compression, using the

“elastic foundation” model [Johnson, 1987]. The latter, (b), was verified by experiments

in photoelastic disks [Sienkiewicz et al., 1996] and FEM simulations [Zang & Wong, 1995].

Dvorkin et al. [1994] extended the model in Dvorkin et al. [1991] by account-

ing for the tangential force component, considering two types of cement distribution: (a)

exclusively at the contacts; and (b) coating the grains. The model requires numerical

evaluation of several parameters. Closed-form expressions for upper and lower bounds,

assuming either rigid grains or cement layer, were proposed by Zhu et al. [1996a], and

later extended in [Zhu et al., 1996b] to account for visco-elastic materials. Dvorkin & Nur

[1996] demonstrated good agreement between the elastic moduli predicted by a mean-field

approximation employing the model in Dvorkin et al. [1994], and experimentally-measured

moduli.

Garcia & Medina [2007] proposed an approach which accounts for arbitrarily-

shaped cement deposited: (a) at the contacts; (b) around each grain; and (c) at the pore

bodies. The grain-grain interactions are modeled through molecular dynamics simulations

(see Section 1.3.6.2), whereas the deformation of cement is evaluated by discretizing the

cement volume into a lattice, considering cement as particles placed at the lattice nodes.

The interactions among the cement particles are modeled via a spring-dashpot-slider sys-

tem. Finally, FEM approximation can be used to model complex cement geometry and

non-linear deformations, e.g. within the framework of the finite-discrete elements method

[Munjiza et al., 1995]; however, such approach is computationally cumbersome.

1.3.6 Modeling a deforming grain pack

1.3.6.1 Analytical solutions

Closed-form analytical solutions for the deformation of a structured packing of

identical spherical grains have been proposed in the literature [Duffy & Mindlin, 1957;

Deresiewicz, 1958b; Duffy, 1959; Thurston & Deresiewicz, 1959]. These solutions are based

on computations performed on a unit cell, assuming deformations that are sufficiently small

to neglect distortion of the packing. Closed-form expressions for the stress-strain relations

are computed for an infinite periodic medium.
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Extensions to irregular packings under finite macroscopic deformations, known as

“Mean Field” or “Effective Medium Theory” (EMT), are obtained by relating the grain

and the macroscopic scales by spatial averages, see, e.g. Digby [1981], Walton [1987],

Jenkins & Strack [1993], Johnson et al. [1998] and Pride [2005]. Here, we briefly outline

the principles; a thorough discussion of the method appears in Goddard [1990]. EMT is

based on the assumption that the macroscopic work done in deforming the pack is the sum

of the works done against the intergranular forces, replacing the latter by a spatial average

[Makse et al., 2001]. The average work associated with each contact is estimated with the

following assumptions: (a) the center of each grain displaces according to the macroscopic

strain, such that its motion can be projected from the macroscopic strain; and (b) the

distribution of contacts is spherically symmetric, allowing averaging of the forces over all

possible contact orientations. The loads at the contacts are computed from the projected

grain displacements, through a set of constitutive rules, cf. Section 1.3.5. The stress is

computed by a spatial average of the forces acting inside a granular volume. Additional

simplified assumption often used is that of affine motion, ignoring grain rotations.

Walton [1987] used the above to evaluate the effective elastic moduli from the

grain properties, employing the contact model in Walton [1978]. In spite of the restrictive

simplifying assumptions, Walton’s theory provides a reasonably-accurate approximation for

the bulk modulus under high confining stresses [Makse et al., 2004; Pride, 2005]. However,

the theory generally fails to reproduce the shear modulus, as well as the evolution of the

moduli in relatively low confining stresses [Goddard, 1990; Makse et al., 1999; Pride, 2005].

Numerical simulations suggests that Walton’s theory fails to predict the shear modulus

because of the assumption of affine motion, which neglects stress relaxation during shear

through grain rotations [Makse et al., 2001, 2004]. To explain the discrepancy between

Walton’s theory and experiments, Goddard [1990] proposed two alternative mechanisms:

(1) deviations from Hertzian law, related to a surface asperities or grain angularity; and

(2) variations in the coordination number caused by buckling of force chains.

Consolidated aggregates can be modeled within the framework of EMT, by an in-

troduction of appropriate constitutive relations, see Pride [2005] and the references therein.

For example, Elata & Dvorkin [1996] used the model of cemented contacts by Dvorkin et al.

[1994] within the framework of EMT in Digby [1981].
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1.3.6.2 Grain-scale numerical simulations

Here, we review several techniques for simulating a deforming grain pack. We

focus on the widely-used DEM, originally proposed by Cundall & Strack [1979]. Detailed

description of the method can be found in O’Sullivan [2002], Bicanic [2004], Jin [2006] and

Tavarez [2005]. In DEM, interactions among the grains are treated as a dynamic process,

accounting for the grain inertia. The method consists of three major computational steps,

performed sequentially at each time step: (a) contact detection; (b) evaluation of the

intergranular loads; and (c) integration of the equations of motion to compute the grain

displacements.

Step (a) is trivial for spherical grains, yet involves elaborate algorithms for more

complex shapes [Williams & O’Connor, 1995]. Step (b) employs a set of constitutive rules

and corresponding parameters. In step (c), the linear and angular accelerations of each

grain are computed from Newton’s second law. The linear and angular grain velocities and

displacements are evaluated by repeated numerical integration over time of the equations

of motion. A subsequent configuration is computed using the grain displacements, and

the analysis is repeated. A sequence of grain configurations is produced, describing the

evolution of the deformation process in time.

The second-order integration is usually performed using an explicit central differ-

ence method, making the algorithm conditionally stable, depending on the time step used

[O’Sullivan & Bray, 2004; Tavarez & Plesha, 2007]. Determining an appropriate time step

is difficult, especially in nonlinear problems where the minimal step size changes during

the simulations [Tavarez & Plesha, 2007]. Moreover, it may be difficult to detect numer-

ical instabilities because of the different energy-dissipative mechanisms. The constraints

imposed on the time step make DEM simulations time-consuming [O’Sullivan & Bray,

2004; Tavarez & Plesha, 2007]. To accelerate computations and damp grain oscillations,

a numerical damping parameter is often introduced, and its value together with those

of material properties such as the grains density and their contact stiffness are adjusted

[Thornton, 2000; O’Sullivan et al., 2004; Tavarez, 2005; Potyondy & Cundall, 2004; Jin,

2006; Peña et al., 2008], sometime to unrealistic values. Such adjustments affect the me-

chanical properties of the pack, and may result in “over-damping” of the grain motion,

leaving a substantial number of grains away from a stable equilibrium [Thomas & Bray,

1999].
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Related methods which use explicit time integration include molecular dynamics

and cellular automata. Unlike DEM, where only grains in contact interact, in molecular

dynamics the particles follow a negative gradient of a global potential, that depends on

the positions of remote grains [Haile, 1992]. Thus, molecular dynamics is most suitable

to model particles which interact by forces of attraction, such as atomic forces between

molecules and gravitational forces between planets. Recently, Garcia & Medina [2007]

employed molecular dynamics to simulate deformation of a cemented grain pack.

Cellular automata, originally used to model gases and liquids, can be applied

in granular mechanics, see, e.g, Budhu et al. [1999], Kozicki & Tejchman [2005] and the

references therein. A porous rock volume is represented by a lattice, where each lattice cell

can be occupied by either a portion of a solid particle or the pore space. The interactions

between cells occupied by solids can be chosen to mimic contact between two particles,

or otherwise between two adjacent pieces of a single particle, allowing to model particle

damage. At each time step, each particle may move from its current cell to an adjacent

cell, avoiding overlaps. Obviously, such models impose artificial kinematic restrictions.

The large number of cells and the small time steps required in the numerical integration

makes the algorithm cumbersome.

A dynamic model which employs implicit time integration of the equations of

motion is utilized in Thomas [1997] and Thomas & Bray [1999]. The authors modeled a

2D array of disks using the discontinuous deformation analysis (DDA) method introduced

by Shi [1988]. DDA employs minimization of potential energy and the penalty method to

solve for the displacements of blocks. Consequently, a system of linear equations is solved

at each time step [Thomas, 1997]. To maintain stability of the algorithm and obtain a

physically meaningful solution, a small time step must be taken [Thomas & Bray, 1999].

Tavarez [2005] points out that, in modeling granular mechanics, the constraints on the time

step reduces the merits of using an implicit scheme.

Finally, in problems in which dynamics is of lesser importance, the aforemen-

tioned difficulties can be avoided by employing a quasi-static model. O’Hern et al. [2003]

simulated deformation of a pack of ideally-smooth particles, finding the equilibrium config-

urations by minimizing a potential function. Minimization was performed iteratively, using

the conjugate gradient algorithm. Renouf & Alart [2005] discussed the implementation of

conjugate gradient methods in granular mechanics, including the account of interparticle

friction. Recently, Holtzman et al. [2008b,a] proposed a computational technique to simu-
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late 3D quasi-static deformation of a grain pack, in which the equilibrium configurations

are found by minimizing the potential energy of the pack. This technique is described in

details in this dissertation.

1.4 Overview

We develop a conceptual model of a granular material, implemented within a

computational framework, termed Quasi-Static Granular Model (QuSGM). In QuSGM,

the mechanical properties of a granular sample are evaluated by simulating its deforma-

tion. A 3D irregular pack of spherical grains is loaded by incremental displacements of its

boundaries. Intergranular interactions are modeled by a set of constitutive relations, based

on contact mechanics theories. The macroscopic stress and strain, and the effective elastic

moduli are computed from the intergranular forces and displacements. We use a quasi-

static model, describing deformation as a sequence of static equilibrium configurations. At

a given (“reference”) configuration, incremental displacements of the boundaries force the

grains to deform and rearrange into a new (“current”) configuration. To obtain an equilib-

rium configuration, we employ a variational approach, finding the grain displacements and

rotations that provide a minimum of an energy functional. This minimum is computed

using a modified conjugate gradient algorithm.

Under the assumption of perfectly elastic contacts, the energy functional is eval-

uated from the total potential energy of the pack, including the strain energy stored in the

deformed grains, and the gravitational energy. The physical basis for our approach is the

principle of minimum potential energy [Timoshenko & Goodier, 1970], frequently applied

to solve multi-body problems, e.g. in structural engineering. When considering energy dis-

sipation by sliding, we employ the principle of least work [Timoshenko & Goodier, 1970],

and evaluate the functional from the work done against the intergranular loads.

This dissertation is organized as follows. Chapters 2–3 are concerned with the

development of a mathematical model for cohesionless granular matter. To model the

intergranular interactions, we consider two types of constitutive rules: (1) “frictionless”,

assuming ideally smooth grains (Chapter 2); and (2) “frictional”, including the effect of

intergranular friction (Chapter 3). We verify our model against published experiments. We

demonstrate the physical soundness of our model by its ability to predict the mechanical

properties of a sample, given its grain properties, with no adjustments of material parame-
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ters. Our results provide a relation between the grain- and macro-scale, revealing essential

mechanisms responsible for hysteresis, strain hardening, and stress-induced anisotropy.

We apply QuSGM to geological systems, in which micromechanics of sediments

and rocks is crucial. In Chapter 4 we study the micromechanical origins of the nonlin-

ear deformation of weakly-cemented sediments, introducing several suites of constitutive

relations to account for possible microscopic deformation mechanisms. We show that ac-

count of nonlinear cement deformations at the grain-scale is required to reproduce the

experimentally-observed nonlinear bulk response. In Chapter 5 we use QuSGM to quan-

tify the impact of hydrate dissociation on the mechanical properties of marine sediments.

We demonstrate degradation in sediment strength as a reduction in the macroscopic elastic

moduli. Concluding remarks are provided in Chapter 6. Details of the numerical algorithm

used to solve for the equilibrium configurations are presented in Appendix A.

Who could ever calculate the path of a molecule?
How do we know that the creations of worlds are not

determined by falling grains of sand?

– Victor Hugo

Les Misérables (1862)
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Chapter 2

A model of a cohesionless granular

material

2.1 Introduction

WE STUDY the mechanics of cohesionless granular materials through grain-scale simu-

lations. A micromechanical model is presented, assuming ideally-smooth (“frictionless”)

grains. Under this assumption, the grains can rotate and slide relative to each other

without developing resistive forces at their contacts. Thus, the only intergranular loads

developed are normal compressive contact forces. We justify the frictionless assumption by

the following hypothesis: in a dense pack of rounded grains, the size of the asperities asso-

ciated with surface roughness that resist lateral and angular displacements is much smaller

than the size of the grains themselves. Consequently, the bulk response, e.g. macroscopic

stress, is mostly affected by the normal force components. Numerical simulations [Thorn-

ton & Antony, 1998; Thornton, 2000; Kruyt & Antony, 2007] and analytical computations

[Rothenburg & Bathurst, 1989; Goldenhirsch & Goldenberg, 2005] support this hypothesis.

The outline of this chapter is as follows. The mathematical model and computa-

tional algorithm, formulated within the framework of QuSGM, are provided in Sections 2.2–

2.6. In Sections 2.2–2.3 we characterize a grain pack and its boundaries. The constitutive

relations governing the intergranular interactions are given in Section 2.4. The methodol-

ogy of obtaining the equilibrium configurations is summarized in Section 2.5. Section 2.6

describes the evaluation of the macroscopic parameters. Section 2.7 presents the simulation

results. The values of material parameters used in the simulations, taken from published

experiments, are listed in Section 2.7.1. In Section 2.7.2, a procedure to generate the initial
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packing is outlined. In Section 2.7.3, the accuracy of the computational algorithm and the

predictive capabilities of the model are examined. Micromechanical analysis is presented

in Section 2.7.4. This analysis allows linking microscopic and macroscopic observations, by

which we demonstrate mechanisms responsible for the path-dependent, hysteretic response

typical of granular materials. Finally, concluding remarks are provided in Section 2.8.

Essential results from this chapter were published in Holtzman et al. [2008b].

2.2 Grain pack characterization

We model granular matter as a heterogeneous, irregular (“random”) 3D packing

of spherical grains, see Figure 2.1. Under the assumption of frictionless contacts, ignoring

intergranular shear and moments, the configuration of a pack of spheres can be described

via their positions and radii. At each reference configuration, the deformation caused by

perturbing the boundary conditions is characterized by the displacements of the grains

relative to the reference configuration. Thus, a 3D pack of N grains has 3N degrees of

freedom. Labeling the grains with a single index, i = 1, 2, . . . , N , we denote the radius of

grain i by Ri. The grain displacement is ui = ri − r0
i , where ri is the radius-vector of the

grain center, and superscript 0 denotes the reference configuration, see Figure 2.3. The

unknowns are written as a vector of generalized coordinates, θ = [u1 . . . uN ]T , where ui

are row vectors, and superscript T denotes the transpose.

We model each grain as a homogenous and isotropic linearly-elastic body, which

undergoes small deformations with no grain fracturing or breakage. Thus, the material of

grain i is characterized by its Young’s modulus, Ei, and Poisson’s ratio, νi. The grain’s

density, ρi, is of lesser importance; while gravity stabilizes a loose packing, its effect is

negligible relative to the contact forces in a dense, stressed pack.

2.3 Boundary conditions

2.3.1 The boundaries of a grain pack

We model external loading by relative displacements of the pack’s boundaries.

The boundaries are represented by solid planar walls which interact with the outermost

grains. We align the domain with a cartesian coordinate system, labeling each boundary

with a single index, w = 1, 2, . . . , 6, where each pair of parallel walls, w = l and w = l + 3,
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Figure 2.1: A typical pack with 5036 grains used in the numerical simulations.

is associated with a principal direction (l = 1, 2, 3), see Figure 2.2. The position of a planar

boundary w is determined from its orientation, specified by an inward unit normal, n̂w,

and an arbitrary point on the plane, xw, see Figure 2.3. The displacement of the boundary

is denoted by uw. To compute the intergranular interactions with the outermost grains,

the material properties of the walls must be specified; here, we model the walls as linear

elastic solids, with Young’s modulus and Poisson’s ratio of Ew and νw, respectively.
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Figure 2.2: Labeling the boundary walls using a single index, w = 1, 2, . . . , 6.



Chapter 2. A model of a cohesionless granular material 28

2.3.2 Different types of loading

In laboratory testing, deformations are applied by controlling either: (a) the

external force applied to the boundaries; or (b) the boundary displacements. Here, we

enforce boundary displacements, and compute the resulting forces on the boundaries. In

our model, the macroscopic stress and strain are computed from these boundary forces and

displacements, see Section 2.6. We simulate isotopic (often denoted as “hydrostatic”) or

polyaxial loading by enforcing identical or different normal strains in three perpendicular

directions, respectively. A triaxial test is simulated by applying two identical strains in

two perpendicular (“lateral”) directions. Application of uniaxial strain models loading of

a laterally-confined pack, where lateral stresses develop due to the confinement.

2.4 Intergranular interactions between ideally-smooth grains

We model intergranular interactions through a constitutive relation based on the

contact theory of Hertz [1882], neglecting cohesive or frictional loads. Let a pair of grains,

i and j be in contact. The contact area is a planar disk of radius aij , computed by

aij = (Rijhij)
1/2 (2.1)

The magnitude of the normal compressive force acting at the contact is

‖P ij‖ =
4

3
Eij (Rij)

1/2 (hij)
3/2 (2.2)

where

Rij = (1/Ri + 1/Rj)
−1 (2.3a)

Eij =
[

(1− ν2
i )/Ei + (1− ν2

j )/Ej

]

−1
(2.3b)

are effective geometric and elastic coefficients associated with this contact, respectively

[Hertz, 1882]. Here ‖ξ‖ = (ξ · ξ)1/2 denotes the magnitude of vector ξ. The above equations

are applicable to a grain-boundary contact by assigning an infinite radius to the planar

wall, i.e. Riw = Ri. The normal compression is quantified by the mutual approach, hij ≥ 0,

hij = Ri + Rj − ‖rij‖ for grain-grain contact (2.4a)

hiw = Ri − (ri − xw) · n̂w for grain-boundary contact (2.4b)
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where rij = ri− rj, see Figure 2.3. The normal force acting on grain i at the contact with

another grain j or a wall w is directed along rij or n̂w, respectively. Thus, zero moment

relative to the center of the grain is associated with the normal force.
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Figure 2.3: Contact geometry and intergranular forces used in the frictionless model. The reference
configuration of the grains and boundary walls is marked with grey dotted lines. The dashed lines
show the shapes of the undeformed grains in the current configuration.

2.5 Equilibrium configurations of the grains

2.5.1 Balance equations

At equilibrium, the grain configuration satisfies the force and moment balance

equations. Under the assumption of frictionless grains, the moments are zero, reducing the

balance equations force equilibrium,

F i =

N i
g

∑

j=1

P ij +

N i
b

∑

w=1

P iw −migêz = 0 (2.5)

where F i is the sum of forces acting on grain i, êz is a unit vector pointing opposite to the

direction of gravity, g is the gravity acceleration, and the grain mass is mi = (4/3)πR3
i ρi.

Here N i
g and N i

b denote the number of contacts of grain i with other grains and boundaries,

respectively. The coordination number of grain i is N i = N i
g + N i

b . Note that the set of

contacts for each grain varies with the deformation of the pack, introducing additional

nonlinearity to that instituted by the contact laws.
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2.5.2 Search for equilibrium by a variational approach

Each equilibrium configuration is characterized by the generalized coordinates, θ,

which satisfy Eq. (2.5). We employ a variational approach, obtaining each configuration by

finding a local minimum of an energy functional, Π, with respect to θ. Using the principle of

minimum potential energy [Timoshenko & Goodier, 1970], we evaluate Π from the potential

energy of the grains. The potential energy is a function of the grain deformations (strain

energy) and the gravitational potential of the grains. The elastic strain energy of a pair of

grains in contact is equal to the sum of work done on each grain to deform it. This work

equals the dot product of the force with the displacement increment, integrated over the

total displacement. Thus, the strain energy, Uij(n), stored in the deformed contact region

between grains i and j is (cf. Eq. (9.15) in Landau & Lifshitz [1986]):

Uij(n) =
8

15
Eij(Rij)

1/2(hij)
5/2 (2.6)

The total potential energy of the pack is computed by summing the strain energy over all

contacts1, and the gravitational potentials over all grains,

Π(θ) =
N
∑

i=1







1

2

N i
g

∑

j=1

Uij(n) +

N i
b

∑

w=1

Uiw(n) + mig(ri · êz − z∗)







(2.7)

where z∗ is an arbitrary fixed reference elevation.

We find the minimum of Π numerically. The search is performed iteratively, by

modifying the conjugate gradient algorithm to accommodate the nonlinearity of the system,

see Appendix A. The gradient of Π with respect to θ is

∇θΠ = −[F 1 . . . F N ]T (2.8)

where the sum of forces, F i, is written as a row vector. Thus, zero gradient of Π is

equivalent to the balance of forces.

2.6 Evaluation of macroscopic parameters of a grain pack

The scale of most practical problems involves analysis of macroscopic parameters,

such as stress, strain, effective elastic moduli, and porosity. In addition, most of the

1The factor of 1/2 arises because the strain energy Uij(n) in Eq. (2.7) is the energy stored in each pair

of deformed grains due to their contact, which is counted twice when summing over all grains.
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experimental evidence is macroscopic. Here, we develop simple procedures to evaluate

these parameters from the grain-scale parameters computed in our simulations. We note

that the concept of stress and strain in a granular assembly is not clearly defined, see Bagi

[1996], Bagi [2006], Goldenhirsch & Goldenberg [2005] and the references therein.

2.6.1 Strain

The macroscopic strain is evaluated here from the displacements of the boundary

walls. The strain tensor, ǫ, is defined by

ǫ =
1

2

[

∇xu + (∇xu)T
]

(2.9)

where x is a radius-vector to the center of an infinitesimal volume, and u is the center’s

displacement [Landau & Lifshitz, 1986]. We estimate ǫ numerically by replacing the deriva-

tives in Eq. (2.9) with finite differences. For a rectangular domain, the normal strain in

the l-direction (l = 1, 2, 3) is

ǫmn =
Ll − Lσ=0

l

Lσ=0
l

(m = n = l) (2.10)

where Ll and Lσ=0
l are the domain’s length in that direction, in the current and unde-

formed (“initial”) configuration, respectively. The undeformed configuration is defined

here by the first appearance of appreciable stresses during compaction of a loose packing,

see Section 2.7.2. In the simulations presented in this dissertation, only normal strains are

applied, keeping the boundary walls orthogonal to each other. We use the convention of

positive stress and strain in compression.

The parameter defined in Eq. (2.10) is the commonly used “engineering strain”

[Rees, 2006]. Alternatively, replacing Lσ=0
l in Eq. (2.10) with the value at the reference

configuration, L0
l , such that the numerator, dLl = Ll−L0

l , is a small increment, dLl ≪ L0
l ,

yields an approximation for the “logarithmic” or “natural” strain, dLl/L
0
l . While the

natural strain is closer to the formal definition of strain as a differential quantity [Landau

& Lifshitz, 1986], we use the engineering strain to compare with experimental data.

2.6.2 Stress

The average stress tensor, σ, is evaluated from the loads applied by the boundaries

on the outermost grains. The normal stress at each boundary wall w is estimated from
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the normal component of an equivalent external force, P ext
w , divided by its area, Aw. The

external normal force is calculated from the sum of the normal contact forces on the

wall, P ext
w =

∑Nw
g

i=1 ‖P iw‖, where Nw
g is the number of grains in contact with boundary

w. The normal stress in the l-direction is computed by averaging these quantities for the

corresponding boundaries,

σmn =
1

2

(

P ext
w=l

Aw=l
+

P ext
w=l+3

Aw=l+3

)

(m = n = l) (2.11)

To confirm the validity of Eq. (2.11), we compare with the averaged Cauchy stress

[Christoffersen et al., 1981],

< σ >Vtot=
1

Vtot

Nc
∑

ij=1

(

f ij ⊗ rij

)

(i 6= j) (2.12)

where Vtot is the sample volume, Nc is the number of contacts in the pack, and f ij is the

force exerted on grain i by grain j. To account for the interactions with the boundaries,

we modify the expression in Eq. (2.12), obtaining

< σ >Vtot=
1

Vtot

N
∑

i=1





N i
g

∑

j=1

f ij ⊗ rij +

N i
b

∑

w=1

f iw ⊗ n̂w (Ri − hiw)



 (i 6= j) (2.13)

If oblique forces are considered, as in the models presented in Chapters 3–4, f ij is com-

puted from the sum of the normal and tangential force components. Here, only normal

compressive forces are considered, and the expression in Eq. (2.13) reduces to

< σ >Vtot=
1

Vtot

N
∑

i=1





N i
g

∑

j=1

r̂ij ⊗ r̂ij‖P ij‖‖rij‖+

N i
b

∑

w=1

n̂w ⊗ n̂w‖P iw‖ (Ri − hiw)



 (i 6= j)

(2.14)

Here r̂ij = rij/‖rij‖. The tensor products r̂ij⊗ r̂ij and n̂w⊗ n̂w are computed for all pairs

of bodies in contact. Eq. (2.14) yields values similar to those obtained from Eq. (2.11).

2.6.3 Effective elastic moduli

We quantify the evolution of the bulk mechanical properties with the deformation

by discretizing the load path and evaluating a set of constant effective elastic moduli for
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each load interval. The moduli for each interval are evaluated by fitting each stress-strain

interval with Hooke’s law. Hooke’s law for a homogenous, isotropic medium is

σ = λtr(ǫ)Î + 2Gǫ (2.15)

where σ is the stress tensor, tr(ǫ) is the trace of the strain ǫ, and Î is a second order unit

tensor. The moduli λ and G are Lame’s coefficient and the shear modulus, respectively.

Other elastic moduli can be evaluated from λ and G [Landau & Lifshitz, 1986].

The values evaluated from Eq. (2.15) represent the bulk-averaged moduli of an

effective homogeneous and isotropic elastic medium. The moduli evaluated for isotropic

medium using different pairs of directions2 are similar. However, the material response

can become anisotropic if: (a) the loading is highly anisotropic [Johnson et al., 1998]; and

(b) if the pack’s size is too small [Goldenhirsch & Goldenberg, 2005]. To avoid anisotropy,

we: (a) apply relatively isotropic loads; and (b) construct packs with sides not smaller

than ∼15 grain diameters. The degree of loading isotropy required to maintain isotropic

response depends on the size of the pack, as well as the grain properties and their spatial

arrangement, and was determined by trial and error. By taking these measures, the moduli

computed in different directions are practically identical.

2.6.4 Porosity

Porosity is the volumetric fraction of the pore space relative to the total volume

of the sample. To compute the porosity we approximate the shape of each pair of deformed

grains, i and j, by two overlapping spheres. The intersection of their surfaces defines a

disk of radius ρij [Harris & Stocker, 1998],

ρij =
1

2rij
[(Ri −Rj − rij)(−Ri + Rj − rij)(Ri + Rj − rij)(Ri + Rj + rij)]

1/2 (2.16)

Here rij = ‖rij‖. The solid volume of the deformed pair is computed by subtracting the

overlapping region, the volume of two spherical caps, from the total volume of the two

spheres, 4π
(

R3
i + R3

j

)

/3, see Figure 2.4. The volume of the spherical cap associated with

2In polyaxial loading, there are three possible combinations (pairs) from which the moduli can be
evaluated, whereas in uniaxial (triaxial) loading there are only two.
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sphere i is

V cap
ij =

π

6
(Ri − ‖Rij‖)

[

3ρ2
ij + (Ri − ‖Rij‖)

2
]

for grain-grain contact (2.17a)

V cap
iw = πh2

iw

(

Ri −
hiw

3

)

for grain-boundary contact (2.17b)

where the radius-vector

Rij = −r̂ij

(

R2
i − ρ2

ij

)1/2
(2.18)

connects the center of grain i to the initial contact point with another grain j. The total

solid volume in the sample is computed by subtracting the sum of volumes of all spherical

caps, from the total volume of all spheres (undeformed shapes). Thus, the porosity is

φ = 1−
1

Vtot

N
∑

i=1





4

3
πR3

i −

N i
g

∑

j=1

V cap
ij −

N i
b

∑

w=1

V cap
iw



 (2.19)

Grain j

Grain i

V
cap
ij

Rij

Rji

Ri

Rj

Ri − ‖Rij‖

ρij

Figure 2.4: Schematic description of a pair of grains in contact, used in estimating the porosity.
The solid volume of a deformed grain i is evaluated by subtracting the volume of a spherical cap
V cap

ij (shaded) from the undeformed spherical volume.
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2.7 Simulation results

2.7.1 Grain properties

In simulations, we assign the grain properties from published experiments. To

model heterogenous materials such as clastic sediments, we assign the grains radii from a

uniform distribution3, and elastic moduli of the grain material from a normal distribution,

see, e.g., Figure 2.5. We model three types of grains: (a) quartz sand, (b) glass beads,

and (c) methane-hydrates. Table 2.1 lists the numerical values for each material, borrowed

from (a) Yong & Warkentin [1975] and Domenico [1977]; (b) Domenico [1977] and Makse

et al. [1999]; and (c) Guerin [2000]. In Table 2.1, Ē, ν̄, K̄, and Ḡ denote the mean values

of Young’s modulus, Poisson’s ratio, bulk and shear modulus, with bar denoting their

arithmetic mean, and s.d. their standard deviation. To minimize the deflections of the

walls, they are assigned stiffer elastic moduli, Ew = 100Ē and νw = 0.495. The sample’s

name provides the grain type and quantity: for instance, G5036 denotes a pack of 5036

glass beads.

Table 2.1: Numerical values of grain properties used in simulations. See text for sources.

Quartz sand Glass beads Methane-hydrates

Ri (mm) 0.07–0.13 0.07–0.13 0.07–0.09

ρi (g/cm3) 2.65 2.42 0.9

Ē (GPa) 100 70 6.6

ν̄ 0.15 0.2 0.32

K̄ (GPa) 47.6 38.9 6.1

Ḡ (GPa) 43.5 29.2 2.5

s.d. 0.1 0.1 0

2.7.2 Initial pack

In analogy with the initial conditions required in a dynamic model, our quasi-

static formulation requires specification of a reference configuration of the grains and the

boundaries at the beginning of each load increment. In particular, simulations require a

3Note that the sample generation procedure involves grain expansion, which results in a slight deviation
from the originally uniform distribution, see Section 2.7.2.
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Figure 2.5: The distribution of grain sizes (left) and Young’s modulus (right) for a sample of 5036
glass beads, denoted by G5036.

sufficiently dense, irregular initial equilibrium configuration [O’Sullivan, 2002; Bagi, 2005].

Here, we describe a procedure to generate such initial configuration, using QuSGM.

The procedure starts with a loose irregular arrangement. Here, a loose arrange-

ment is obtained by selecting a portion of a large pack generated using DEM simulations by

Jin [2006]. Planar boundaries are placed around the selected portion, removing all grains

which are intersected by these boundaries. The simulations by Jin [2006] were performed

to model sedimentation, letting the grains settle under gravity until their velocities vanish.

At this stage, the coordination number of about 55% of all grains within the selected por-

tion and 45% of the interior grains is less than four, which means they are not in stable

mechanical equilibrium4. Interior grains are defined by a distance from the boundaries

greater than the maximum grain diameter. The larger number of unstable grain near the

boundaries may be a consequence of removing the grains intersected by the boundaries.

Next, the packing density is increased by isotropic compaction of the domain,

and expansion of unstable grains. Grain expansion is performed since moving only the

boundaries may be insufficient to eliminate unstable grains. To increase stability of the

pack, we expand unstable grains until they contact at least 4 other grains, where each

contact is in minimal compression5 defined by hij ≥ 10−5R̄. Here, R̄ is the arithmetic

mean of the grain radii. Then, an equilibrium configuration is sought using our QuSGM

model with frictionless contacts. This process is repeated until the coordination number of

most grains satisfies N i ≥ 4, and appreciable contact forces develop. The confining stress

4Jin [2006] produced denser packings by simulating compaction.
5The minimal value of hij was determined by trial and error.
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Figure 2.6: The distribution of the coordination number, N i, of all grains (top) and of the interior
grains only (bottom), at different stages of the generation procedure of sample Q2699 : (1) initial,
uncompacted pack selected from DEM simulations of settlement under gravity by Jin [2006]; (2)
following isotropic compaction to low stresses of σc=0.2 MPa; and (3) following further compaction
to σc=10 MPa, shown for comparison. Compaction was simulated by our QuSGM model with
frictionless contacts.

at the end of this process is denoted by σµ=0
c . Note that complete elimination of unstable

grains may not be possible because of grain size variations: the opening between large

grains can be large enough to contain a small grain, not in stable equilibrium [Thornton &

Antony, 1998]. Such “floating” grains are believed to exist in natural sediments [Potyondy

& Cundall, 2004].
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We demonstrate evolution of the packing density through the coordination num-

ber. The distribution of the coordination number of all grains and of the interior grains

only is given in Figure 2.6, for different stages of the sample generation procedure: (1)

initial, uncompacted pack selected from DEM simulations of settlement under gravity by

Jin [2006]; (2) following isotropic compaction to low stresses of σc=0.2 MPa; and (3) fol-

lowing further compaction to σc=10 MPa, shown for comparison. The confining stress, σc,

is defined by σc = tr(σ)/3.

Note that we do not simulate here a deposition process, in which grain collisions

are important [Jin, 2006]. Otherwise, the use of QuSGM provides a dense arrangement

in static equilibrium with a smaller computing effort than using dynamic algorithms, cf.

Section 1.3.3.2.

2.7.3 Model verification

Verification is a crucial stage in the development of a model. A numerical com-

putational technique is physically-sound and has predictive capabilities only if: (1) the

numerical scheme is stable and accurate; (2) the mathematical model adequately repre-

sents the underlying physical phenomena; and (3) the physical properties are modeled by

parameters with clear physical meaning, that can be measured in an experiment.

Accuracy of a numerical solution can be evaluated by comparison with an exact,

analytical solution. Yet, for an irregular, heterogenous domain such as a random packing

of grains, exact solutions are not available. Thus, we test our numerical algorithm for

an idealized problem of a structured packing undergoing self-similar deformations, see

Section 2.7.3.1.

However, data from structured arrangements do not provide a comprehensive

verification of the model, since a regular pack deforms differently than an irregular one

[O’Sullivan, 2002; Bagi, 2003]. In addition, a regular packing is uncommon in natural

materials, and is extremely difficult to produce in a laboratory; even an initially structured

packing may distort under deformation because of inevitable material and geometrical

heterogeneities [O’Sullivan, 2002]. For these reasons, we verify our model for an irregular

packing by comparing our predicted effective elastic moduli with experimental data and

EMT computations, see Section 2.7.3.2. In these experiments, artificial grains (glass beads)

were used, reducing the uncertainty involved in the estimation of the grain properties.
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2.7.3.1 Accuracy of the numerical algorithm

Few closed-form solutions exist for the deformation of a structured packing of

identical grains caused by a small perturbation, see, e.g., Duffy & Mindlin [1957], Dere-

siewicz [1958b], Duffy [1959] and Thurston & Deresiewicz [1959]. However, the numerical

error may grow with the size of the macroscopic strain. Thus, we test our numerical algo-

rithm in the case of large deformations of a small structured packing. To allow analytical

solution we preserve the symmetric structure by imposing self-similar deformations.

A pack of five identical grains whose centers form a pyramid, is deformed by

shrinking all distances between the grain centers uniformly, see Figure 2.7. The distance

between the centers of a pair of grains, rij, reduces to (1− ε)rij . We compute analytically

the intergranular forces from the given grain displacements, using Eq. (2.2). The contact

network and force directions remain constant. Due to symmetry, it suffices to evaluate

the forces at one of the four contacts between the bottom grains, in addition to the force

between the top grain and a bottom grains. The pack is bounded by planar boundary walls.

The boundary displacements required to simulate self-similar deformation are computed

from the force balance equations.

Figure 2.7: A structured five-grain pack used to evaluate the performance of our numerical
algorithm. The figure shows (a) three-dimensional view (left plot); and (b) planar x-y view (right)
of the deformed pack. Starting with an initial pack with adjacent grains merely touching each
other, the plots show the result of self-similar deformation with strain of ε=0.05.

The accuracy of the numerical result is evaluated by comparing the numerically-

computed distance between the top grain and a bottom grain, rN
ij , with the analytical

result, rA
ij . Figure 2.8 shows the relative error,

(

rA
ij − rN

ij

)

/rA
ij , vs. the strain factor, ε.
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The relative error decreases with the size of the strain. In the simulations, symmetry for the

bottom grains was preserved: the difference between the length of the centerline connecting

each pair of adjacent bottom grains was of the order of the machine’s floating-point relative

accuracy6.
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Figure 2.8: The relative error of numerical solution,
(

rA
ij − rN

ij

)

/rA
ij , vs. the self-similar strain

factor, ε, for a five-grain pack undergoing self-similar deformations. The error is evaluated by
comparison to an analytical solution.

2.7.3.2 Verification against experimental data

To verify our model against experiments we simulate uniaxial compression of a

sample of glass beads, G5036. The moduli computed from these simulations are plotted

in Figure 2.9 vs. confining stress, σc. Also presented are data from acoustic experiments

on glass beads with material properties similar to those used in our simulations, and the

following grain radii (in mm): (1) 0.035–0.045 [Domenico, 1977]; (2) 0.023 [Makse et al.,

1999]; and (3) 0.10–0.15 [Yin, 1993], with unspecified distributions. Finally, we present the

results of DEM simulations and EMT computations by Makse et al. [1999], using a contact

model that prohibits sliding. In the DEM simulations, radii were equally distributed be-

tween 0.095 and 0.105 mm, whereas for the EMT predictions a uniform grain diameter of

0.10 mm was assumed [Makse et al., 1999]. The experimental values of the elastic moduli

were evaluated from the acoustic compressional (vp) and shear (vs) velocities by using the

6The floating-point relative accuracy on the desktop used in our simulations was 2−52.
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following relations, valid for a planar wave in an infinite medium [Makse et al., 2004]

vp =

√

K + 4
3G

ρb
(2.20a)

vs =

√

G

ρb
(2.20b)

where ρb is the bulk density of the sample. The numerical values of the moduli from Yin

[1993] and Makse et al. [1999] have been obtained by digitizing Figure 1 in Makse et al.

[1999]. The data from Domenico [1977] is computed from the velocities reported by the

author.

Our bulk modulus estimates are in good agreement with the experimental data,

with values slightly lower than the data. In addition, at confining stresses higher than ∼2

MPa, the evaluated growth rate of the shear modulus agrees with the data. At the same

time, our model strongly underestimates the reported shear modulus values. In particular,

the evaluated shear modulus drops sharply at low stresses, predicting loss of shear rigidity as

the mean coordination number approaches 6 and the porosity exceeds ∼37%. We associate

the discrepancy between our predictions and the data with the assumption of frictionless

contacts. Unlike the bulk modulus, the shear modulus greatly depends on intergranular

shear forces. For example, DEM simulations shows that loss of rigidity is predicted at

lower packing densities when friction is accounted for [Makse et al., 2004].

Our simulations show a decrease in the rate of moduli growth with confining

stress, from a power law of σ0.45
c to σ0.33

c . This transition, while observed in experiments

and justified by theory, is not predicted by the EMT in Walton [1987]. The discrepancy

between the EMT predictions and experimental data is discussed in Goddard [1990], Makse

et al. [1999, 2004], Pride [2005] and the references therein. Our model provides additional

theoretical justification. Increasing the confining stress increases both the packing density

and stiffness, while decreasing their growth rates. The dependence of the packing density on

σc is intuitive: as the pack becomes denser, further compaction becomes more difficult. The

relation between the contact stiffness and σc can be predicted from the Hertzian contact

law (cf. Eq. (2.2)): the normal contact stiffness is the derivative of the force, ‖P ij‖, with

respect to the deformation, hij , where the latter is, on average, directly related to the

confining stress. The growth rate of the normal stiffness is proportional to the second

derivative of ‖P ij‖, with a power law of (hij)
−1/2 which indicates a reduction in growth

rate of the stiffness with increasing σc.
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Figure 2.9: The effective bulk (K, top) and shear (G, bottom) modulus vs. confining stress, σc.
The moduli evaluated from simulations using our frictionless model are compared with the results
of acoustic experiments in glass beads, as well as DEM and EMT computations. Superscripts 1–3
refer to the data published in Domenico [1977], Makse et al. [1999], and Yin [1993], respectively.

2.7.4 Micromechanical analysis

In Section 1.1.1, the importance of the micromechanical evidence and the relation

between the meso- and macro-scale was discussed. Here, the presented analysis demon-
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strates mechanisms responsible for the inelastic response typical of granular materials.

2.7.4.1 Hysteresis, strain hardening and fluctuations in the contact network

Upon applying external loading to a granular pack, the loads are distributed in

a highly heterogenous manner: most of the load is carried by relatively few grains, that

create “force chains”. Force chains have been observed in experiments, see Oda et al.

[1982], Behringer et al. [1999], Majmudar & Behringer [2005], Goldenhirsch & Goldenberg

[2005] and the references therein, and simulations, e.g. Radjäı et al. [1996], Thornton &

Antony [1998], Peters et al. [2005], Makse et al. [2004], Muthuswamy & Tordesillas [2006],

Peña et al. [2008], and Tordesillas [2007]. In our simulations, we observe force chains by

tracking the contact forces larger than a certain threshold.

Heterogeneity with regard to the intergranular forces is a source of intrinsic un-

predictability for granular systems. This is because even small perturbations, for instance

small displacements of the grains, can alter these force chains significantly [Behringer et al.,

1999]. Fluctuations in the force chains can lead to large variations in the overall response;

for example, in the form of stress drops [Tordesillas, 2007; Peña et al., 2008] or changes

in the frequency response of waves propagating through the medium, see Behringer et al.

[1999] and the references therein. These fluctuations are often associated with frictional

resistance and slip (“stick-slip”) between grains [Behringer et al., 1999; Duran, 2000].

Here, we demonstrate that stick-slip is not the only source for fluctuations. In

the absence of frictional slip, our simulations show correspondence between abrupt changes

in the slope of the stress-strain curve and substantial variations in the contact force net-

work, see Figures 2.10–2.11. Some of these variations are irreversible, leading to hysteretic

bulk response. Tracking hysteresis via grain-scale parameters can be done quantitatively

using the fabric tensor [Liou & Pan, 2003]. Qualitatively, we observe that these notice-

able variations are correlated with relatively large displacements experienced by several

grains, corresponding to strain localization [Bagi, 2006]. These displacements are possible

at particular combinations of contact forces and geometry, as grains are “pushed” through

constrictions. Following such events, the local sets of contacts and the shapes of these

constrictions are altered significantly, so that a reverse-perturbation of the boundary con-

ditions cannot restore the original configuration. In loading, grain rearrangements lead to

convex stress-strain curve, which we interpret as strain hardening, see Figure 2.10.
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Figure 2.10: Mean stress, σc, vs. volumetric strain, ǫv = tr(ǫ), in simulations of isotropic loading
on sample Q306. Increasing slope corresponds to strain-hardening. Several stress drops are evident.
The top-left corner of the plot shows a zoom into one of these stress drops (encircled), highlighting
four consecutive configurations (marked by 1–4). The force chains and grain displacements within
these four configurations are plotted in Figure 2.11.

Figure 2.11: Consecutive snapshots showing abrupt change of microstructure. Sample Q306 is
loaded by incremental isotropic strain of ∆ǫ=5·10−5. For each configuration (1–4), we plot a cluster
of grains, and the force chains defined by τFC=0.1, where the line width is proportional to their
magnitude. Note the abrupt change from 2→3, e.g. in the position of the brown grain (see arrow),
which corresponds to the stress drop highlighted in Figure 2.10.

To visualize an abrupt change of microstructure, we plot several grains and the

force chains in four consecutive configurations, following isotropic loading with strains
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increments of ∆ǫ=5 · 10−5 on sample Q306, see Figure 2.11. The plot shows the largest

contact forces that fall within a certain percentile, τFC ; for instance, τFC=0.1 correspond

to the largest 10% forces. While the strain increments are small enough so that changes

between configurations 1 and 2 as well as 3 to 4 are unnoticeable, an abrupt change between

configurations 2 and 3 is evident both in the force chains and the positions of the grains.

For instance, the large displacement of the brown grain (see arrow) corresponds to the

stress drop highlighted in Figure 2.10. These rare “jumps” events, in which a grain moves

significantly more than others, have been observed in experiments on glass beads, and were

found to have a significant effect on the macroscopic properties [Ribière et al., 2005].

To demonstrate the hysteretic macroscopic response which results from the afore-

mentioned microstructural variations, we simulate a polyaxial loading-unloading cycle on

sample Q2654, see Figure 2.12. In loading, an event in which several grain “jumps” occur,

corresponding to a stress drop, is encircled. During unloading, this event is not reversed,

and the unloading stress-strain curves deviate from the ones in loading.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
50

100

150

200

250

300

Strain (−)

S
tr

es
s 

(M
P

a)

 

 

X (load)
Y (load)
Z (load)
X (unload)
Y (unload)
Z (unload)

Y X
ZSlope

Changes

Figure 2.12: Stress-strain curves obtained from simulating a polyaxial loading-unloading cycle
on sample Q2654. Hysteresis, evident as different loading and unloading stress-strain curves, is
correlated to a rare event of grain “jumps” which is marked by an abrupt change in the slopes of
the curves (encircled).

2.7.4.2 Stress-induced anisotropy

Recent studies have suggested that anisotropy plays an important role in granular

mechanics, see Oda et al. [1998] and the references therein. Anisotropy can be induced when
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Figure 2.13: Development of stress-induced anisotropy shown as a change in directions of the
largest contact forces. Forces are plotted with line width and color corresponding to their magnitude.
The color bar shows the force magnitudes, in N. Two configurations of sample Q2654 are shown,
under: (a) isotropic loading (top plot); and (b) anisotropic loading (bottom). The percentage of
forces in the axial (vertical) direction increases from 28% to 37%, while the expected value for a
uniform distribution is 29%.

the material is subjected to anisotropic loading, e.g. shear distortion [Oda et al., 1982, 1998;

Johnson et al., 1998]. In general, grain angularity can be a source of anisotropy, regardless

of the state of stress, associated with the anisotropic contact network [Oda et al., 1998].

Stress-induced anisotropy was observed in our simulations. To investigate the underlying

mechanisms, we analyze the directions of the largest contact forces. In Figure 2.13 we plot
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the force chains defined by τFC = 0.1 for two configurations of sample Q2654, under: (a)

isotropic stress of 0.11 GPa; and (b) anisotropic load with axial and lateral stresses of 1.39

and 1.28 GPa, respectively. The axial load was applied in the vertical direction, along the

z axis. To quantify the change in force directions, we compute the number of forces which

are directed between 45–90 degrees of the horizontal (x-y) plane.

The percentage of forces that fall inside the vertical cone defined by the above

angles increases from 28% in configuration (a) to 37% in (b), where the percentage for

a uniform distribution is 29%. Thus, while under isotropic loads the force directions are

uniformly distributed, under anisotropic loads they are preferentially aligned with the main

loading direction. Similar observations were made in experiments [Oda et al., 1982, 1998;

Majmudar & Behringer, 2005] and simulations [Thornton & Antony, 1998]. Macroscopi-

cally, while the moduli evaluated for different directions are similar in (a), they differ be

several percents in (b), indicating a macroscopically anisotropic response.

2.8 Concluding remarks

We have studied the micromechanics of cohesionless granular materials, namely

the relations between the grain- and the macro-scale. A quasi-static micromechanical model

has been formulated and implemented within numerical simulations, using a variational

approach. A granular sample is modeled as a 3D disordered pack of elastic spherical grains,

loaded by incremental displacements of its boundaries. Interactions among the grains are

modeled through the contact theory of Hertz [1882]. Each equilibrium configuration is

found by minimizing the total potential energy of the pack, using a modified conjugate

gradient algorithm. The macroscopic stress, strain and effective moduli are computed from

the intergranular forces and the deformation of the pack. Our approach, termed QuSGM,

yields an efficient computational procedure, which is also used to generate a dense initial

arrangement.

We have verified our model against published experimental data, using similar

grain properties. Our model requires only few material parameters, which are obtained

from published experiments. The good agreement between predicted and measured values

of the effective bulk modulus, achieved with no adjustments of parameters, demonstrates

the physical soundness of our model.

By micromechanical analysis, we describe mechanisms responsible for hysteresis,
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strain hardening, and stress-induced anisotropy. In particular, we show that variations

in the contact force network lead to irreversible changes in grain configurations. Micro-

scopically, these changes correspond to infrequent “jump” events in which few grains move

significantly more than others. Macroscopically, these variations correspond to large fluc-

tuations in the stress-strain relations, and thus have significant effect on the bulk proper-

ties. Our observations are supported by experimental evidence [Oda et al., 1998; Behringer

et al., 1999; Ribière et al., 2005; Majmudar & Behringer, 2005; Tordesillas, 2007; Peña et al.,

2008]. The sensitivity of mechanical properties of granular materials to small perturbations

in grain configurations poses a challenge in predicting these properties [Behringer et al.,

1999]. The results of our simulations are a step towards better understanding of granular

mechanics, and consequently the ability to predict their behavior.

Our results confirm that the bulk modulus mainly depends on the normal contact

forces [Thornton, 2000; Kruyt & Antony, 2007], and that grain-scale elasticity is suitable

to describe many features of the inelastic response of granular materials [Goldenhirsch &

Goldenberg, 2005]. While our model supports the idea that microscopic friction is not

the sole mechanism of macroscopic shear resistance [Peña et al., 2008], it underestimates

the shear modulus, predicting loss of shear rigidity at packing densities higher than those

experimentally observed. We attribute this deficiency to the assumption of frictionless

grains. In Chapter 3, the current model is extended to account for shear and sliding at the

contacts, allowing for more accurate predictions of the moduli.
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Chapter 3

A granular pack model with

intergranular friction

3.1 Introduction

THE RESULTS of the previous chapter demonstrate that modeling granular matter as

a collection of elastic grains results in inelastic bulk response. Moreover, by assuming

ideally-smooth grains we have shown that microscopic friction is not the sole mechanism of

macroscopic shear resistance [Peña et al., 2008]. Nevertheless, this assumption leads to an

underestimation of the macroscopic stiffness, mostly the shear modulus. In this chapter,

we extend the model presented in Chapter 2 to account for the effect of friction.

Friction resists relative displacements and rotations of the grains, through forces

and moments (“frictional loads”) at the contact interfaces. Modeling the effect of fric-

tion is challenging, because of energy dissipation associated with slip between the grains.

Dissipation makes the force-displacements relations at each contact path-dependent. To

model deformation of a pack of grains within the framework of QuSGM, we introduce a

set of incrementally path-independent constitutive rules, based on the contact theories of

Hertz, Mindlin and Deresiewicz. Employing a variational approach, a sequence of equilib-

rium configurations is computed by minimizing the work against the intergranular loads

performed within each load increment.

In the first part of this chapter, Sections 3.2–3.5, we formulate the mathematical

model. The characterization of a grain pack, including its microstructure, material prop-

erties and boundaries is given in Section 3.2. In Section 3.3 we present the constitutive

rules which govern the intergranular interactions. In Section 3.4, we provide the methodol-
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ogy to obtain the equilibrium configurations. The definition of the macroscopic stress and

strain is discussed in Section 3.5. The second part of this chapter, Section 3.6, presents

the simulation results. First, the values of model parameters, taken from published ex-

periments, are specified in Section 3.6.1. The generation procedure for the initial packing,

namely the introduction of intergranular frictional loads, is discussed in Section 3.6.2. In

Section 3.6.3, the numerical accuracy and the physical soundness of our model are demon-

strated by comparing its predictions with analytical solution and experimental data. The

sensitivity analysis presented in Section 3.6.4 shows our model’s robustness with respect

to the size of the incremental load steps, and quantifies the effect of the initial packing and

the intergranular friction coefficient. Finally, Section 3.7 gathers the main conclusions of

the chapter. Important results from this chapter have been published in Holtzman et al.

[2008a].

3.2 Modeling a pack of grains

3.2.1 Microstructure

The current description of a grain pack follows concepts similar to those delin-

eated in Section 2.2: a granular sample is modeled through irregularly-packed spherical

grains. The grains are linearly-elastic, undergoing small and localized deformations. The

geometry of the pack is characterized by the grain radii and center coordinates. Addi-

tionally, determination of the frictional contact loads requires tracking the grain rotations.

Given the grain properties and the intergranular loads at a reference configuration, a pack

of N grains has 6N degrees of freedom: the grains displacements and rotations.

We denote the displacement and rotation of grain i (i = 1, 2, . . . , N) by ui and

Ωi, respectively. We use the right-hand convention, where Ωi denotes the rotation of grain

i by an angle ||Ωi||, around an axis passing through the grain’s center and directed along

Ωi. To make the units of all variables uniform, the rotation of each grain is multiplied

by its radius, Ri. Our variables are written as a vector of generalized coordinates, θ =

[u1 . . . uN Ω1R1 . . . ΩNRN ]T , where ui and Ωi are row vectors.
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3.2.2 Microscopic material properties

In addition to the parameters described in Section 2.2, introduction of friction

requires specification of the static coefficient of friction between the grains, µij . While

the grain’s radius Ri, density ρi, and, to some extent, elastic moduli, Ei and νi, can

be readily evaluated from experiments, the intergranular friction coefficient is not a well-

defined parameter [Pohlman et al., 2006]. The difficulty in estimating the value of µij stems

from the fact that intergranular frictional resistance depends on several parameters, such

as grain surface roughness, contact area, and velocity, as well as molecular interactions [Li

et al., 2005]. As a result, the friction coefficient may vary with the deformation, and with

the type of experiment from which it is obtained [Pohlman et al., 2006]. In addition, for a

small contact area, such as that between slightly deformed spherical grains, the applicability

of Coulomb’s law of friction is questionable [Li et al., 2005].

3.2.3 Boundary conditions

Kinematic boundary conditions are prescribed in a manner similar to that in Sec-

tion 2.3, through the displacements of planar solid walls which interact with the outermost

grains in the pack. The interactions between these grains and the boundaries include the

effect of friction, through frictional loads.

3.3 Intergranular interactions: inelastic contacts

In this section, we formulate the constitutive rules that govern the intergranular

interactions, relating the forces and moments to the relative displacements and rotations

between the grains. These rules are based on the contact theories of Hertz [1882], Mindlin

& Deresiewicz [1953] and Deresiewicz [1954].

3.3.1 Normal contact forces

At each contact, we resolve the contact force into normal and tangential compo-

nents. Following Mindlin & Deresiewicz [1953], we assume that the normal component is

unaffected by other load components [Johnson, 1987; Dintwa et al., 2008], and determine

the normal force using the Hertzian model, cf. Section 2.4.
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3.3.2 Tangential contact forces

Intergranular friction resists relative lateral displacements and rotations of two

grains in contact through a shear (“tangential”) load at the contact interface. In this

section, we present a contact model to determine the tangential force, based on the theory

by Mindlin & Deresiewicz [1953].

Consider a reference configuration with a pair of grains in contact, i and j. Grain i

is loaded by a shear force, Q0
ij , acting tangentially to the contact plane, and a normal force,

P 0
ij , see Figure 3.1(b). We assume that a small perturbation of the boundary conditions

causes small linear and angular grain displacements. These displacements correspond to

a relative tangential displacement of grain i with respect to j, uij(s). The perturbed

tangential force, Qij, is calculated by adding an increment to the unperturbed value,

Qij = Q
0,p
ij − kij(s)uij(s) (3.1)

Here kij(s) denotes the shear resistance (“stiffness”) of that contact. Following Walton

[1993], we account for the reorientation of the contact interface by projecting the force

Q0
ij onto the current contact plane by Q

0,p
ij =

∥

∥Q0
ij

∥

∥ t̂ij , see Figure 3.1(b). The unit

vector t̂ij = T ijQ
0
ij/
∥

∥T ijQ
0
ij

∥

∥ characterizes the direction of the projected force, where

T ij = Î − r̂ij ⊗ r̂ij . For a contact with a boundary w, T iw = Î − n̂w ⊗ n̂w. The relative

tangential displacement, uij(s), is

uij(s) = T ij(ui − uj) + Ωi ×Rij −Ωj ×Rji for grain-grain contact (3.2a)

uiw(s) = T iw(ui − uw) + Ωi ×Riw for grain-boundary contact (3.2b)

where × denotes the vector product, and

Rij = −r̂ij

(

R2
i − ρ2

ij

)1/2
for grain-grain contact (3.3a)

Riw = −n̂w (Ri − hiw) for grain-boundary contact (3.3b)

are radius-vectors connecting the center of grain i to the center of the contact area with

another grain j or a boundary w, see Figure 3.1(a). The parameter ρij is defined in

Eq. (2.16).

If slip occurs between the contact interfaces, the force-displacement relation be-

comes path-dependent [Mindlin & Deresiewicz, 1953]. In the model by Mindlin & Dere-

siewicz [1953], as well as its simpler variants, e.g. Walton & Braun [1986] and Vu-Quoc &
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Figure 3.1: (a) Schematic description of contact geometry. The reference configuration of the
grains and boundary walls is marked with grey dotted lines. The dashed lines show the shapes of
the undeformed grains in the current configuration. (b) The loads on grain i due to its contact with
grain j, at the reference and current configuration, marked by dashed and solid arrows, respectively.
The reference loads are projected onto the current contact area to account for its rotation.

Zhang [1999a], this dependency is modeled by varying the shear stiffness with the current

load and the load history. Thus, estimation of the shear force requires knowledge of the

deformation path, including the normal force increment. Here, we simplify computations

by linearizing the incremental force-displacement relation. This linearization is justified

by the assumption of small grain displacements [Norris & Johnson, 1997]. Within linear

approximation, we neglect the effect of the normal force increment on Qij relative to that

of the reference value, P 0
ij , decoupling the tangential and normal force increments.

We model friction by Coulomb law, assuming that the tangential force cannot ex-

ceed µij‖P ij‖ [Walton & Braun, 1986]. As the shear force approaches this threshold, larger

portions of the contact interfaces slip, until sliding occurs. While sliding, the force mag-

nitude is determined by Coulomb’s law, ‖Qij‖ = µij‖P ij‖, independently of the stiffness.

To model this hysteretic behavior, we evaluate the stiffness by

kij(s) =











k̃ij(s)

∥

∥

∥
Q̃ij

∥

∥

∥
≤ µij‖P ij‖

k′

ij(s)

∥

∥

∥
Q̃ij

∥

∥

∥
> µij ‖P ij‖

(3.4)
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where Q̃ij = Q
0,p
ij − k̃ij(s)uij(s), cf. Eq. (3.1), and

k̃ij(s) = 8aij

(

2− νi

Gi
+

2− νj

Gj

)

−1

(3.5a)

k′

ij(s) =
1

‖uij(s)‖2

{

Q
0,p
ij · uij(s) +

[

(

Q
0,p
ij · uij(s)

)2
+
(

µ2
ij‖P ij‖

2 − ‖Q0,p
ij ‖

2
)

‖uij(s)‖
2

]1/2
}

(3.5b)

Here Gi is the shear modulus of the material of grain i. The value of k̃ij(s) is predicted by

Mindlin & Deresiewicz [1953] for the case of negligible slip, expected at the onset of either

loading or unloading, see Figure 3.2. Neglecting partial slip, we assume that each load

increment results in either complete slip or complete stick. Sliding is modeled by reducing

the stiffness value as the force approaches the sliding threshold. The reduced value, k′

ij(s),

makes the shear force equal to the threshold, and vanishes if the sliding threshold has

been reached. The physical meaning of the stiffness coefficient implies that it must be

non-negative. Thus, we put k′

ij(s) = 0 if the term inside the square brackets in Eq. (3.5b)

becomes negative.
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Figure 3.2: The intergranular shear force, ‖Qij‖, vs. the relative shear displacement since contact

is established, u
(tot)
ij(s). The shear force is computed using our model, Eqs. (3.4)–(3.5), and the model

in Mindlin & Deresiewicz [1953], for a loading-unloading-reloading cycle (see arrows), assuming a
fixed normal force. The plot shows the magnitudes of the respective vectorial quantities normalized
to a non-dimensional form, neglecting the change in the force direction. The shear stiffness, kij(s),
corresponds to the slope of the lines.

Within linear approximation, we use the unperturbed force, P 0
ij , rather than P ij ,
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in Eqs. (3.4)–(3.5). Similarly, we use the corresponding unperturbed values of the radius

of disk of intersection, ρ0
ij, and contact radius, a0

ij . To justify the latter we expand the

expression in Eq. (2.1) as a Taylor’s series, noting that the linear term in the expansion

can be omitted since
∣

∣hij − h0
ij

∣

∣/h0
ij << 1 is implied by the smallness of the perturbation.

3.3.3 Intergranular torsional couples

Relative torsion between a pair of grains creates a torsional couple at their contact

interface [Lubkin, 1951; Deresiewicz, 1954]. In this section we propose a torque-rotation

relation based on the model of Deresiewicz [1954]. We formulate an incremental-wise

path-independent law, using an approach similar to that in Section 3.3.2. We note that

in cohesionless materials, the contribution of the intergranular torsion to the averaged

macroscopic stress is negligible, see Section 3.5. However, in a cemented grain pack, torsion

may determine the strength of each contact [Hills, 1986]. To enable modeling of cement

and its failure, we account for torsion in our model.

Consider a pair of grains, i and j, loaded at a reference configuration by a torsional

couple, M0
ij(t), and a normal force, P 0

ij. Following a perturbation, relative torsion between

the grains, Ωij(t), increments the torque by

M ij(t) = M
0,p
ij(t) − kij(t)Ωij(t) (3.6)

where the stiffness kij(t) describes the contact’s resistance to torsion. The effect of reori-

entation of the contact interface is modeled by rotating the reference torque, M
0,p
ij(t) =

∥

∥

∥
M0

ij(t)

∥

∥

∥
sgn

(

M0
ij(t) · r̂ij

)

r̂ij , see Figure 3.1(b). Here sgn denotes the sign function. For

a contact with a boundary w, M
0,p
iw(t) =

∥

∥

∥
M0

iw(t)

∥

∥

∥
sgn

(

M0
iw(t) · n̂w

)

n̂w. The torsion of

grain i relative to j, Ωij(t), is

Ωij(t) = [(Ωi −Ωj) · r̂ij] r̂ij for grain-grain contact (3.7a)

Ωiw(t) = (Ωi · n̂w) n̂w for grain-boundary contact (3.7b)

Slip at the contact interfaces may occur in a circumferential direction, making the

torque-rotation relation path-dependent [Deresiewicz, 1954]. For simplicity, we linearize the

torque-rotation relation to decouple the torque from the normal force increment. To limit

the torque by the expected value in sliding [Lubkin, 1951], Mmax
ij(t) = (3π/16) aijµij‖P ij‖,
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we compute the stiffness by

kij(t) =











k̃ij(t)

∥

∥

∥
M̃ ij(t)

∥

∥

∥
≤Mmax

ij(t)

k′

ij(t)

∥

∥

∥
M̃ ij(t)

∥

∥

∥
> Mmax

ij(t)

(3.8)

where M̃ ij(t) = M
0,p
ij(t) − k̃ij(t)Ωij(t), cf. Eq. (3.6), and

k̃ij(t) =
16

3
aij

3

(

1

Gi
+

1

Gj

)

−1

(3.9a)

k′

ij(t) =
1

∥

∥Ωij(t)

∥

∥

2

{

M
0,p
ij(t) ·Ωij(t) +

[

(

M
0,p
ij(t) ·Ωij(t)

)2
+

(

(

Mmax
ij(t)

)2
−
∥

∥

∥
M

0,p
ij(t)

∥

∥

∥

2
)

∥

∥Ωij(t)

∥

∥

2
]1/2

}

(3.9b)

Here, k̃ij(t) is the stiffness associated with negligible slip, i.e. at the onset of torsional

loading or unloading [Deresiewicz, 1954]. To enforce the torsional threshold the stiffness is

reduced to k′

ij(t), which vanishes at sliding, see Figure 3.2. Similar to Eq. (3.5b), we put

k′

ij(t) = 0 if the term inside the square brackets in Eq. (3.9b) becomes negative. Finally,

within linear approximation, we determine Mmax
ij(t) and kij(t) by using the unperturbed values

P 0
ij and a0

ij in Eq. (3.8)–(3.9).

3.3.4 Intergranular moments

Assuming small grain deformations, the normal force component does not produce

an appreciable moment relative to the center of the grain. At the same time, the tangential

force, Qij , is associated with a moment relative to the center of grain i,

M ij(s) = Rij ×Qij (3.10)

The total moment relative to the center of grain i is

M ij = M ij(s) + M ij(t) (3.11)
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Figure 3.3: The intergranular torsional couple,
∥

∥Mij(t)

∥

∥, vs. the relative torsion since contact

is established, Ω
(tot)
ij(t) . The torque is computed using our model, Eq. (3.8)–(3.9), and the model in

Deresiewicz [1954], for a loading-unloading-reloading cycle (see arrows), assuming a fixed normal
force. The plot shows the magnitudes of the respective vectorial quantities, normalized to a non-
dimensional form. The torsional stiffness, kij(t), corresponds to the slope of the lines.

3.4 Equilibrium configurations

An equilibrium configuration is characterized by a set of generalized coordinates,

θ, which satisfy the force and moment balance for each grain,

F i =

N i
g

∑

j=1

(

P ij + Qij

)

+

N i
b

∑

w=1

(P iw + Qiw)−migêz = 0 (3.12a)

M i =

N i
g

∑

j=1

(

M ij(s) + M ij(t)

)

+

N i
b

∑

w=1

(

M iw(s) + M iw(t)

)

= 0 (3.12b)

where M i is the sum of moments acting on grain i. Within QuSGM, a variational approach

is employed to find these configurations by minimizing an energy functional, Π, with respect

to θ. According to the principle of least work [Timoshenko & Goodier, 1970], Π is computed

from the work done against the loads on the grains following a perturbation,

Π(θ) = −

N
∑

i=1







1

2

N i
g

∑

j=1

Wij +

N i
w
∑

w=1

Wiw −mig(ui · êz)







(3.13)

where Wij is the work against the loads acting on grain i due to its contact with grain j,

Wij = Wij(n) + Wij(s) + Wij(t) (3.14)
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Here, Wij(n), Wij(s), and Wij(t) are the works performed against normal and tangential

contact forces, and torsional couples, respectively. We evaluate Wij(n) by computing the

elastic strain energy according to Hertz theory, related to normal compression, cf. Eq. (2.6),

Wij(n) = − (8/15) Eij (Rij)
1/2
[

(hij)
5/2 −

(

h0
ij

)5/2
]

(3.15)

The works against the shear and torsional loads are evaluated by integrating

the product of these loads and the corresponding displacements, over the displacements

following the perturbation. We do not account for heat or vibrations associated with sliding;

instead, we assume they are instantaneously dissipated through the boundaries. Assuming

that, following a perturbation, the contact loads change monotonically, the work terms are

evaluated by numerical integration using a midpoint rectangular rule,

Wij(s) = Q
0,p
ij · uij(s) −

1

2
kij(s)

∥

∥uij(s)

∥

∥

2
(3.16a)

Wij(t) = M
0,p
ij(t) ·Ωij(t) −

1

2
kij(t)

∥

∥Ωij(t)

∥

∥

2
(3.16b)

In sliding, the stiffness vanishes and Eq. (3.16) evaluates the inelastic work of a fixed force

and torque with respect to the displacements.

We obtain a local minimum of Π numerically, see Section 2.5. Here, the zero

gradient of Π with respect to θ, ∇θΠ = − [F 1 . . . F N M1/R1 . . . MN/RN ]T , provides

the balance of forces and moments.

3.5 Macroscopic stress and strain

The macroscopic parameters, namely stress, strain, and elastic moduli are eval-

uated according to the procedures described in Section 2.6. In particular, the stress is

evaluated from the intergranular loads acting on the boundaries, cf. Eq. (2.11). However,

the presence of frictional loads implies that the resultant load on the boundaries may in-

clude shear and torsion, corresponding to macroscopic shear stresses. If the pack behaves

isotropically, the normal strains applied in the principal directions should yield normal

stresses only.

To verify that no appreciable shear stresses develop, we compute the total moment

applied by the normal and tangential contact forces on the walls with respect to the pack’s

center. The averaged shear stress can be evaluated from an equivalent force couple. Since
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this force couple is at least 2 orders of magnitude smaller than the resultant normal forces,

we neglect the shear stresses.

Next, we show that the contribution of torsional couples to the averaged stress

is negligible, see also Goddard [1990]. For each torsional couple acting on the walls, we

compute an equivalent torque applied with respect to the pack’s center. The smallness of

the contact area makes the arm of an equivalent force couple much smaller than the size

of a single grain. Thus, unless torsion acts very close to the pack’s center, the torque it

applies is negligible relative to that of a contact force.

3.6 Simulation results

3.6.1 Material properties used in the simulations

The material properties used in the simulations are provided in Table 2.1. Be-

cause of the difficulties in estimating the value of the intergranular friction coefficient, see

Section 3.2.2, we use a range of values and conduct sensitivity analysis. For glass beads,

values of µ=0.1–0.3 were measured [Klaas et al., 2005; Li et al., 2005], and used in simula-

tions [Thornton, 2000; Li et al., 2005; Muthuswamy & Tordesillas, 2006; Peña et al., 2008].

In most simulations, we use µ=0.3 for all intergranular and grain-boundary contacts, where

µ denotes a uniform coefficient for all contacts. Additional simulations with µ=0.5 and

µ=0 are presented.

3.6.2 Initial pack: introduction of frictional loads

Section 2.7.2 describes a procedure to generate a dense irregular packing, involving

only normal grain compression. In loose packings, for instance compacted by vibrations,

frictional loads may be negligible [Makse et al., 2000]. Consequently, a frictionless pack

can be used as the initial configuration in simulating deformation of a loose sample.

Here, we begin the simulations with a relatively dense packing, and thus introduce

tangential forces and moments in the initial pack. We generate this pack by the following

procedure: (a) a dense packing is created with the frictionless model, cf. Section 2.7.2;

followed by (b) transition to a frictional model, introducing frictional loads.

In phase (b), frictional loads are introduced by uniaxial compression of the pack

with account for friction. Uniaxial compression creates sufficiently large frictional loads by
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forcing relative lateral and torsional grain displacements. Conversely, we find that isotropic

loading results in smaller grain rearrangements. This result is intuitive: in a structured

arrangement of identical grains, isotropic compression creates a self-similar deformation,

with only normal compression between the grains. While our packing is irregular, the

degree of load anisotropy is correlated with the number of rearrangements.
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Figure 3.4: The effective shear modulus, G, and ratio of sliding contacts vs. confining stress, σc,
evaluated from sample G2740 with intergranular friction of µ=0.3, during: (1) sample generation
procedure, phase (b); and (2) uniaxial test simulation. The two stages are distinct by a dash-dot
line.

During the first part of phase (b), marked by (1) in Figure 3.4, a rapid buildup

of frictional loads is observed. This buildup, a consequence of the initially-zero frictional

loads, corresponds to a stiffer response than experimentally observed. In particular, the

shear modulus, G, predicted at that stage, is overestimated, see Figure 3.4. As the confining

stress, σc, increases, the initially high G values decrease. This seemingly abnormal behavior

results from the generation procedure. Once the frictional loads are well-developed, part

(2), the moduli increase with σc.

We track progress of the generation procedure through the number of contacts

experiencing sliding. The ratio of sliding contacts to total number of contacts is plotted

in Figure 3.4. At each contact, sliding is determined by the ratio between the tangential

and normal contact forces. At the beginning of phase (b), the tangential forces are zero,
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with no sliding. As the generation procedure continues, part (1), the tangential forces

increase, initially faster than the normal forces, leading to a rapid increase in the sliding

ratio. The shear modulus, G, decreases as sliding increases. When the transition to the

frictional contact model is complete, part (2), this artificial growth of the tangential forces

stops, and the sliding ratio becomes relatively constant, ∼0.09–0.11. This “saturation”,

also observed in simulations by Thornton [2000] and Peña et al. [2008], marks the end of

our generation procedure.

3.6.3 Model verification

3.6.3.1 Accuracy of the numerical algorithm

The path-dependency of the constitutive laws requires following, in incremental

steps, the load history [Johnson, 1987; Elata & Berryman, 1996]. Since an analytical solu-

tion is unavailable, a comprehensive verification of our numerical algorithm is not possible.

Instead, we simulate deformations that produces normal contact forces only, and verify

that our algorithm predicts such loads. We use a similar pack to that described in Sec-

tion 2.7.3.1, deformed in a self-similar manner. Consequently, the relative displacements

between contacting grains are in the direction of their centerline, corresponding to com-

pressive strains. To inhibit grain rotations, we assume ideally-smooth boundaries. The

analytical solution to this problem is thus identical to the one obtained assuming friction-

less grains.

Similarly to the simulations with ideally-smooth grains, symmetry for the bottom

grains is preserved. The relative error, measured as the deviation from a self-similar defor-

mation,
(

rA
ij − rN

ij

)

/rA
ij , is ∼10−11–10−9. Here, rA

ij and rN
ij denote the distance between the

top grain and a bottom grain, computed analytically and numerically, respectively. This

error is slightly higher than in the frictionless model, see Figure 2.8. The error is increased

because tangential forces develop due to the deviations from self-similar deformations and

small (∼10−9) grain rotations. While these forces are small compared to the normal com-

ponents (by a factor of ∼10−9–10−8), they increase the geometrical error and cause further

departure from self-similar deformation.
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3.6.3.2 Verification against experimental data

We verify our model against experimental data, for the general case of irregular

packing. We use the published data from acoustic measurements in packs of glass beads,

as well as the DEM simulations and EMT calculations, presented in Section 2.7.3.2. The

use of artificial grains allows for a better controlled experiment relative to one preformed

on geologic materials, mainly because of the irregular grain shapes in the latter.

To evaluate the effective moduli of a pack of frictional grains, we simulated two

uniaxial strain tests, using two initial packs generated by: (i) isotropic compression of sam-

ple G2740 to σµ=0
c =4 and σµ=0

c =10 MPa in phase (a); followed by (ii) uniaxial compression

with the friction coefficient µ=0.3 to σc=9 and σc=19 MPa in phase (b), see Section 3.6.2.

To examine the effect of the intergranular friction coefficient (Section 3.6.4.3), the latter

simulation (σµ=0
c =10 MPa) was reproduced with µ=0.5. In Figure 3.5 we plot the effective

elastic moduli vs. confining stress, σc, evaluated from these simulations and the published

data. Good agreement between our estimates and the experimental data, achieved with

no adjustment of material parameters, verifies the physical soundness of our model.

We stress that the effective moduli are not uniquely defined by the grain properties

alone; they also depend on the spatial distribution of these properties, and, possibly, on the

loading history [Magnanimo et al., 2008]. This indeterminacy is enhanced by sensitivity of

the bulk response to small perturbations, leading to emergent properties: small variations in

grain configurations can result in significantly different properties [Behringer et al., 1999;

Holtzman et al., 2008b]. Inevitable uncertainty in characterizing grain configurations,

makes exact reproduction of an experiment by numerical simulations impossible, and leads

to large scatter in experimental data, e.g., see Figure 3.5.

3.6.4 Sensitivity analysis

3.6.4.1 Sensitivity to the initial packing

The mechanical properties of a grain pack during testing depend on the initial

packing, the loading path, and the final state of stress. The initial pack has a loading

history of itself, i.e. prior to the beginning of the test. Thus, characterization of the

initial pack should include its microstructure, intergranular loads, and possibly the load

history of each contact. Our sample generation procedure involves “activation” of frictional

resistance by uniaxial loading, see Section 3.6.2, affecting the initial packing, and thus can
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Figure 3.5: The effective bulk (K, top) and shear (G, bottom) modulus vs. confining stress, σc.
The moduli evaluated from simulations are compared with the results of acoustic experiments in
glass beads, as well as DEM and EMT computations. Superscripts 1–3 refer to the data published
in Domenico [1977], Makse et al. [1999], and Yin [1993], respectively.

be considered as part of the load history.

To examine the effect of the initial packing, we conduct a series of uniaxial test

simulations on different initial packs. To generate these packs, sample G2740 has been
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compacted isotropically up to stresses of σµ=0
c = 4, 10, 20, 41, 54 and 74 MPa in phase

(a) of the generation procedure, followed by application of uniaxial strain with a friction

coefficient of µ=0.3 in phase (b). The resulting initial packs are denoted by G2740 (4 ),

G2740 (10 ), G2740 (20 ), G2740 (41 ), G2740 (54 ), and G2740 (74 ). While these packs con-

tain similar grains, their microstructure, and consequently their mechanical properties,

may differ due to different loading paths [Magnanimo et al., 2008].

In Figure 3.6, the effective moduli of these packs are plotted vs. confining stress,

σc, evaluated during: (1) phase (b) of the generation procedure; and (2) uniaxial test

simulation. Results for samples G2740 (10 ) and G2740 (41 ) are highlighted in the plot.

Comparing the moduli evaluated at similar confining stresses, we observe that the bulk

modulus is lower for samples with higher σµ=0
c values. While the bulk modulus predicted

from simulations on G2740 (4 ) and G2740 (10 ) is relatively similar (∼1% variation), the

difference with other initial samples, e.g. G2740 (41 ), increases to ∼10%. The shear

modulus exhibits smaller sensitivity, with relatively small variations among the different

simulations.

To investigate these seemingly counterintuitive observations, we calculate the

mean normal contact force within the pack, P̄ . At a given confining stress, P̄ is higher in

packs with lower σµ=0
c . This difference reflects the different load paths during the gener-

ation procedure. Lower σµ=0
c means that uniaxial strain loading started at a lower stress,

indicating that the sample has experienced larger axial stress and lower lateral stress. The

stronger loading anisotropy implies more grain rearrangements, see Section 3.6.2, which

increase the packing density and consequently the normal forces (P̄ ). Thus, since the bulk

modulus is mainly affected by the normal contact forces, it increases with P̄ , while the

shear modulus shows lesser sensitivity.

3.6.4.2 Sensitivity to the size of load increments

In our simulations, loading is applied in increments. Each load increment cor-

responds to a perturbation of the boundary conditions, sufficiently small so that the size

of the relative grain displacements justify linearization of the constitutive relations, see

Section 3.3. The tradeoff between the size of the load increments and the number of in-

crements imposes a constraint on the increment’s size. In this section, we test our model

robustness with respect to the size of the load increments.
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Figure 3.6: The effective bulk (K, top) and shear (G, bottom) modulus vs. confining stress, σc,
evaluated during: (1) sample generation procedure, phase (b); and (2) uniaxial compression test
simulations, conducted on sample G2740 with intergranular friction of µ=0.3. Six simulations were
conducted on initial packs generated with different stresses during phase (a), σµ=0

c . At a given σc,
K is lower for samples with higher σµ=0

c values, e.g. it is lower for G2740 (41 ) than for G2740 (10 ),
whereas G shows lesser sensitivity.

To examine sensitivity to the increment’s size, we compare simulations on sample

G2740, applying different strain increments. In Figure 3.7, we plot the moduli evaluated
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Figure 3.7: The effective bulk (K, top) and shear (G, bottom) modulus vs. confining stress, σc,
evaluated during: (1) sample generation procedure, phase (b); and (2) uniaxial compression test
simulations, conducted on sample G2740 with intergranular friction of µ=0.3. We plot results from
three simulations, with uniaxial strains of ∆ǫa=5 · 10−4, ∆ǫa=5 · 10−5, and their combination. The
small differences demonstrate our model’s robustness with respect to the size of the load increments.

during: (1) phase (b) of the generation procedure (Section 3.6.2), and (2) uniaxial test

simulation, vs. confining stress. We present results from two simulations using axial

strains of ∆ǫa=5 · 10−5 and ∆ǫa=5 · 10−4, in addition to a simulation in which the strain
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was reduced from ∆ǫa=5 · 10−4 during the generation procedure to ∆ǫa=5 · 10−5 at the

uniaxial test. The small differences imply that our model is robust with respect to ∆ǫa.

3.6.4.3 Effect of the intergranular friction coefficient

The effects of intergranular friction on the bulk response, the microstructure, and

the way forces are transmitted within a sample, were studied in Behringer et al. [1999],

Thornton [2000], Goldenberg & Goldenhirsch [2005], Anthony & Marone [2005], Cui &

O’Sullivan [2006], Pohlman et al. [2006], Muthuswamy & Tordesillas [2006] and Peña et al.

[2008]. For example, experiments and simulations show that the angle of repose is correlated

with the intergranular friction coefficient [Cui & O’Sullivan, 2006; Pohlman et al., 2006;

Peña et al., 2008]. Note that frictional resistance at each contact is not uniquely determined

by the friction coefficient. In our model, this resistance is computed by: (1) the friction

coefficient, µ, and the normal force magnitude, ‖P ij‖, if sliding occurs; (2) the tangential

and torsional stiffness, kij(s) and kij(t), if the contact does not slide. The sliding threshold,

and, on the verge of sliding, the stiffness values, k′

ij(s) and k′

ij(t), depend on µ and ‖P ij‖.

To investigate the sensitivity of the effective moduli to the friction coefficient,

µ, we compare the moduli predicted from two simulations, with µ=0.3 and µ=0.5, and

σµ=0
c =10 MPa, see Section 3.6.3. The moduli are plotted in Figure 3.8 vs. confining stress.

As expected, the moduli increase with the friction coefficient. In particular, the shear

modulus strongly depends on the intergranular friction.

To complete this analysis, we study the effect of extreme µ values. Our simulations

show that a frictionless model (µ=0) underestimates the stiffness and strength of the pack,

in particular under shear. For example, it predicts loss of shear rigidity, G→0, at relatively

high packing densities, see Section 2.7.3.2. Similar observations were made by Makse et al.

[2004]. Conversely, Makse et al. [2004] demonstrated that a model which prohibits sliding

(µ→∞) overestimates G. Note that macroscopic stiffness and strength do not increase

significantly when the friction coefficient increases above a certain value (e.g., µ=0.6 in

Muthuswamy & Tordesillas [2006]). Similar saturation of other macroscopic parameters

with respect to µ was observed in simulations [Thornton, 2000] and experiments [Blair

et al., 2001]. This trend may signal that mechanisms other than grain sliding become

dominant [Muthuswamy & Tordesillas, 2006].
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Figure 3.8: The effective bulk (K, top) and shear (G, bottom) modulus vs. confining stress, σc,
evaluated from two simulations on sample G2740, with different intergranular friction coefficients,
µ=0.3 and µ=0.5. The effective moduli, in particular G, increase with the friction coefficient.
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3.7 Concluding remarks

To evaluate the mechanical properties of a cohesionless granular material, we have

presented a micromechanical model within the framework of QuSGM. The intergranular

interactions, including friction and sliding, are modeled by a set of constitutive relations

based on the contact theories of Hertz, Mindlin, and Deresiewicz. The equilibrium grain

configurations are computed by minimizing an energy functional. Employing the principle

of least work, this functional is evaluated from the work against the intergranular loads.

We have verified our model’s predictive capabilities against published experimen-

tal data. The grain-scale parameters used in the simulations are taken from published

experiments. Good agreement between predicted and measured values of the effective

moduli is achieved with no adjustments of material parameters, confirming the physical

soundness of our model. The robustness of our model with respect to the size of the load

increment has also been demonstrated.

Sensitivity analysis confirms that the stiffness of a grain pack increases with the

intergranular friction coefficient. The shear modulus is more sensitive to the intergranular

friction than the bulk modulus, which mainly depends on the normal contact forces. We

conclude that proper account of intergranular frictional resistance is required to predict the

response of a grain pack, in particular under shear. Modeling intergranular friction faces

several problems. It is difficult to evaluate the friction coefficient, which can vary with

the deformation. Moreover, the validity of a Coulomb-type friction law at the grain-scale

needs further investigation [Behringer et al., 1999].

Examining the effect of the initial packing, we show that different loading paths

within the generation procedure result in different packs with variable properties. Thus, the

grain properties do not uniquely define a grain pack: the loading history, as well as spatial

distribution of the grain properties, strongly affect the macroscopic properties. Indetermi-

nacy is enhanced by the sensitivity of the macroscopic properties to small perturbations,

and rare events in the form of large displacements of individual grains. Combining our

simple yet physically-based computational technique with experimental evidence, allows to

relate the grain- and macro-scale, and predict the behavior of granular materials.
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Chapter 4

Nonlinear deformation of

weakly-cemented sediments: a

paradigm?

4.1 Introduction

WE STUDY the mechanics of weakly-cemented granular materials in which the grains are

bonded together by small amounts of cement, through grain-scale simulations. Cemen-

tation of grain contacts is related to the deposition of minerals which infiltrate the pore

space in aqueous solution [Bernabè et al., 1992; Jin et al., 2003; Jin, 2006] or are dissolved

by pressure dissolution of rock material [Tada & Siever, 1989; Dewers & Ortoleva, 1990;

Renard et al., 2000; Gratier et al., 2005]. Poorly-consolidated sedimentary rocks in oil and

water reservoirs may cause problems such as subsidence, well-bore instability, and sanding,

see Saidi et al. [2003] and the references within.

Earlier, we concluded that the complex, inelastic behavior of particulate materials

is attributed to: (a) variations of the intergranular contact area with the deformation;

(b) path-dependent intergranular force-displacement relation due to frictional slip; and

(c) variations in the contact network. In cemented materials, cement constraints relative

motions of the grains, unless the intergranular loads exceed the cement’s strength. Thus,

introduction of cement is expected to regularize the deformation process, reducing the

nonlinearity of the bulk response [Dvorkin et al., 1991]. This hypothesis underlies many of

the models found in the literature, e.g. Dvorkin et al. [1991], Dvorkin et al. [1994], Jin et al.

[2003] and Potyondy & Cundall [2004]. However, experimental observations are in odds

with the above hypothesis, showing significant variations in the mechanical properties of
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weakly-cemented sediments with deformation. Determination of micromechanical origins

for the nonlinear sediment deformation is the main objective of this chapter.

To investigate the micromechanics of cemented materials, i.e. relate the overall

response of a sample to the grain and cement properties, we simulate deformation of a

cemented pack within the framework of QuSGM. We introduce the effect of cement at

the contacts through a set of constitutive relations. To account for inelastic deformations

of the cemented contacts, we relate the contact stiffness to the deformation it experi-

ences. We present several models that represent different types of microscopic deformation

mechanisms. Our simulations reveal that matching experimental data requires account of

nonlinear contact deformations, e.g. through the constitutive rules. Conversely, models

based on the concept of linear-elastic cement deformation, fail to reproduce the data.

This chapter is organized as follows. In Section 4.2, we overview published ex-

perimental evidences of nonlinear deformation of cemented samples, and discuss possible

mechanisms. A conceptual model of a cemented grain pack is presented in Section 4.3,

and implemented through a set of constitutive rules in Section 4.4. The construction of a

numerical pack is discussed in Section 4.5. In Section 4.6, we provide a methodology by

which the equilibrium configurations are obtained. In Section 4.7, an alternative approach

is proposed, using a “parallel bond” model. Unlike the models described above, in which

effective parameters represent the properties of both the grains and the cement, in the par-

allel bond model the grain-grain and grain-cement interactions are treated separately, using

two sets of constitutive rules. Section 4.8 provides the simulations results. In Section 4.8.1,

we demonstrate the ability of an exponential constitutive relation to reproduce experimen-

tal data. The performance of the numerical algorithm is discussed in Section 4.8.2. In

Section 4.8.3, we compare the results obtained by using the different constitutive rules we

proposed. The physical meaning of our model parameters and their effect on the bulk

response are discussed in Section 4.8.4. Section 4.9 concludes this chapter.

4.2 Inelastic response of weakly-cemented materials

4.2.1 Experimental macroscopic observations

The mechanical properties of weakly-cemented materials cannot be described by a

linear-elastic model with constant elastic moduli. In uniaxial compression of synthetic and
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naturally cemented sediment samples, the stress-strain curve is nonlinear [Jaeger & Cook,

1979; Martin & Chandler, 1994; David et al., 1998; Nakagawa & Myer, 2001; Holt, 2001;

Saidi et al., 2003], see Figure 4.1. Another expression of nonlinear behavior is variations

of the elastic moduli with the deformation [Murphy, 1982; Martin & Chandler, 1994; Saidi

et al., 2003; Nakagawa, 2008]. Nakagawa [2008] measured wave velocities during a uniaxial

loading-unloading cycle in cemented samples, see Figure 4.2. Five packs of quartz grains

with an initial porosity of ∼35% were cemented by different quantities of soda-lime glass1.

A sample of Berea sandstone was also tested. An increase of the velocities with stress,

corresponding to an increase in the elastic moduli, cf. Eq. (2.20), is especially noticeable in

the weakly-cemented, more porous packs, particularly at low stresses. Inelastic response is

evident even under relatively low stresses. For example, the unloading-reloading cycles in

Figure 4.1 do not coincide with the main stress-strain curves, implying inelastic deformation

[Jaeger & Cook, 1979], whereas acoustic emissions detected immediately after loading are

correlated with formation of microcracks [Holt, 2001].

Figure 4.1: A typical stress-strain curve from uniaxial compression of quartz grains bonded by
Portland cement. The initially convex curve, corresponding to strain hardening, becomes approx-
imately linear with further compression. Additional loading results in softening (concavity), and
finally failure (peak) followed by post-failure behavior (negative slope). Small unloading-reloading
cycles were performed to estimate Young’s modulus, see Figure 4.7. Adapted from Saidi et al.
[2003].

The conventional explanation for the deviation from linear-elastic response is

through closure and formation of microcracks in the cemented contacts [Jaeger & Cook,

1979; Martin & Chandler, 1994]. Martin & Chandler [1994] divide a typical stress-strain

1Compaction was applied to obtain the densest pack (7.3%) in Figure 4.2.
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curve, e.g. Figure 4.1, into several regions, which correspond to different stages of deforma-

tion: (a) as loading begins, the first region is marked by convexity of the curve, related to

closure of pre-existing microcracks; (b) once these cracks close, the material is considered

elastic, with a relatively linear response; (c) slight concavity is associated with formation of

new cracks which reduce the overall stiffness of the material. These cracks are “stable”, in

the sense that further cracking requires to increase the load. This behavior is accompanied

by dilatation; (d) as the stress increases above a certain level, the total volumetric strain

reverses, marking the onset of unstable crack growth, and sliding along surfaces created by

coalescent cracks; (e) the stress-strain peaks, after which the stress begins to decrease with

additional strain. The stress at the peak is commonly referred to as the “failure strength”.
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Figure 4.2: Compressional acoustic wave velocities vs. axial stress. Velocities were measured by
Nakagawa [2008] in five synthetic packs with different porosities, denoted by the legend entries (in
%), and a sample of Berea sandstone (15%), during uniaxial loading-unloading cycle. The lower
velocities correspond to loading. In the weakly-cemented packs, velocities increase significantly
with stress, particularly at lower stresses.

4.2.2 Possible mechanisms for nonlinear contact deformation

In this work, we focus on the initial stages of loading, (a)–(b), namely strain-

hardening followed by the so-called elastic regime. A fundamental question immediately

arises regarding the sources of the observed nonlinearities. In particular, are the main
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mechanisms similar to nonlinear deformation of the grains and variations in the contact

network in uncemented materials, or, are they attributed to nonlinear deformation of the

cement itself? To answer this question, we examine several possible mechanisms for nonlin-

ear contact deformation: (1) formation, closure, and reopening of microcracks; (2) changes

in the geometry of the cemented contact interfaces; and (3) propagation of deformation

into heterogeneous cement and grain materials.

Microcracks exist in most cemented particulate materials, at different scales, from

interatomic dislocations to fractures [Kranz, 1983]. Acoustic emissions soon after loading

begins are experimental evidence of early development of microcracks [Holt, 2001]. Micro-

cracks are evident in the scanning electron microscopy (SEM) images in Figure 4.3.

(a) (b)

(d)(c)

Figure 4.3: SEM images of four synthetic sandstones with porosities of (a) 0.17, (b) 0.29, (c)
0.37, and (d) 0.39. A pack of glass beads (in white, pore space in black) was sintered by heat.
Microcracks are evident, both within the grains, far from the contact area, as well as in the cement
material bridging the grains (encircled). Adapted from Berge et al. [1995].

Geometrical nonlinearities are related to variations in the cemented contact area

and plastic deformation of asperities. The contact interfaces can be quite irregular, espe-

cially in the presence of cement which is itself granular, see Figure 4.4. Thus, the contact
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mechanics cannot be described by theories assuming smooth surfaces, e.g. Hertzian. Con-

sider, for example, compression of two cemented grains with an irregular contact surface.

The initially small contact area corresponds to a smaller resistance to compression. Con-

centration of the stress over the small area will result in inelastic deformation of asperities

made of granular cement. This deformation, in turn, will significantly increase the con-

tact area, and thus the contact stiffness. For grains bonded by a soft cement layer, we

propose the following intuitive explanation: in extension, the layer becomes thinner, and

thus more susceptible to further deformation; conversely, compression makes the cement

denser, and thus less compliant. Similarly, shear of asperities and micro-slip is expected to

yield inelastic shear and torsional deformations.

1 mm

Figure 4.4: SEM images of sand grains bonded by Portland cement. The pores appear in black.
The sand grains are the larger particles (mean diameter of ∼0.8 mm), and the granular cement
consists of the smaller particles (few microns), both in grey. The volumetric fraction of the cement
is ∼9%. Adapted from Saidi et al. [2005].

Finally, material heterogeneity can result in nonlinear contact deformation. We

consider a contact region to be heterogenous if: (a) softer cement coats a large portion of

the contact interface, forming a soft layer between the stiffer grains; and (b) the grains

themselves are heterogenous, due to variable mineralogy or as a result of weathering. Let

us consider, for example, two bodies which are stiffer from the inside, with a softer exte-

rior. Under the assumption of localized deformations [Johnson, 1987], compression initially

results in deformation mainly within the softer material. As compression increases, the de-

formation propagates into the deeper, stiffer portions of the bodies, corresponding to an
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increase in the effective contact stiffness.

In weakly-cemented materials, we hypothesize that mechanisms (1)–(3) may be-

come dominant over those which govern the behavior of uncemented materials. To examine

this hypothesis, we model nonlinear contact deformation by correlating the effective stiff-

ness of each contact to the deformation it experiences, and compare the bulk properties

with experimental data.

4.3 Conceptual model of a pack of cemented grains

Characterizing the properties of a cemented contact is a difficult task. The geom-

etry of cement deposited around the grain contacts is complex [Jin, 2006; Brouste et al.,

2007]. Experimental evaluation of the contact geometry, for instance from SEM images

[Berge et al., 1995; David et al., 1998; Holt et al., 2005] or thin sections [Yin, 1993], is cum-

bersome. Additionally, the cement material can be highly heterogenous, cf. Figure 4.4.

Consequently, formulating constitutive relations which account for the geometry and ma-

terial properties of a cemented contact requires complex numerical analysis, for instance by

FEM [Munjiza et al., 1995]. Alternatively, the grain and contact geometry can be approx-

imated by a simpler shape, allowing to obtain an semi-analytical solution [Dvorkin et al.,

1991, 1994]. Employing either techniques makes computations in a large grain pack time

consuming.

In our model, the detailed account of the contact geometry and material prop-

erties is replaced by the following conceptual model: for each pair of cemented grains,

the cemented contact region is modeled as a beam, which undergoes deformations due to

relative motions of the grains. We formulate simple constitutive rules, which relate the

intergranular loads and deformations via a set of effective parameters. Thus, these param-

eters represent the effect of the cement and grain materials, and the contact geometry.

To evaluate the deformations imposed by the relative grain displacements, we

consider an idealized sample: an irregular packing of spherical grains. A physical example

of such a pack is shown in Figure 4.5. Note that we consider samples with small amounts of

cement which bonds the grains together, excluding samples with larger amounts of cement

which coats the grains and significantly increases the contact area. The sample with 4%

cement content in Figure 4.5 is an example of the latter.

The models presented in this chapter are based on QuSGM, describing the de-
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0.5% 1.0%

4.0%

1 mm 1 mm

1 mm

Figure 4.5: SEM images of synthetic sandstones made of epoxy-cemented glass beads, with ce-
ment/glass beads weight percentage of 0.5, 1.0, and 4.0%. We model weakly-cemented packs in
which cement is localized at the grain contacts (e.g. the 0.5% and 1.0% samples), and exclude those
with higher cement content, in which cement is coating the grains (4.0%). Adapted from Holt et al.
[2005].

formation by a sequence of equilibrium configurations. Simulations begin with an initial,

undeformed configuration. The pack is loaded by incremental displacements of its bound-

aries. Let us consider a pair of cemented grains. At a given reference configuration, a

perturbation of the boundary conditions alters the intergranular load, F 0. The current

load, F = F 0 + ∆F , is found by adding a load increment ∆F , which is computed from an

incremental constitutive rule, ∆F = k∆X. Evaluation of the effective stiffness parameter

k, which includes information on the properties of the grains and the cement, is the subject

of the next section.

4.4 Constitutive relations for cemented grains

The constitutive rules presented in the following sections are based on the contact

mechanics theories of Hertz [1882], Mindlin & Deresiewicz [1953] and Deresiewicz [1954].

These theories, developed for cohesionless grains, are modified here to accommodate the

effect of cement by: (a) assigning effective contact properties; and (b) restricting relative
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grain displacements by prohibiting grain sliding. To model nonlinear cement deformation,

we propose several rules for the evolution of the effective stiffness with the deformation.

Our models do not account for fracturing of grains. Experimental evidence suggests that

grain breakage occurs under very high stresses, and the cement material, usually weaker

than the grains, breaks first [Bernabè et al., 1992; Yin & Dvorkin, 1994; Holt, 2001].

Furthermore, we do not model complete failure of the cement material, i.e. loss of cohesion

at the contact, which can be justified by the assumption that the bulk response is mainly

controlled by the behavior of the intact cemented contacts [Holt, 2001].

4.4.1 Normal component of the intergranular forces

In this section, we formulate a force-displacement relation for the normal com-

ponent, based on Hertzian contact law. We follow the usual assumption that the normal

force component is unaffected by shear and torsion, and can be computed independently

[Johnson, 1987; Dintwa et al., 2008].

Let us consider a pair of cemented grains, i and j. At a given reference configu-

ration, the deformation of the cement and grain materials imposes a normal force, P 0
ij , on

grain i. The force can be compressive or tensile. A similar force in the opposite direction

is applied on grain j. Following a small perturbation, the force becomes

P ij = P
0,p
ij − k∗

ij(n)uij(n) (4.1)

where the effective normal stiffness k∗

ij(n) denotes the resistance of that contact to compres-

sion and tension. To account for the reorientation of the contact interface, the unperturbed

force, P 0
ij, is rotated by P

0,p
ij =

∥

∥P 0
ij

∥

∥ sgn
(

P 0
ij · r̂ij

)

r̂ij , see Figure 3.1(b). For a contact

with a boundary w, r̂ij is replaced with the outward normal to that boundary, n̂w. The

grain-boundary and grain-grain interactions are treated in a similar manner, i.e. using

identical constitutive rules. The normal component of the displacement of grain i relative

to grain j, uij(n), is computed by

uij(n) = r̂ij ⊗ r̂ij (ui − uj) for grain-grain contact (4.2a)

uiw(n) = n̂w ⊗ n̂w (ui − uw) for grain-boundary contact (4.2b)

The normal stiffness k∗

ij(n) is evaluated through a Taylor’s expansion of the Hertzian

contact law, cf. Eq. (2.2), with respect to the mutual approach, hij . Keeping only the linear
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term, ∆ ‖P ij‖ ≈
∂ ‖P ij‖

∂hij

∣

∣

∣

∣

h0
ij

dhij , provides an estimate for the force increment in Eq. (4.1),

−k∗

ij(n)uij(n). Assuming that ∆ ‖P ij‖ is directed along the normal displacement, uij(n),

the stiffness is evaluated by replacing the differential dhij in the above with ‖uij(n)‖,

k∗

ij(n) = 2Eija
∗

ij (4.3)

where Eij is an effective elastic parameter used in Hertz theory, cf. Eq. (2.3), and a∗ij is the

effective contact radius which includes the effect of cement. In obtaining Eq. (4.3) we use

the relation between the contact radius and the mutual approach from Hertzian theory,

aij = (Rijhij)
1/2, where Rij is defined in Eq. (2.3).

Simulations begin with an initial, undeformed configuration, see Section 4.5. The

values measured at the initial configuration are denoted by superscript (c). The initial

effective radius, a
∗(c)
ij , is evaluated by

a
∗(c)
ij = a

(c)
ij + aCEM

ij = (1 + κ) a
(c)
ij (4.4)

where a
(c)
ij =

(

Rijh
(c)
ij

)1/2
and aCEM

ij = κa
(c)
ij are the portions of the contact radius associ-

ated with the grain-grain and grain-cement contact, respectively. The initial contribution

of the cement to the effective area is quantified through κ, representing the increase in the

contact radius following cementation. Thus, κ is related to the cement content, as well as

its geometry and material properties. We use a uniform value of κ for all contacts. In the

limiting case of negligible amount of cement, κ → 0, the effective radius approaches that

predicted by Hertz theory, a∗ij ≈ aij. In Section 4.4.4 we propose several models that link

the evolution of the stiffness k∗

ij(n) to the local deformation.

4.4.2 Tangential component of the intergranular forces

Consider a pair of cemented grains, i and j, loaded by a force acting tangentially

to the contact plane, Q0
ij , see Figure 3.1(b). A perturbation results in small relative

tangential displacement of the contact interfaces, uij(s), and alters the tangential force,

according to

Qij = Q
0,p
ij − k∗

ij(s)uij(s) (4.5)

where k∗

ij(s) denotes the effective shear stiffness of that contact. The reorientation of

the contact area is modeled by Q
0,p
ij =

∥

∥Q0
ij

∥

∥ t̂ij , where t̂ij = T ijQ
0
ij/
∥

∥T ijQ
0
ij

∥

∥, and
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T ij = Î − r̂ij ⊗ r̂ij . For a contact with a boundary w, T iw = Î − n̂w ⊗ n̂w. The relative

tangential displacement of grain i with respect to j, uij(s), is computed by Eqs. (3.2)–(3.3).

The shear stiffness, k∗

ij(s), is evaluated from the theory of Mindlin & Deresiewicz

[1953]. While cement prohibits relative sliding (“complete slip”) between the grains, we

believe that partial slip, see Section 1.3.5.2, is important. We argue that the irregular

surfaces of cemented contacts, see e.g. Section 4.2.2, are susceptible to slip. Additionally,

slip along microcracks can reduce the lateral contact stress in a similar manner. In Mindlin

& Deresiewicz [1953], slip is modeled by reducing the stiffness value predicted at initial

loading or unloading (referred to as “no-slip”), until it vanishes at sliding, see Figure 3.2.

Here, we simplify the treatment of slip by reducing the value predicted for no-slip, cf.

Eq. (3.5a), by a fixed factor, Cs. Substituting the effective radius a∗ij into Eq. (3.5a)

provides the following effective stiffness:

k∗

ij(s) = Cs8a
∗

ij

(

2− νi

Gi
+

2− νj

Gj

)

−1

(4.6)

Following Mindlin & Deresiewicz [1953], we vary the shear stiffness with the normal com-

pression, through changes in the effective contact radius, a∗ij .

4.4.3 Intergranular torques

A pair of grains, i and j, is loaded at a reference configuration by a torsional

couple. The torque applied on grain i is denoted by M0
ij(t). Following a perturbation,

relative torsion between the grains, Ωij(t), modifies the torque,

M ij(t) = M
0,p
ij(t)
− k∗

ij(t)Ωij(t) (4.7)

where M
0,p
ij(t)

=
∥

∥

∥
M 0

ij(t)

∥

∥

∥
sgn

(

M 0
ij(t) · r̂ij

)

r̂ij accounts for the rotation of the contact area,

see Figure 3.1(b). For a contact with a boundary, M
0,p
iw(t) =

∥

∥

∥
M0

iw(t)

∥

∥

∥
sgn

(

M0
iw(t) · n̂w

)

n̂w.

The relative torsion, Ωij(t), is computed by Eq. (3.7). The contact’s resistance to torsion

is characterized by the effective stiffness k∗

ij(t), evaluated from Deresiewicz [1954] assuming

negligible slip, cf. Eq. (3.9a),

k∗

ij(t) =
16

3

(

a∗ij
)3
[

1

Gi
+

1

Gj

]

−1

(4.8)

Formally, partial slip in torsion should be modeled in a similar manner to that in the

former section, e.g. by reducing the value in Eq. (4.8). However, since the contribution of
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torsional couples to the averaged stress is negligible (see Section 3.5), such reduction has

little effect on the results.

The tangential force, Qij, is associated with a moment relative to the center of

grain i, M ij(s) = Rij ×Qij . The total moment relative to the center of the grain is

M ij = M ij(s) + M ij(t) (4.9)

4.4.4 Evolution of the effective contact stiffness

4.4.4.1 Linear-elastic cement model

For grains bonded by weak cement, variations in the direct grain-grain contact

area, e.g. as described in Hertz theory, may still be a significant source of nonlinearity.

To explore the effect of the stiffness variations predicted by Hertzian theory on the bulk

response, we formulate a “linear-elastic cement” model, in which the grain-grain portion

of the contact area varies according to Eq. (2.1), whereas the cemented portion of the area

remains fixed. The effective stiffness in the initial, undeformed configuration is computed

by inserting the initial effective radius, cf. Eq. (4.4), into Eq. (4.3). The stiffness following

deformations is evaluated by

a∗ij = (Rijhij)
1/2 + aCEM

ij (4.10)

In Hertz theory, if the grains separate, hij ≤ 0, the intergranular force vanishes. In ce-

mented contacts, separation should be resisted by tensile stresses. Thus, we assign a

non-zero stiffness to contacts with hij ≤ 0, computed by using a∗ij = aCEM
ij .

An alternative model, in which the nonlinear grain-grain and linear grain-cement

interactions are treated independently, is presented in Section 4.7. Simulations reveal that

both models underestimate the nonlinearity of the bulk response, for instance evaluating

relatively small variations of the elastic moduli with increasing stress. A similar conclusion

was made by Saidi et al. [2003].

4.4.4.2 Nonlinear cement deformation

To mimic the experimentally observed behavior, we model nonlinear cement de-

formation, e.g. caused by the mechanisms discussed in Section 4.2.2, by correlating the

effective stiffness of each contact to the deformation it experiences. Following Hertz the-

ory, we evaluate the contact’s deformation from the normal compression, through a single
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parameter. We define a normal contact strain,

r∗ij =
r
(c)
ij − rij

r
(c)
ij

(4.11)

and relate the effective contact radius to this strain through an exponential function,

a∗ij = a
∗(c)
ij exp

(

γr∗ij
)

(4.12)

The effective stiffness increases from its initial value at the undeformed configuration, a
∗(c)
ij ,

as the grains become closer, under compressive strain, r∗ij > 0, and vice versa.

Exponential stiffness evolution was proposed by Potyondy [2007] to model cement

dissolution in silicate rocks. The author simulated corrosion by a damage law, where

the stiffness of each contact was reduced exponentially with increasing local stress. An

exponential law for crack growth in brittle materials is observed in experiments and justified

by theory, see Potyondy [2007] and the references therein.

For small ηr∗ij values, the exponential function in Eq. (4.12) can be approximated

by a power law,
(

1 + ηr∗ij

)ω
≈ exp

(

γr∗ij

)

. Otherwise, for instance if the values of the

parameters η and γ are large, or, following large deformations which correspond to large

r∗ij values, a power law will differ from an exponential law. To examine the ability of a

power law to reproduce experimental data, we formulate the following relation:

a∗ij = a
∗(c)
ij

(

1 + ηr∗ij
)ω

(4.13)

where η ≫ 1 scales the effective radius with the contact strain, and ω determines its rate of

change. The results of simulations using the different models are compared in Section 4.8.3.

4.5 Initial configuration

Simulations begin with an initial configuration of the grains. In Section 3.6.4.1

we show that simulations are sensitive to the way the initial configuration is generated.

To reduce the dependence of the results on the generation procedure, we consider the

initial configuration to be stress-free, and measure all intergranular deformations and loads

relative to that configuration. Similar approach was taken by Potyondy & Cundall [2004],

Tavarez & Plesha [2007] and Garcia & Medina [2007].

The assumption of initially unstressed cement is based on the hypothesis that

cement accommodates to whatever surfaces are exposed at a given state, through pressure
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dissolution [Dewers & Ortoleva, 1990; Garcia & Medina, 2007]: since stress is the driving

force for dissolution, at contacts which experience higher stresses, dissolution will be en-

hanced. Once the dissolved material precipitates at these contacts, the effective contact

area increases and thus stress is reduced. Similarly, in contacts which experience relatively

low stresses, dissolution will be slower.

We create an initial, unstressed configuration from a dense irregular arrangement

generated according to the procedure in Section 2.7.2. Cement is introduced by assigning

an initial effective contact radius, cf. Eq. (4.4), via the parameter κ. To create a well-

connected assembly of grains, we introduce cement between grains in close proximity.

Close proximity is defined here by a separation distance between the grains which does not

exceeds 10% of the grain radii, h
(c)
ij ≥ −0.1 (Ri + Rj). For a grain i which is adjacent to

grain j (or boundary w) however not in contact, 0 > h
(c)
ij ≥ −0.1 (Ri + Rj), we compute

an initial effective radius by replacing the mutual approach h
(c)
ij in Eq. (4.4) with hmin

i .

The parameter hmin
i is the minimal mutual approach h

(c)
ij among all contacting grains j.

Note that, since the portion of the effective area in Eq. (4.10) associated with direct grain-

grain contact, (Rijhij)
1/2, is allowed to vanish, a similar replacement of negative h

(c)
ij values

was not performed in generating the initial configuration for the elastic-cement model, cf.

Section 4.4.4.1; instead, for grains with 0 > h
(c)
ij ≥ −0.1 (Ri + Rj), we assign a

∗(c)
ij = aCEM

ij .

4.6 Solution of the balance equations

At equilibrium, each grain satisfies the force and moment balance equations,

F i =

N i
g

∑

j=1

(

P ij + Qij

)

+

N i
b

∑

w=1

(P iw + Qiw)−migêz = 0 (4.14a)

M i =

N i
g

∑

j=1

(

M ij(s) + M ij(t)

)

+

N i
b

∑

w=1

(

M iw(s) + M iw(t)

)

= 0 (4.14b)

where F i and M i are the sum of forces and moments on grain i. We find the equilibrium

configurations by minimizing the total work done against the loads on the grains, Π, with

respect to the generalized coordinates, θ, computed by

Π(θ) = −

N
∑

i=1







1

2

N i
g

∑

j=1

Wij +

N i
w
∑

w=1

Wiw −mig(ui · êz)







(4.15)
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The parameter Wij is the total work against the loads acting between grains i and j,

Wij = Wij(n) + Wij(s) + Wij(t) (4.16)

where Wij(n), Wij(s), and Wij(t) are the components of the total work associated with

the normal and tangential forces, and torsional couples, respectively. These components

are evaluated by integrating the product of the loads and generalized coordinates over

the incremental displacements, see Section 3.4. Using the smallness of the incremental

displacements, we linearize the constitutive rules in Section 4.4 by computing the inter-

granular loads based on the reference configuration, see Appendix A. Consequently, the

terms in Eq. (4.16) are evaluated by numerical integration using a midpoint rectangular

rule,

Wij(n) = P
0,p
ij · uij(n) −

1

2
k∗

ij(n)

∥

∥uij(n)

∥

∥

2
(4.17a)

Wij(s) = Q
0,p
ij · uij(s) −

1

2
k∗

ij(s)

∥

∥uij(s)

∥

∥

2
(4.17b)

Wij(t) = M
0,p
ij(t) ·Ωij(t) −

1

2
k∗

ij(t)

∥

∥Ωij(t)

∥

∥

2
(4.17c)

A local minimum of Π is obtained numerically, see Appendix A. The gradient

of Π with respect to θ, ∇θΠ = − [F 1 . . . F N M 1/R1 . . . MN/RN ]T , equals the sum of

forces and moments. Thus, the coordinates θ which make the gradient vanish at a local

minimum of Π, satisfy the balance equations, cf. Eq. (4.14).

4.7 The parallel bond model

In this section, we present a “parallel bond” model2, in which the intergranular

loads are computed by superimposing two independent components, related to: (a) direct

grain-grain contact; and (b) grain-cement contact. Thus, two sets of constitutive rules

are presented. This approach allows use of the contact mechanics theories for component

(a). For the grain-cement component, we follow Potyondy & Cundall [2004] and formulate

a constitutive rule based on the approximation of cement as a linear-elastic cylindrical

beam. The parallel bond model is developed using QuSGM to examine the hypothesis

that Hertzian contacts are the main source of nonlinearity in weakly-cemented materials.

2We borrow the term parallel bond from the work of Potyondy & Cundall [2004].
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4.7.1 Constitutive rules for intergranular interactions

The intergranular loads associated with the grain-grain contact are computed by

Hertz theory, assuming ideally smooth grains. Thus, frictional loads are associated with

cement deformation alone. The motivation to neglect frictional loads associated with the

grain-grain contact is based on the following hypothesis: the resistance to intergranular

shear, tension and torsion is mostly supported by the cement material, whereas compression

is mostly carried by the grains themselves.

We evaluate the loads associated with the cement deformation by modeling the

cement between each pair of grains as homogeneous, isotropic, linearly-elastic cylinder,

which can undergo compression, extension, and torsion3. The relations between the loads

and the cylinder’s deformations are obtained from the published analytical solutions [Tim-

oshenko & Goodier, 1970] to the following boundary-value problem: find the stresses on

the end-faces of an elastic cylinder, with (1) prescribed displacements and rotations of

the end-faces, assuming they remain parallel; and (2) zero tractions on its lateral bound-

aries. Our model does not account for cement and grain fracturing or breakage. Cement

deformation is computed relative to an initial configuration, in which cement is assumed

undeformed, cf. Section 4.5. Note that, in contrast with the models in Section 4.4, here

the grains themselves are considered stressed at the initial configuration.

4.7.1.1 Normal and tangential force components

To relate the cement deformation to the relative displacements and rotations of

the grains, we model cement at a contact by a cylinder pinned to each grain by a “cementing

point”. Consider a pair of grains, i and j. The cementing points associated with these

grains, ξij and ξji, are at the center of the cylinder’s end-faces, see Figure 4.6. At the

initial, undeformed configuration, denoted by superscript (c), both points overlap at the

center of the contact area,

ξ
(c)
ij = ξ

(c)
ji = r

(c)
i + R

(c)
ij (4.18)

The location of the cementing points following deformation, ξij, is evaluated in an incre-

mental fashion: given the location of these points at a reference configuration, ξ0
ij , their

3We assume that the longitudinal dimension of the cement is much smaller that its lateral extent, and
do not account for bending or flexure.
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current location is computed by

ξij = ξ0
ij + ui + Ωi ×R0

ij (4.19)

For an exterior grain i, interactions with the boundaries are computed in a similar manner:

the cementing point on a boundary w, ξwi, is found by substituting ui with uw and putting

Ωw = 0 in Eq. (4.19).

The average axial stress on the cylinder’s end-faces, σa, is computed from a one

dimensional form of Hooke’s law, σa = Ēijǫa [Timoshenko & Goodier, 1970], where Ēij is

Young’s modulus of the cement material. Overbar denotes a property of the cement. The

axial strain, ǫa, is evaluated from the relative displacement of the cementing points mea-

sured from the initial configuration, normalized by the characteristic longitudinal extent

of the cement. Here, the longitudinal and lateral extent of the cement, L̄ij and R̄ij, are

the cylinder’s length and radius, see Figure 4.6(a). Following Potyondy & Cundall [2004],

we relate the longitudinal and lateral extent of the cement to the grain sizes, through

L̄ij = λLRij and R̄ij = λRRij . The dimensionless parameters λL ≪ 1 and λR ≪ 1 are

related to the cement content and geometry, and are assumed uniform for all contacts. The

flattened shape of the pore space near a contact between spherical grains, cf. Figure 4.5,

suggests that λL/λR < 1.

Since the cementing points initially overlap, the relative displacement since the

initial configuration is ξij − ξji. The strain and stress are compressive if the grains ap-

proach each other, and tensile otherwise. The magnitude of the resultant force, ‖F ij‖ =

ĀijĒij

∥

∥ξij − ξji

∥

∥/L̄ij, is the product of the stress and the cross-sectional area, Āij =

π
(

R̄ij

)2
. The force applied on grain i by the deformation of the cement with grain j, F ij ,

is directed along the line connecting the cementing points, ξij − ξji,

F ij = −π
(

R̄ij

)2
Ēij

ξij − ξji

L̄ij
(4.20)

We note that, if the force F ij is not aligned with the grains centerline, rij , the force acting

on grains i and j includes both normal and tangential components.

4.7.1.2 Torque

Relative twist of the grains deforms the cement in torsion, applying a torsional

couple on the grains. Torsion of cement between grains i and j applies the following
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Figure 4.6: Schematic description of a pair of cemented grains: (a) initial configuration (denoted
by superscript (c)), with undeformed cement (in grey); (b) a subsequent configuration, (1), following
a perturbation. The cement deformation is associated with a pair of forces F ij and F ji, acting
on grains i and j, respectively; and (c) a subsequent configuration, (2), following perturbation of
configuration (1). Also shown are the incremental and total rotations, Ωi and Ωtot

i , measured from
the former (reference) and the initial configurations, respectively. The solid, dotted and dashed
lines mark the current, reference, and initial grain orientation, respectively.

torsional couple on grain i [Timoshenko & Goodier, 1970]:

M ij(t) = −
1

2
π
(

R̄ij

)4
Ḡij

Ωtot
ij(t)

L̄ij
(4.21)

where Ḡij is the shear modulus of the cement material, and Ωtot
ij(t) denotes the total torsion

since cement was deposited. We evaluate the torsional deformation of the cement as the

component of relative rotation of the grains which is aligned with the grains centerline4.

Thus, Ωtot
ij(t) is evaluated by substituting the incremental rotations Ωi and Ωj in Eq. (3.7)

with the rotations measured since cement deposition, Ωtot
i and Ωtot

j , see Figure 4.6.

Additional moment is associated with the force, M ij(s) =
(

ξij − ri

)

× F ij. The

total moment relative to the center of grain i, caused by deformation of the cement bonding

it to grain j, is

M ij = M ij(s) + M ij(t) (4.22)

We note that M ij(s) = 0 if the force F ij is aligned with the grains centerline, rij .

4This formulation ignores the change in the direction of the cement cylinder, assuming small grain
rearrangements since cement deposition. Otherwise, if large relative rotations or lateral displacements
occur, relative torsion of the grains may result in other modes of cement deformation; since intergranular
torsion has negligible effect on the macroscopic stresses [Goddard, 1990], the related error is insignificant.
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4.7.2 Equilibrium configurations

The equilibrium configurations are sought in a similar manner to that described

in Sections 2.5 and 4.6. The balance equations for the forces and moments on grain i are

F i =

N i
g

∑

j=1

(P ij + F ij) +

N i
b

∑

w=1

(P iw + F iw)−migêz = 0 (4.23a)

M i =

N i
g

∑

j=1

(

M ij(s) + M ij(t)

)

+

N i
b

∑

w=1

(

M iw(s) + M iw(t)

)

= 0 (4.23b)

The energy functional Π is evaluated from the potential energy of the pack,

Π(θ) =

N
∑

i=1







1

2

N i
g

∑

j=1

Uij +

N i
b

∑

w=1

Uiw + mig(ri · êz − z∗)







(4.24)

where the strain energy Uij stored in the deformed contact region between grains i and j,

including both the grain and cement material, is

Uij = Uij(n) + Uij(F ) + Uij(t) (4.25)

Here, Uij(n) denotes the strain energy related to direct grain-grain contact, cf. Eq. (2.6).

The strain energy stored in the deformed cement is evaluated by integrating the intergran-

ular loads in Eqs. (4.20)–(4.21), over the respective displacements. The energy related to

the compression/tension and torsion, Uij(F ) and Uij(t), is computed by

Uij(F ) =
π
(

R̄ij

)2
Ēij

2L̄ij

∥

∥ξij − ξji

∥

∥

2
(4.26a)

Uij(t) =
π
(

R̄ij

)4
Ḡij

4L̄ij

∥

∥

∥
Ωtot

ij(t)

∥

∥

∥

2
(4.26b)

4.8 Simulations of a deforming weakly-cemented sample

4.8.1 Reproduction of experimental data

In this section, we demonstrate the ability of the exponential stiffness evolution

law in Section 4.4.4.2 (“exponential model”) to reproduce experimental data. In most

experiments, the effect of cement content is of interest; thus, measurements are performed

at a given stress state on samples with different cement content, see, e.g., Dvorkin et al.
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[1994], Berge et al. [1995], Dvorkin et al. [1999], and Holt et al. [2005]. Here, to observe the

change in properties with deformation, we use data obtained by measurements in a single

sample, at different loads [Saidi et al., 2003; Nakagawa, 2008].

Saidi et al. [2003] applied uniaxial stress on a synthetic sandstone made of quartz

grains bonded by Portland cement. The dry cement weight was 28.5% of the total sample’s

dry weight. Young’s modulus was estimated from the slope of the unloading portion of

unloading-reloading cycles performed at different stresses, see Figure 4.1. The load was

increased beyond the sample’s failure strength. Thus, the data in Figure 4.7 includes pre-

and post-failure behavior, marked by a decrease in the growth rate of moduli with stress,

and a decrease in the moduli values following failure.

Nakagawa [2008] measured acoustic compressional and shear wave velocities in

quartz grains cemented by soda-lime glass under uniaxial stress, see Figure 4.2. We estimate

Young’s modulus from the velocities, porosities and densities, cf. Eq. (2.20). The data in

Figure 4.7 corresponds to a sample with 30.4% porosity, reduced from an initial value

of 35% by addition of cement. The figure shows a loading-unloading cycle, with slightly

higher velocities during unloading.
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(1) Simulations [Holtzman, 2008]
(2) Experiment [Saidi et al., 2003]
(3) Experiment [Nakagawa, 2008]

Figure 4.7: Effective Young’s modulus, E, vs. axial stress, σa, obtained from: (1) simulations
of uniaxial test of sample Q2699-1%, using the exponential stiffness evolution model with γ=3000;
(2) uniaxial compression of quartz grains bonded by Portland cement [Saidi et al., 2003]; and
(3) acoustic testing of quartz grains cemented by soda-lime glass [Nakagawa, 2008]. The strong
nonlinearity, evident as an increase of the stiffness E with the stress, is reproduced by our model.
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We simulate the above experiments by loading sample Q2699-1%, where Q2699

denotes a pack of 2699 grains made of quartz, and the percentage after the dash repre-

sents the value of κ, 0.01. The initial packing was created by introducing cement into a

pre-compacted pack, generated by isotropic compression to a stress of σµ=0
c =10 MPa, as

described in Section 4.5. The intergranular stiffness evolution is characterized by γ=3000,

cf. Eq. (4.12). To model partial slip, we use a factor of Cs=1/10 in Eq. (4.6); the evalu-

ation of Cs is discussed in Section 4.8.4.2. Uniaxial stress is applied through compressive

axial strain increments, ∆ǫa, with Poisson’s expansion of 0.25, i.e. tensile lateral strains

of 0.25∆ǫa. Unless stated otherwise, similar initial packing, loading scheme, and Cs value

were used in all the simulations presented in this chapter.

The good agreement in Figure 4.7 between the computed and the experimentally-

measured Young’s modulus (E), demonstrates that nonlinear microscopic deformation

mechanisms, cf. Section 4.2.2, play a significant role in determining the bulk response.

Conversely, in Section 4.8.3 we show that the other models proposed in this chapter could

not reproduce the experimental data, predicting relatively linear-elastic behavior, regard-

less of the choice of model parameters.

Note that, since our model accounts for initial stages of loading only, we do not

extend our simulations beyond stresses of ∼5 MPa. At larger stresses, closer to the sample’s

strength, deformation mechanisms such as fractures formed by coalescing microcracks may

become important [Jaeger & Cook, 1979; Martin & Chandler, 1994; Berge et al., 1995;

David et al., 1998; Nakagawa & Myer, 2001; Holt, 2001; Saidi et al., 2003]. The effect of

such mechanisms is not included in our model.

4.8.2 Examination of the performance of the numerical algorithm

To improve the performance of the minimization algorithm employed in finding

the equilibrium configurations, we use the smallness of the incremental displacements and

linearize the constitutive relations. Linearization is performed by: (a) fixing the grain

locations in evaluating the intergranular loads; followed by (b) an update of the geometry

based on the solution in (a), resolving for the loads, see Appendix A. To demonstrate

the enhanced performance achieved by linearizing the constitutive rules, we compare the

numerical and analytical solutions obtained for a regular packing undergoing self-similar

deformations, see Section 2.7.3.1.
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The numerical error for a model with γ=0, measured as the deviation from self-

similar deformation,
(

rA
ij − rN

ij

)

/rA
ij , is of the order of the machine’s floating-point relative

accuracy, even for large self-similar strain of ε=0.2. This error is smaller by several or-

ders of magnitude compared to that produced by the simulations using nonlinear rules,

cf. Sections 2.7.3.1 and 3.6.3.1. Moreover, simulations here predicted negligible5 grain

rotations, in correspondence with the analytical solution, whereas the numerical solution

in Section 3.6.3.1 predicted rotations of ∼10−9.

4.8.3 Comparison of intergranular constitutive rules

To examine the effect of the constitutive rules on the computed bulk response,

we compare the results produced by the different rules described in Sections 4.4 and 4.7.1.

In Figures 4.8–4.9 we present the stress-strain curves and corresponding Young’s modulus

values evaluated from simulations using the following models: (1) Q2699-1% (γ=3000) -

exponential model; (2) Q2699-1% (η=1111,ω=1) - power law, see Eq. (4.13); (3) Q2699-

1% (γ=0) - fixed intergranular stiffness; (4) Q2699-1% (Elastic cement) - assuming linear-

elastic cement, see Section 4.4.4.1; and (5) Q2699-G(Parallel bond) - parallel bond model,

cement material assigned with elastic moduli of glass (Ēij=70 and Ḡij=29.2 MPa), with

λR=0.003 and λL=0.001, see Section 4.7.

The deviatoric stress, σd, computed as the difference between the axial and lateral

stresses, is plotted in Figure 4.8 vs. the axial strain, ǫa. Deviatoric rather than axial stress

is used for comparison, because the latter is initially nonzero in the parallel bond model; the

initial pack carries confining stresses of σc=10 MPa. Only the exponential model, (1), yields

a stress-strain curve with significant convexity. Such convexity, corresponding to strain-

hardening, is observed in experiments, see Section 4.2.1. The other models, (2) and (4)–(5),

produce a more linear response6. In particular, assigning ω=1 provides a quadratic relation

between the macroscopic stress and the strain. Quadratic dependence is expected since the

stress and strain are approximately linear with the intergranular forces and displacements,

respectively, while the forces themselves are linear with the displacements. Finally, we

demonstrate that the assumption of linearly-elastic contacts together with a fixed contact

5The rotations are of the order of the machine’s floating-point relative accuracy.
6The slope of the stress-strain curve and the corresponding moduli computed by model (4) are lower

than in models (1)–(3), because of differences in generating the initial sample: in model (4), only grains in
direct contact are “cemented”, whereas in models (1)–(3) cement is introduced between all grains in close
proximity, see Section 4.5.
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Figure 4.8: The deviatoric stress, σd, vs. axial strain, ǫa, evaluated by simulating uniaxial test on
sample Q2699 using different intergranular constitutive rules. The strong nonlinearity observed in
experiments is reproduced by the exponential model (1) alone.

network, (3), yields a linearly-elastic material. The stress-strain curve is practically7 linear,

and the moduli remain constant.

To quantify the nonlinearity of the bulk response, in Figure 4.9 we plot the evo-

lution of Young’s modulus with the applied stress, computed from the stress-strain curves

in Figure 4.8. Only the exponential model, (1), is able to reproduce the experimental data.

Since models (3)–(5) do not account for the inelastic contact deformation mechanisms dis-

cussed in Section 4.2.2, the computed variations of the moduli are small. The account

for these mechanisms in the linear stiffness evolution model, (2), by using ω=1 appears

to be insufficient. We stress that models (2)–(5) cannot reproduce the experimental data,

regardless of the values selected for the other parameters, η, Ēij , Ḡij , λR and λL. In partic-

ular, our results confirm that the assumption underlying models (4) and (5), namely that

the main source of nonlinearity is nonlinear deformations of the grain material, computed

via Hertzian model, is invalid [Saidi et al., 2003]. In the following section we examine the

effect of the stiffness evolution parameters, γ, η and ω on the bulk response.

7A geometrical nonlinearity is associated with changes in the directions of the intergranular loads with
the deformation; however, its effect is negligible.
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(4) Q2699−1%(Elastic cement)
(5) Q2699−G(Parallel−bond)

Figure 4.9: Effective Young’s modulus, E, vs. deviatoric stress, σd, computed from the stress-
strain curves in Figure 4.8. Only the exponential model (1) is in good agreement with experimental
data, see Figure 4.7.

4.8.4 Sensitivity analysis

4.8.4.1 Effect of the stiffness evolution parameters

The value of the exponent γ (or, equivalently, ω) determines the rate of strain

hardening. Thus, γ and ω represent the rate in which the microcracks close, better contact

is achieved, or the effect of compression reaches stiffer portions of the grains and cement

materials. The value of the exponent that provided good agreement with the experimental

data, γ = 3000, was found by trial and error. For other samples, e.g. with different grains,

cement material and quantity, microstructure and density, a different value may apply.

Figure 4.10 shows Young’s modulus, E, vs. axial stress, σa, evaluated from simu-

lations of a uniaxial test on sample Q2699-1% using the following parameters: (1) γ=3000;

(2) γ=1000; (3) η=1428,ω=2; (4) η=1428,ω=1; and (5) η=1111,ω=1. The similarity of

results (2) and (5) demonstrate the equivalence of the exponential and the power law mod-

els at low ηr∗ij values, see Section 4.4.4.2. Conversely, the larger η and γ values employed

in (1) and (3) result in significantly different moduli. The divergence between curves (1)

and (3) increases with the deformation, since, on average, the values of r∗ij become larger.

Results (4) and (5) show the relatively small effect of η on the moduli growth rate, i.e. the
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Figure 4.10: Effective Young’s modulus, E, vs. axial stress, σa, computed from simulations of
uniaxial test on sample Q2699-1%, employing different stiffness rules and parameters.

strain hardening. Thus, in a linear stiffness evolution model (ω=1), by virtue of increasing

η alone, it is impossible to match the experimental data.

4.8.4.2 Sensitivity to the intergranular tangential stiffness

In Section 4.4.2 we have discussed the occurrence of partial slip in cemented con-

tacts. Following Mindlin & Deresiewicz [1953], we model slip by reducing the tangential

stiffness from its initial value, which corresponds to negligible slip. The reduction of the

stiffness is quantified here by the factor Cs. To study the effect of k∗

ij(s) on the bulk re-

sponse, in Figure 4.11 we compare Young’s modulus, E, computed by simulating uniaxial

test on sample Q2699-1% with γ=3000, assuming: (a) complete slip, Cs=0 (i.e., k∗

ij(s)=0);

(b) partial slip, Cs=1/10; and (c) no-slip, Cs=1. As expected, the modulus E increases

with the intergranular stiffness, k∗

ij(s). To reproduce the experimental data, a factor of

Cs=1/10 was determined by trial and error. By assuming complete slip, E was underes-

timated. Conversely, the no-slip assumption results in overestimated moduli, regardless of

the stiffness evolution law employed. These results imply that in weakly-cemented materi-

als, slip along microcracks within the cement or at the irregular surfaces of the cemented

contacts, cf. Section 4.2.2, should be accounted for.



Chapter 4. Nonlinear deformation of weakly-cemented sediments 95

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

Axial stress (MPa)

Y
ou

ng
‘s

 m
od

ul
us

 (
G

P
a)

 

 

(a) Complete slip
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Figure 4.11: Effective Young’s modulus, E, vs. axial stress, σa, computed from simulations of
uniaxial test on sample Q2699-1% with γ=3000, assuming: (a) complete slip, Cs=0; (b) partial
slip, Cs=1/10; and (c) no-slip, Cs=1.

4.8.4.3 Impact of the cement content

In this section, we discuss the impact of the parameter κ on the sample’s effective

properties. In our model, κ characterizes the initial effective contact radius, cf. Eq. (4.4).

Since the contact stiffness is parameterized by the effective radius, κ is a function of the

cement content, as well as its geometry and material properties. Here, we compare two

samples with similar cement material, which differ by their degree of cementation. Since we

consider cement which is deposited only around the grain contacts, larger cement quantities

correspond to larger cemented contact area, i.e. larger κ values. In Figure 4.12 we present

Young’s modulus computed from the simulations of uniaxial test on two samples: (a)

Q2699-1%, with κ=0.01; and (b) Q2699-20%, with κ=0.2. The exponential stiffness model

was employed, with γ=3000.

Since κ characterizes the initial effective stiffness, at low stresses the moduli

evaluated for sample Q2699-20% are approximately 20% larger than for Q2699-1%. The

difference between the moduli evaluated for the two samples reduces with further loading,

implying that the moduli growth rate with stress in Q2699-20% is slightly lower than in

Q2699-1%. We attribute the faster strain hardening exhibited by Q2699-1% to the smaller
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(a) κ=0.01
(b) κ=0.2

Figure 4.12: Effective Young’s modulus, E, vs. axial stress, σa, computed from simulations of
uniaxial test on two samples with different cement content: (a) κ=0.01 and (b) κ=0.2. While larger
moduli are evaluated for sample (b), the moduli growth rates are relatively similar to those in (a).

constraint posed by the smaller cement content on grain rearrangements.

This correlation between cement content and overall stiffness is in qualitative

agreement with experiments [Dvorkin et al., 1994; David et al., 1998; Dvorkin et al., 1999;

Nakagawa & Myer, 2001; Saidi et al., 2003; Holt et al., 2005; Nakagawa, 2008]. We note that

at large cement contents, the increase in bulk stiffness with the degree of cementation is less

evident; this is because some of the cement is deposited far away from the contacts, thus

having smaller effect on the mechanical properties [Dvorkin et al., 1999; Garcia & Medina,

2007]. Conversely, experiments and theory show that introduction of even small amounts

of soft cement at the grain contacts, significantly increases the sample’s stiffness [Bernabè

et al., 1992; Garcia & Medina, 2007]. Similar conclusion is made from our simulations.

For instance, the Young’s modulus values computed for sample Q2699-1% with γ=3000,

∼2.7–9.5 GPa, are significantly larger than those evaluated by our models of uncemented

materials. The moduli predicted by the frictional (Section 3.6.3.2, for sample G2740 ) and

frictionless (Section 2.7.3.2, G5036 ) models are ∼1.3–1.5 and ∼0–0.6 GPa, respectively.

The stiffer response computed for the cemented sample is attributed to the constraints

imposed by the cement on grain rearrangements [Bernabè et al., 1992; Garcia & Medina,

2007]; the increase in the contact radius, and the corresponding contact stiffness, is small.
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4.9 Concluding remarks

We have studied the mechanics of weakly-cemented granular materials, in which

the grains are bonded together by small amounts of cement, via grain-scale simulations.

We have sought to identify the micromechanical origins of the nonlinear deformation ex-

hibited by cemented sediments [Murphy, 1982; Martin & Chandler, 1994; Saidi et al., 2003;

Nakagawa, 2008]. The effect of possible microscopic deformation mechanisms is modeled

within the framework of QuSGM, through several suites of constitutive relations. Partic-

ularly, we propose the following mechanisms for nonlinear contact deformation: closure

and opening of microcracks, changes in the geometry of the cemented contacts, and prop-

agation of the deformation into heterogeneous cement and grain materials. The effects of

these mechanisms are modeled by varying the stiffness of each contact according to the

local deformation. The contact stiffness is evaluated from the contact mechanics theories

of Hertz, Mindlin, and Deresiewicz, modified to accommodate the cohesion introduced by

the cement.

The results of simulations reveal that an account of nonlinear deformations at the

grain-scale is required to reproduce the nonlinear bulk response. In particular, a model

which links the intergranular stiffness and the local deformations through an exponential

function, is shown to match experimental data. An exponential relation was found ade-

quate to describe crack growth in brittle materials, see Potyondy [2007] and the references

therein. Conversely, models based on the concept of linear-elastic cement deformation,

where the main source of nonlinearity is the grain deformation, i.e. Hertzian contacts, fail

to reproduce the experimentally-observed nonlinearities. Similar conclusion was made by

Saidi et al. [2003]. These results find immediate application in modeling geological systems

containing poorly-consolidated sedimentary rocks, such as oil and water reservoirs.
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Chapter 5

Impact of hydrate dissociation in

marine sediments

5.1 Introduction

GAS-HYDRATES are crystalline solids composed of water molecules arranged into a rigid

framework of cages, each occupied by a gas molecule. In this chapter, we use grain-scale

simulations to investigate the impact of hydrate dissociation on the properties of marine

sediments. Hydrates form under relatively high pressures and low temperatures, with

sufficient supply of gas [Sloan, 1998, 2003], see Figure 5.1. Methane hydrates, the most

common type occurring in nature [Sloan, 2003], form in the uppermost tens to hundreds

of meters of sediments in permafrost regions and marine continental margins [Kvenvolden

et al., 1993; Kvenvolden, 1998; Davie & Buffett, 2001], see Figure 5.2.

There is considerable growth of interest in hydrates, stemming from several rea-

sons. First, methane hydrates contain a large fraction of the earth’s fossil fuels: even

conservative estimates suggest that the amount of energy in hydrates is equivalent to twice

that of all other fossil fuels combined [Sloan, 2003; Ruppel, 2007]. The large methane

quantity constitutes a promising energy resource [Sloan, 2003] and plays an important role

in the global carbon cycle [Dickens, 2003]. Secondly, if the conditions in which hydrates

are stable, see Figure 5.1, cease to exist, hydrates dissociate into liquid water and free gas.

Dissociation can be accompanied by an appreciable increase in pore pressure caused by

volumetric expansion of the gas [Xu & Germanovich, 2006]. Hydrate dissociation in the

ocean floor has been linked to massive submarine slope failures and landslides [Paull et al.,

2003; Sultan et al., 2004]. Such events present a geohazard during oil recovery [Rutqvist
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Figure 5.1: Diagram showing (A) methane solubility; and (B) temperature for hydrate-gas-brine
equilibrium, as a function of depth, for two salinities (550 mM being that of seawater). Methane
hydrate (H) and methane gas (G) exist only if the methane concentration exceeds solubility. The
peak in solubility determines the bottom end of the hydrate stability zone (HSZ), see Figure 5.2.
The diagram assumes water depth of 800 m, hydrostatic pressure gradient of 10 MPa/km, seafloor
temperature of 4◦C and geothermal gradient of 55◦C/km. Abbreviations mbsf and mbsl denote
meters below sea floor and level. Adapted from Liu & Flemings [2006].

& Moridis, 2007] and a source of methane during rapid intervals of climatic changes which

could affect global warming [Dickens, 1999]. Finally, hydrate formation and dissociation

has a crucial impact on flow assurance in oil and gas production: hydrate formation can

plug pipelines, while dissociation can lead to pipeline blowouts and bursts [Sloan, 2003].

5.1.1 Natural formation of methane hydrates

The presence of methane hydrates in marine sediments is commonly explained

through the following conceptual model [Dickens, 2003]: methane of biogenic or thermo-

genic origin is generated in deep oceanic sediments, where the temperature is high enough

for the methane to be a gas. Methane bubbles grow and coalesce, eventually having suffi-

cient buoyancy for upwards migration. In the shallow sediments, however, where the tem-

perature is much colder, the methane stimulates formation of hydrates. Hydrate-bearing

sediments (HBS) form a region denoted as the hydrate stability zone (HSZ), see Figure 5.2.
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Figure 5.2: Idealized cross section of the hydrate stability zone (HSZ) along a continental shelf.
The thickness of the HSZ increases with the depth of the sea floor. Adapted from Dickens [2003].

5.1.2 Hydrate distribution within the pore space

Hydrate distribution depends on the hydrate formation mechanism, type of guest

gas molecule, and host sediment [Durham et al., 2005]. Experimental evidence suggests

that hydrates form preferentially in the pore bodies if the guest gas is dissolved in water

[Tohidi et al., 2001; Yun et al., 2005, 2007], whereas percolation of free gas is associated

with hydrate formation around the grain contacts first, followed by hydrate growth into the

pore bodies [Tohidi et al., 2001; Waite et al., 2004; Winters et al., 2004]. Given sufficient

supply of gas, hydrates eventually fill the entire pore space [Yun et al., 2007].

The mechanical properties of an HBS sample depend on the saturation and dis-

tribution of hydrates within the pore space, e.g. on whether they are formed in the pore

bodies or around the grain contacts [Ecker et al., 1998; Guerin, 2000; Tinivella & Accaino,

2000; Kleinberg et al., 2003; Winters et al., 2004; Yun et al., 2005]. For example, triax-

ial tests on synthetic HBS samples show an increase in sample stiffness with the hydrate

saturation [Yun et al., 2007], see Figure 5.3. The authors suggest that, in the samples

with high hydrate saturation, cohesion provided by hydrates which cement the sediment

grains together strongly affects the sample’s stiffness. Dvorkin et al. [2000] classified hy-

drate distributions into four types: (a) hydrates floating in the pore fluid; (b) hydrates

forming part of the load-bearing granular frame; (c) hydrates coating the grains; and (d)

hydrates cementing the grain contacts. Dvorkin et al. [1999] noted that small quantities

of hydrates around the sediment grains further away from the contacts is not expected to
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have a significant effect on the mechanical properties of HBS1.

Figure 5.3: The secant modulus, E50, of sand samples with different saturations of
tetrahydrofuran-hydrates, evaluated from axial compression under variable confining pressures. The
secant modulus, a measure of the sample’s stiffness, was determined from a stress-strain curve, as
the slope of the line connecting the origin and a point which corresponds to half of the peak
deviatoric stress. Adapted from Yun et al. [2007].

5.1.3 Chapter outline

We model the effect of hydrate dissociation on the mechanical properties of an

HBS sample using the QuSGM model in Chapter 2. In Section 5.2, we describe a numer-

ical HBS sample in which hydrates are load-bearing solid particles, and characterize the

sample’s properties before and after partial dissociation of the hydrates. In Section 5.3,

simulations of a triaxial test are performed to evaluate the mechanical properties of samples

following different degrees of hydrate dissociation. Dissociation is shown to be correlated to

degradation in the sample’s strength, demonstrated via the reduction in its elastic moduli.

These results have been published in Holtzman et al. [2008b].

5.2 Micromechanical impact of hydrate dissociation

5.2.1 A numerical hydrate-bearing sediment sample

Let us consider a sample of marine sediment partially saturated with methane-

hydrate, in which hydrates are load-bearing particles. The pore space is saturated with

seawater. We model the sample as a dense irregular packing of ideally-smooth, spherical

elastic grains, employing the QuSGM model in Chapter 2. The hydrates are represented

1Unless these hydrates dissociate.
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by the smaller grains, assigned with material properties of methane-hydrate. The number

of hydrate grains is determined according to the hydrate saturation, denoted by S. We

define the hydrate saturation, S = V h/Vtot, using the convention that hydrates are a part

of the pore volume [Jin et al., 2002]. In the above expression, V h is the volume occupied

by hydrates, and Vtot is the total pore volume (including the hydrates). Note that porosity

is computed here according to the usual convention, denoted by Jin et al. [2002] as “water-

filled” porosity, in which Vtot is the volume of the fluids only, cf. Eq. (2.19).

5.2.2 Characterization of the effect of hydrate dissociation

Hydrate dissociation weakens the host sediment [Paull et al., 2003; Sultan et al.,

2004]. To model this weakening, we consider two underlying mechanisms: (a) reduction of

solid fraction, as some of the hydrate grains are converted into gas and liquid water; and

(b) decrease in solid support caused by the increase in pore pressure following dissociation.

We quantify the dissociation through the reduction in solid fraction, from S to S − ∆S,

according to the saturation decrement, ∆S > 0. We represent the decrease in solid fraction

by shrinking the hydrate grains, reducing their radii by a uniform factor.

We are interested in the variations of the sample’s properties caused by dissoci-

ation, and thus consider the effect of the change in pressure and stress. The effect of the

excess pore pressure, pex, is modeled at both the grain and the sample scale. To evaluate

the immediate impact of dissociation, we neglect water flow within the sample, and assume

spatially uniform pore pressure and stress. Since the contact area is much smaller than

the surface area of the grains, we neglect the net force associated with the nonuniform

distribution of fluid pressure on the grain’s surface, and model the effect of the excess

pressure by an isotropic compression of the grains. The volume of grain i, Vi, is reduced

by ∆Vi > 0. For small volumetric changes, ∆Vi/Vi can be approximated as the volumetric

strain of the grain, and thus determined by pex = Ki∆Vi/Vi. Here Ki is the bulk modulus

of grain i.

Macroscopically, we quantify the decrease in solid support using the concepts of

total and effective stress, introduced in the theory of poroelasticity [Biot, 1941; Biot &

Willis, 1957]. The total stress is related to the total weight, including that of the solid and

fluid phases, and, possibly, the weight of a nearby infrastructure, e.g. an oil platform. The

total stress is fixed in our simulations. The effective stress is associated with the loads car-
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ried by the granular frame, i.e. the sediment and hydrate grains. We compute the effective

stress from the contact forces on the sample’s boundaries, cf. Eq. (2.11). The reduction

in effective stress due to dissociation is modeled by applying a tensile volumetric strain,

ǫv < 0, expanding the sample isotropically. For isotopic stress and strain, poroelasticity

provides the following relation,

Kǫv = δσ − αbpex (5.1)

where δσ is the increment of total stress, and αb is the Biot-Willis coefficient [Biot & Willis,

1957]. Since the total stress is fixed, δσ = 0, the strain is ǫv = −αbpex/K. This strain is

applied through incremental displacements of the boundaries, see Section 2.6.1.

Finally, we quantify the impact of hydrate dissociation on the sample’s mechanical

properties through the change in its elastic properties. We determine the elastic moduli

before and after dissociation, from simulations of uniaxial strain test, cf. Section 2.6.3.

Determination of the relation between the pore pressure and the decrement of

hydrate saturation requires account of the complex kinetics of hydrate dissociation: the

excess pressure varies with factors such as dissociation rate, sediment permeability, and

initial pore pressure [Xu & Germanovich, 2006]. We consider several dissociation scenarios,

by using a range of saturation decrements and excess pressures evaluated from the model of

Xu & Germanovich [2006], as input parameters for the simulations. By varying the excess

pressure and the saturation decrement independently, we produce a series of configurations,

representing the different scenarios.

5.3 Simulation results

The sample used in the simulations was constructed by the procedure described in

Section 2.7.2. It contains 2740 grains, of which the smallest (0.07–0.075 mm) are assigned

properties of methane-hydrate, see Table 2.1. To model quartz sand as the host sediment,

the other grains are assigned properties of quartz, with αb=0.8 [Hart & Wang, 1995]. The

initial porosity and hydrate saturation prior to dissociation are φ≈36% and S≈0.22. The

initial isotropic effective stress is ∼21 MPa.

A range of possible dissociation scenarios was modeled by varying the excess

pressure, pex, between 0–1 MPa, and the saturation decrement, ∆S, between 0–0.015. The

effective elastic moduli evaluated for each state are plotted in Figure 5.4, against: (a)

the excess pressure, for a fixed saturation decrement, ∆S=0.01; and (b) the saturation
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Figure 5.4: Simulations showing weakening of a hydrate-bearing sediment caused by hydrate
dissociation. Weakening is demonstrated by a reduction in bulk (dashed line) and shear (solid line)
modulus vs. hydrate dissociation. The effect of dissociation is modeled by: (a) increasing the excess
pore pressure, pex, for a fixed saturation decrement, ∆S=0.01 (top plot); and (b) decreasing the
saturation for a fixed excess pressure, pex=1 MPa (bottom). The initial moduli prior to dissociation
are plotted in the left-most parts of the figures, i.e. pex=0 and ∆S=0.

decrement, for a fixed excess pressure, pex=1 MPa. The initial moduli prior to dissociation

correspond to either pex=0 or ∆S=0 in Figure 5.4. Weakening of the sediment is evident

from a reduction in elastic moduli, indicating that the sample becomes looser and softer.

This observation is in qualitative agreement with the published experimental data, which

show the strengthening effect of hydrates on the host sediment [Durham et al., 2005; Yun

et al., 2007].
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5.4 Concluding remarks

We have applied our Quasi-Static Granular Model to quantify the mechanical

impact of hydrate dissociation in marine sediments. Dissociation converts the solid hydrates

into gas and liquid water, and is associated with an increase in pore pressure. Hydrates are

modeled as load-bearing solid particles, i.e. a part of the granular frame. The reduction

in solid fraction is modeled by shrinking the hydrate grains. The effect of the excess pore

pressure is represented through a reduction in effective stress, by expanding the sample

and compressing the grains.

A series of possible dissociation scenarios has been simulated, showing degradation

in sediment strength as a reduction in the macroscopic elastic moduli. These results are

in qualitative agreement with the limited available published experimental data. Further

dissociation may lead to a significant decrease in the solid support, e.g. loss of shear rigidity,

making the sediment susceptible to landslides and subsidence. To predict such instabilities

and their impact on adjacent infrastructures, our model can provide a micromechanically-

based constitutive relationship for large-scale simulations.
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Chapter 6

Closure

6.1 Summary and conclusions

IN THIS DISSERTATION, we have studied the mechanics of particulate materials by a

quasi-static, variational micromechanical model, implemented as a numerical simulation

code. Obtaining the equilibrium configurations of grain assemblies requires a solution of

a large, highly-nonlinear system of equations. In most micromechanical models, e.g. the

discrete elements method, these equations are solved by explicit numerical integration in

time. To enhance convergence to an oscillation-free equilibrium, a damping parameter

is often introduced, and its value together with other grain-scale parameter are adjusted

[Thornton, 2000; O’Sullivan et al., 2004; Potyondy & Cundall, 2004; Tavarez, 2005; Peña

et al., 2008]. In contrast, our quasi-static, variational approach can predict the mechanical

properties of a sample, given its grain properties, with no adjustments of parameters.

We model the intergranular interactions through constitutive relations which are

based on the contact mechanics theories of Hertz [1882], Mindlin & Deresiewicz [1953]

and Deresiewicz [1954]. A three-dimensional disordered pack of spherical grains is loaded

by incremental displacements of its boundaries. An equilibrium configuration is sought by

minimizing the total potential energy of the pack. This minimum is computed numerically,

by a modified conjugate gradient algorithm. The macroscopic stress, strain and elastic

moduli are evaluated from the intergranular forces and the deformation of the pack. Our

computational technique is termed Quasi-Static Granular Model (QuSGM).

Two models of cohesionless granular materials have been presented: (a) “friction-

less”, neglecting intergranular tangential and torsional loads associated with frictional re-

sistance (Chapter 2); and (b) “frictional”, accounting for intergranular friction (Chapter 3).
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Our simulations confirm that the resistance of a grain pack to volumetric compaction, char-

acterized by the bulk modulus, mainly depends on the normal contact forces [Thornton,

2000; Kruyt & Antony, 2007], and that the assumption of grain-scale elasticity predicts

inelastic deformation of a granular pack [Goldenhirsch & Goldenberg, 2005]. While our

frictionless model supports the idea that microscopic friction is not the sole mechanism

of macroscopic shear resistance [Peña et al., 2008], it underestimates the shear modulus,

predicting loss of shear rigidity at packing densities higher than those experimentally ob-

served. To verify our frictional model, we simulate triaxial testing of a sample assigned

grain properties from published experiments, and compare the effective elastic moduli with

the experimental data. Good agreement between predicted and measured moduli, achieved

with no adjustments of material parameters, demonstrates the physical soundness of our

model.

By analysis of intergranular forces and displacements we show mechanisms re-

sponsible for hysteresis, strain hardening, and stress-induced anisotropy. In particular,

our simulations capture rare “jump” events, in which few grains move significantly more

than others, causing irreversible variations in the highly heterogenous contact force net-

work (“force chains”). Macroscopically, we show that these variations correspond to large

fluctuations in the stress, with a significant effect on the bulk properties. These observa-

tions demonstrate the sensitivity of the bulk properties to small perturbations in the grain

configurations (“emergent properties”), an intrinsic source of difficulty in predicting the

behavior of particulate materials [Behringer et al., 1999]. Further difficulty is related to

memory effects, at both the grain and sample scale, which require account of the loading

history in characterizing a grain pack. Our observations are supported by published exper-

imental evidence [Oda et al., 1998; Behringer et al., 1999; Ribière et al., 2005; Majmudar

& Behringer, 2005; Tordesillas, 2007; Peña et al., 2008].

In Chapter 4 we apply QuSGM to study the micromechanical origins of the nonlin-

ear deformation of weakly-cemented sediments. To model the effects of possible microscopic

deformation mechanisms, we formulate several suites of constitutive relations. We propose

that the following nonlinear deformation mechanisms may become important: closure and

opening of microcracks, changes in the geometry of the cemented contacts, and propaga-

tion of the deformation into heterogeneous cement and grain materials. The effect of these

mechanisms is modeled by varying the stiffness of each contact according to the local de-

formation. This stiffness is evaluated by modifying the contact theories of Hertz, Mindlin,
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and Deresiewicz to account for cement. Our simulations reveal that account of nonlin-

ear deformations at the grain-scale is required to reproduce the experimentally-observed

nonlinear bulk response. In particular, a model which links the intergranular stiffness and

the local deformations via an exponential function, is shown to match experimental data.

An exponential relation is frequently used to describe crack growth, and has been justified

by experiments and theory [Potyondy, 2007]. Conversely, models based on the concept

of linear-elastic cement deformation, where the main source of nonlinearity is the grain

deformation, i.e. Hertzian contacts, fail to reproduce the experimentally-observed nonlin-

earities. Our findings can be used to improve modeling of oil and water reservoirs made of

poorly-consolidated sedimentary rocks.

In Chapter 5 we use QuSGM to investigate the mechanical impact of hydrate

dissociation in marine sediments. Hydrates are modeled as load-bearing solid particles.

The reduction in solid fraction is represented by shrinking the hydrate grains. The ef-

fect of the excess pore pressure associated with dissociation, linked to an effective stress

decrement, is modeled by expanding the sample and compressing the grains. Simulations

of several dissociation scenarios show degradation in sediment strength by a reduction in

the macroscopic elastic moduli. These results are in qualitative agreement with published

experimental data. Our model can be used to provide a micromechanically-based consti-

tutive relationship, employed in large-scale simulations. In summary, QuSGM shows great

potential for advancing the understanding of granular mechanics, and modeling complex

geological systems.

6.2 Future extensions

Several issues discussed within this dissertation deserve further investigation. The

following key directions can be taken to address these issues:

(1) Irregular grain shapes. Computations are greatly simplified by approximating the

shape of the grains by spheres. The ability of models employing spherical grains to

predict the mechanical properties of packs of glass beads or sands implies that such

a simplification is satisfactory for the materials made of relatively rounded grains.

Nonetheless, experiments and simulations demonstrate that grain angularity can have

a significant effect on the bulk response [Murphy, 1982; Robinson & Friedman, 2002;
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Peña et al., 2008]. A grain of arbitrary shape can be represented through clusters of

spherical grains bonded at their contacts [Jensen et al., 1999; Vu-Quoc et al., 2000],

using the model in Chapter 4 to account for intergranular cohesion. The resulting

contact geometry maintains the computational simplicity. Additionally, clustering

allows modeling of grain damage, fracturing and comminution [Jensen et al., 2001],

which are crucial in the study of faulting [Abe & Mair, 2005; Guo, 2006].

(2) Inelastic grain deformations. The contact theories of Hertz, Mindlin and Deresiewicz

assume linearly-elastic grain material. While we demonstrate that the bulk response

predicted for a collection of elastic grains is inherently inelastic, in materials made

of soft grains, or otherwise under very large stresses, inelastic grain deformation, and

possibly, grain damage, may become important [Plantard & Papini, 2005]. Modeling

such materials using QuSGM can be performed by modifying the constitutive rules;

for example, using the elasto-plastic rules suggested in Vu-Quoc & Zhang [1999b] and

Zhang & Vu-Quoc [2007].

(3) Description of intergranular slip. To allow easier implementation of the model in

Chapter 3, we simplify the constitutive rules by neglecting partial slip, assuming

either perfect stick or sliding of each contact. The accuracy of our model can be

enhanced by adopting more comprehensive constitutive relations, such as those pro-

posed in Vu-Quoc & Zhang [1999a].

(4) Alteration of grain properties. In addition to mechanically-induced damage, the grain

and contact properties can be altered by processes such as chemical reactions and

dissolution by pressure and heat. These processes can be modeled at the grain-scale

through the constitutive equations, see, e.g., Potyondy [2007].

(5) Analysis of grain rotations. Experiments and simulations show that grain rotations

have significant impact on the mechanical properties of a granular pack [Oda et al.,

1982]. In particular, large rotations of angular grains create large voids, increasing

the sample’s anisotropy, which is a necessary condition for the generation of shear

bands [Oda et al., 1998]. Further analysis of simulations results, particularly with

account for irregular grains, can be used to study anisotropy and shear bands.

(6) Enhanced applicability of our geological models. In the two applications of QuSGM we

have presented here, namely introduction of cement and gas-hydrates, we have made
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several restrictive assumptions. For instance, we do not account for cement breakage.

Cement breakage can be introduced by “removal” of the intergranular bonds and the

corresponding loads, if these loads exceed a strength threshold [Potyondy & Cundall,

2004; Tavarez & Plesha, 2007]. In modeling a hydrate-bearing sediment, we assumed

hydrates are load-bearing particles. In some cases, hydrates can also cement the

grains [Yun et al., 2005]; such sediments can be modeled by adapting the models in

Chapter 4, introducing a relation between the degradation in cement properties and

the dissociation.

(7) Large-scale computations. Complexity of intergranular interactions restricts the num-

ber of grains that can be used in simulations. Limited pack size can have consequences

on the analysis, through boundary effects [Procopio & Zavaliangos, 2005; Mesarovic

& Padbidri, 2005]. The relative simplicity of the constitutive rules and the efficiency

of our computational technique offer a partial remedy; using a conventional desktop

for computations, the number of grains in our simulations was up to ∼5000. In-

troduction of irregular grains or inelastic grain deformations will further restrict the

pack’s size. To overcome this limitation, our model can be implemented using par-

allel computing. Gradient algorithms, being composed of products between vectors

and matrices, make implementation of a parallel version relatively straight-forward

[Renouf & Alart, 2005].

(8) Granular dynamics. QuSGM employs static constitutive relations, neglecting grain

inertia. Such approach is applicable to describe numerous practical applications,

including most conventional triaxial tests. There are, however, several situations

in which dynamics becomes important, for example granular flow in low-density

packings and wave propagation. To avoid the difficulties associated with numeri-

cal time-integration, the grain accelerations and velocities can be evaluated through

a variational approach, retaining the quasi-static description. For instance, using two

former configurations within a first-order, two-step optimization algorithm (“heavy-

ball method”), see, e.g., Nesterov [1983] and the references therein.
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Nomenclature

Below is a partial list of the symbols used in this dissertation. Following the definition of
each variable are its physical dimensions, the equation and page number in which it was
first introduced in the text.

Roman symbols

aij Radius of contact area between grains i and j [L], Eq. (2.1), p. 28.

aCEM
ij Increment of contact radius associated with the cement [L], p. 79.

êz Unit vector pointing opposite to the direction of gravity [dimensionless], Eq. (2.5),
p. 29.

E Young’s modulus [ML−1T−2], p. 90.

Ei Young’s modulus of the material of grain i [ML−1T−2], p. 26.

Eij Effective elastic coefficient of the contact between grains i and j [ML−1T−2],
Eq. (2.3), p. 28.

Ēij Young’s modulus of the cement material between grains i and j [ML−1T−2],
Eq. (4.20), p. 86.

Ē Arithmetic mean of the Young’s modulus of the grains [ML−1T−2], p. 35.

f ij Force exerted on grain i by grain j [MLT−2], Eq. (2.12), p. 32.

F i Sum of forces on grain i [MLT−2], Eq. (2.5), p. 29.

F ij The force applied on grain i by deformation of the cement with grain j [MLT−2],
Eq. (4.20), p. 86.

g gravity acceleration [LT−2], Eq. (2.5), p. 29.

G Shear modulus [ML−1T−2], Eq. (2.15), p. 33.

Gi Shear modulus of the material of grain i [ML−1T−2], p. 54.
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Ḡij Shear modulus of the material cementing grains i and j [ML−1T−2], Eq. (4.21),
p. 87.

Ḡ Arithmetic mean of the shear modulus of the grains [ML−1T−2], p. 35.

hij Mutual approach between grains i and j [L], Eq. (2.1), p. 28.

Î Second order unit tensor [dimensionless], Eq. (2.15), p. 33.

kij(n) Normal stiffness of the contact between grains i and j [MT−2], Eq. (4.1), p. 78.

kij(s) Tangential stiffness of the contact between grains i and j [MT−2], Eq. (3.1), p. 52.

kij(t) Torsional stiffness of the contact between grains i and j [ML2T−2], Eq. (3.6), p. 55.

K Bulk modulus [ML−1T−2], Eq. (2.20), p. 41.

K̄ Arithmetic mean of the bulk modulus of the grains [ML−1T−2], p. 35.

Ki Bulk modulus of the material of grain i [ML−1T−2], p. 102.

L̄ij Characteristic longitudinal extent of the cement material between grains i and j
[L], Eq. (4.20), p. 86.

Ll Length of the domain in direction l [L], Eq. (2.10), p. 31.

Lσ=0
l Length of the domain in direction l in the undeformed configuration [L], Eq. (2.10),

p. 31.

mi Mass of grain i [M], Eq. (2.5), p. 29.

M ij Torque acting on grain i in contact with grain j [ML2T−2], Eq. (3.6), p. 55.

n̂w Inward unit normal of a planar boundary w [dimensionless], p. 27.

N Number of grains in a sample [dimensionless], p. 26.

Nc Number of contacts in a grain pack [dimensionless], Eq. (2.12), p. 32.

Nw
g Number of grains in contact with boundary w [dimensionless], p. 32.

N i Coordination number of grain i [dimensionless], p. 29.

N i
b Number of contacts of grain i with boundaries [dimensionless], Eq. (2.5), p. 29.

N i
g Number of contacts of grain i with other grains [dimensionless], Eq. (2.5), p. 29.

pex Excess pore pressure developed due to hydrate dissociation [ML−1T−2], Eq. (5.1),
p. 103.

P ij Normal force acting on grain i in contact with grain j [MLT−2], Eq. (2.2), p. 28.

Qij Tangential force acting on grain i in contact with grain j [MLT−2], Eq. (3.1), p. 52.
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ri Center coordinates of grain i [L], p. 26.

rij Radius-vector connecting between the centers of grains j and i [L], Eq. (2.4), p. 29.

rij Distance between centers of grains i and j [L], Eq. (2.16), p. 33.

r̂ij Unit vector in the direction of the centerline between grains i and j [dimensionless],
Eq. (2.14), p. 32.

r∗ij Normal contact strain of a cemented contact between grains i and j [dimension-
less], Eq. (4.11), p. 82.

R̄ Arithmetic mean of the grain radii [L], p. 36.

Ri Radius of grain i [L], p. 26.

Rij Effective geometric coefficient associated with the contact between grains i and j
[L], Eq. (2.3), p. 28.

R̄ij Characteristic lateral extent of the cement material between grains i and j [L],
Eq. (4.20), p. 86.

Rij Radius-vector connecting the center of grain i to the initial contact point with
grain j [L], Eq. (2.18), p. 34.

S Saturation of gas-hydrate in the pore space [dimensionless], p. 102.

u Displacement of a point [L], Eq. (2.9), p. 31.

ui Displacement of the center of grain i [L], p. 26.

uij Relative displacement of grain i with respect to grain j [L], Eq. (3.1), p. 52.

uij(n) Normal component of the displacement of grain i relative to grain j [L], Eq. (4.1),
p. 78.

uij(s) Tangential component of the displacement of grain i relative to grain j [L], Eq. (3.1),
p. 52.

uw Displacement of a boundary w [L], p. 27.

Uij Strain energy stored in the deformed region between grains i and j [ML2T−2],
Eq. (4.25), p. 88.

Uij(F ) Strain energy associated with the deformation induced by the force F ij [ML2T−2],
Eq. (4.25), p. 88.

Uij(n) Strain energy associated with the deformation induced by normal compression
between grains i and j [ML2T−2], Eq. (2.6), p. 30.

vp Acoustic compressional velocity [LT−1], Eq. (2.20), p. 41.
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vs Acoustic shear velocity [LT−1], Eq. (2.20), p. 41.

V cap
ij The volume of a spherical cap associated with sphere i overlapping with sphere j

[L3], Eq. (2.17), p. 34.

V h Volume occupied by gas-hydrates [L3], p. 102.

Vi Volume of grain i [L3], p. 102.

Vtot Total volume of a sample [L3], Eq. (2.12), p. 32.

Wij Work done against the loads acting on grain i associated with its contact with
grain j [ML2T−2], Eq. (3.14), p. 58.

x Radius-vector to a point [L], Eq. (2.9), p. 31.

xw Coordinates of an arbitrary point on a planar boundary w [L], p. 27.

z∗ Reference elevation [L], Eq. (2.7), p. 30.

Greek symbols

αb Biot-Willis coefficient [dimiensionless], Eq. (5.1), p. 103.

γ Exponent characterizing the stiffness evolution of a cemented contact (2) [dimen-
sionless], Eq. (4.12), p. 82.

∆ǫ Increment of the macroscopic strain [dimensionless], p. 45.

∆ǫa Increment of the macroscopic axial strain [dimensionless], p. 67.

∆S Decrement of the saturation of gas-hydrate in the pore space [dimensionless],
p. 102.

∆Vi Decrement of the volume of grain i [L3], p. 102.

ǫ Strain tensor [dimensionless], Eq. (2.9), p. 31.

ǫa Axial strain [dimensionless], p. 86.

ǫv Volumetric strain [dimensionless], p. 43.

ε Strain factor associated with self-similar deformation [dimensionless], p. 39.

η Parameter scaling the effective radius with the contact strain [dimensionless],
Eq. (4.13), p. 82.

θ Generalized coordinates vector [L], p. 26.

κ Parameter quantifying the increase in contact area due to introduction of cement
[dimensionless], p. 79.
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λ Lame’s coefficient [ML−1T−2], Eq. (2.15), p. 33.

λL Parameter relating the longitudinal extent of the cement between a pair of grains
to the grain sizes [dimensionless], p. 86.

λR Parameter relating the lateral extent of the cement between a pair of grains to the
grain sizes [dimensionless], p. 86.

µ Coefficient of static friction [dimensionless], p. 15.

µij Coefficient of static friction between grains i and j [dimensionless], p. 51.

ν̄ Arithmetic mean of the Poisson’s ratio of the grains [dimensionless], p. 35.

νi Poisson’s ratio of the material of grain i [dimensionless], p. 26.

ξij Coordinates of a point by which the cement between grains i and j is pinned to
grain i [L], Eq. (4.18), p. 85.

Π Energy functional minimized to obtain the equilibrium configurations [ML2T−2],
Eq. (2.7), p. 30.

ρb Bulk density of a granular sample [M/L3], Eq. (2.20), p. 41.

ρi Density of the material of grain i [M/L3], p. 26.

ρij Radius of disk of intersection between the surfaces of two overlapping spheres, i
and j [L], Eq. (2.16), p. 33.

σ Stress tensor [ML−1T−2], Eq. (2.11), p. 32.

σa Axial stress [ML−1T−2], p. 86.

σc Confining stress [ML−1T−2], p. 38.

σd Deviatoric stress [ML−1T−2], p. 91.

σµ=0
c Confining stress at the end of the sample generation procedure using the friction-

less model [ML−1T−2], p. 37.

τFC Percentile of largest forces, used in defining force chains [dimensionless], p. 45.

φ Porosity of a sample [dimensionless], Eq. (2.19), p. 34.

ω Exponent characterizing the stiffness evolution of a cemented contact (1) [dimen-
sionless], Eq. (4.13), p. 82.

Ωi Rotation of grain i [dimensionless], p. 50.

Ωij(t) Torsion of of grain i relative to grain j [dimensionless], Eq. (3.6), p. 55.
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Ωtot
ij(t) Total torsion of grain i relative to grain j, measured from the initial, undeformed

configuration [dimensionless], Eq. (4.21), p. 87.

Subscripts

i A parameter associated with grain i, p. 26.

ij A parameter associated with the contact between grains i and j; for a contact
with boundary wall, j is replaced with w, p. 28.

l A parameter associated with the direction l in a cartesian coordinate system, p. 27.

mn Indices for entries of a tensor, p. 31.

(n) A parameter associated with the normal component, p. 30.

(s) A parameter associated with the tangential (shear) component, p. 52.

(t) A parameter associated with the torsional component, p. 55.

w A parameter associated with boundary w, p. 26.

Superscripts

0 Reference configuration, p. 26.

A A parameter computed analytically, p. 40.

(c) Values corresponding to the initial, undeformed configuration, p. 79.

N A parameter computed numerically, p. 40.

p A vector rotated to account for reorientation of the contact area, p. 52.

∗ Effective property of a cemented contact, p. 78.

T Transpose (of a matrix or vector), p. 26.
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Saidi, F., Bernabè, Y., & Reuschlè, T. (2003). The mechanical behaviour of synthetic,
poorly consolidated granular rock under uniaxial compression. Tectonophysics, 370(1–
4), 105–120.
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Appendix A

Numerical algorithm

THIS APPENDIX outlines the numerical algorithm used in the simulations. Following

application of each load increment at a given (reference) configuration, simulated through

displacements of the pack’s boundaries, a modified conjugate gradient (CG) algorithm is

employed to find a new (current) equilibrium configuration of the grains. We begin with a

brief description of CG for minimization of a quadratic criterion, followed by a presentation

of the modified algorithm implemented in our computations. A detailed description of CG

method appears in Press et al. [1986]. The difficulties associated with implementing CG

in granular mechanics are discussed in Renouf & Alart [2005].

A.1 Conjugate gradient: minimizing a quadratic criterion

The conjugate gradient (CG) method was designed for the minimization of a

quadratic criterion,

J(x) =
1

2
Ax · x− b · x (A.1)

where b is a known column-vector of dimension N , A is a symmetric, positive-definite

N ×N matrix, and x is a column-vector of N unknowns. The gradient of J(x) is

∇xJ |
x

= Ax− b (A.2)

The value of x that corresponds to a minimum of the function in Eq. (A.1), x = x∗, is the

solution to the following system of linear equations: Ax = b.

Conjugate gradient is an iterative procedure: starting from an initial guess xk=0,

at each iteration, k, the variables are updated from xk to xk+1 by

xk+1 = xk − αkpk (A.3)
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The step size coefficient αk is selected to minimize J(xk − αkpk) for a given xk and pk.

At the minimum,

d

dα
J(xk − αpk)

∣

∣

∣

∣

α=αk

=
(

A(xk − αkpk)− b
)

· pk

=
(

Axk+1 − b
)

· pk = 0

(A.4)

Therefore,

αk =
rk · pk

Apk · pk
(A.5)

where

rk = Axk − b (A.6)

is the so-called residual vector.

The search direction vector p indicates the directions of the update. In the steep-

est descent (SD) method, the update is done in a direction which opposes that of the

gradient, i.e. pk = rk [Press et al., 1986]. While within a specific iteration, updating in

the anti-gradient direction provides the largest possible decrease of the functional [Courant

& Hilbert, 1962], these directions may be repeated after several iterations. In CG, the

efficiency of the algorithm is improved by avoiding such repetition, computing the search

directions by

pk = rk − βkpk−1 (A.7)

where βk is selected to provide for

Apk · pk−1 = 0 (A.8)

The latter quality is denoted as “A-conjugacy”: the search directions pk are orthogonal to

all former directions (0,1,. . . ,k-1). For any two iterations, k and m, the following conditions

hold true:

Apk · pm = 0, k 6= m (A.9a)

rk · rm = 0, k 6= m (A.9b)

rk · pm = 0, k > m (A.9c)

With some algebra, it can be shown that β can be evaluated at each iteration by

βk =
(∇xJ |

xk − ∇xJ |
xk−1) · ∇xJ |

xk

(∇xJ |
xk − ∇xJ |

xk−1) · pk−1
= −

‖∇xJ |
xk‖

2

‖∇xJ |
xk−1‖

2 (A.10)
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The iterations begin by selecting the initial guess, x0, with the gradient as the

initial search direction, p0 = r0, and β0 = 0. Selecting an initial guess which is closer

to the solution can reduce the number of iterations required for convergence [Press et al.,

1986]. Convergence is monitored using two criteria: (1) the relative reduction of the

functional, namely the ability of the numerical algorithm to improve the solution; and (2)

the magnitude of the squared norm of the functional’s gradient, which vanishes as xk → x∗.

The algorithm is summarized in Figure A.1.

(1) Initial guess (k = 0): xk=0. Set pk=0 = rk=0 = Axk=0 − b.

(2) rk = Axk − b.

(3) IF k = 1, βk = 0.

ELSE βk = −
rk · rk

rk−1 · rk−1
.

(4) pk = rk − βkpk−1.

(5) αk =
rk · pk

Apk · pk
.

(6) xk+1 = xk − αkpk

(7) Check convergence:

IF J(xk)− J(xk−1) < −τ1

∣

∣J(xk−1)
∣

∣ OR rk · rk < τ2, STOP.

ELSE Set k ← k + 1 and GOTO 2.

Figure A.1: Conjugate gradient algorithm for the minimization of a quadratic criterion.

A.2 Modified algorithm implemented in granular mechanics

A.2.1 Conjugate gradient for minimization of a non-quadratic criterion

An equilibrium configuration of a grain pack satisfies a system of force and mo-

ment balance equations. To find this configuration, we seek for the generalized coordinates,

θ, that provide a local minimum of an energy functional, Π. Thus, θ becomes the vec-

tor of unknowns, x, and Π(θ) replaces the quadratic functional J(x) in Eq. (A.1). The

functional’s gradient, ∇θΠ, computed from the sum of forces and moments on each grain

(“generalized forces”), replaces ∇xJ = r(x). We note that the frictionless model presented

in Chapter 2 does not account for rotations and moments, reducing the size of θ and ∇θΠ.
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We use the principle of minimum potential energy [Timoshenko & Goodier, 1970],

and compute Π from the work done against the intergranular loads. Thus, the functional

Π is not quadratic, for the following reasons: (a) nonlinearity of the constitutive relations,

associated with changes in the contact area with the normal compression, cf. Eq. (2.1)–

(2.2), and in the tangential and torsional stiffness (stick-slip); and (b) variations in the

contact network. Minimization of a non-quadratic functional requires modification of the

algorithm presented in Section A.1. The modified algorithm employed in our simulations

(Except in Chapter 4) is presented in Sections A.2.1.1–A.2.1.3. The algorithm used in

Chapter 4 is given in Section A.2.2.

(1) Initial guess (k = 0): θk=0 = 0. Set pk=0 = ∇θΠ|
θ

k=0 .

(2) IF k divisible by kinc AND uk
w < uw, apply incremental perturbation:

(a) Update boundary conditions: xk
w ← xk

w + ∆uk
w and uk

w ← uk
w + ∆uk

w

(b) Update the grain displacements (“initial guess”): uk
i ← uk

i + ∆uk
i , cf.

Eq. (A.11), and rk
i ← rk

i + ∆uk
i .

(3) Evaluate ∇θΠ|
θ

k .

(4) IF k = 1 OR k divisible by kSD, refresh with an SD step, by setting βk = 0.

ELSE βk = −

(

∥

∥∇θΠ|
θ

k

∥

∥

∥

∥∇θΠ|
θ

k−1

∥

∥

)2

.

(5) pk = ∇θΠ|
θ

k − βkpk−1.

(6) Given θk and pk, find αk that minimizes Π
(

θk − αkpk
)

, cf. Section A.2.1.2.

(7) Update the generalized coordinates, θk+1 = θk − αkpk, and the grain positions,
rk+1

i = rk
i + uk

i .

(8) Check convergence:

IF Π(xk−1)−Π(xk) < τ1

∣

∣Π(xk−1)
∣

∣ OR
∥

∥∇θΠ|
θ

k

∥

∥

2
< τ2N

(

ĒR̄2
)2

OR k > kmax,
STOP.

ELSE Set k ← k + 1 and GOTO Step 2.

Figure A.2: A numerical algorithm used in simulating application of a load increment and obtain-
ing an equilibrium configuration. The conjugate gradient algorithm was modified to accommodate
the nonlinearity of the balance equations.
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A.2.1.1 Initial guess following application of a load increment

We choose as the initial guess θk=0 = 0, i.e. the reference configuration. We use

a fixed cartesian coordinate system with its origin at the pack’s geometric center, xCM ,

aligned with the pack’s boundaries. Application of each load increment is modeled by sym-

metric displacements of each pair of parallel boundaries, uw=l = −uw=l+3, where l = 1, 2, 3

denotes the coordinate directions, see Figure 2.2. Note that we apply normal strains only,

thus each boundary is displaced in the direction of its normal. Within the iterations, these

displacements are applied in several sub-increments, every kinc iterations1, see Figure A.2.

To enhance convergence, following application of each incremental boundary displacement,

we select an “initial guess” by which the grain displacements and positions are updated.

For each direction, the update for grain i is computed from the displacement of the bound-

aries, scaled by the ratio between the distance of the grain to the pack’s center and the

side length. Denoting the incremental displacement of a boundary in the l direction by

∆uk
l , this update is computed by

∆uk
i(l) =

(

xCM − rk
i

)

· êl

2Lk
l

∆uk
l (A.11)

where Ll and êl are the length of the pack and a unit vector in the l direction, respectively.

The displacement and center coordinates of grain i, uk
i and rk

i , are updated by adding the

increment ∆uk
i =

∑3
l=1 ∆uk

i(l), see Figure A.2. The incremental displacements, ∆uk
l , are

applied until the total desired boundary displacement, uw=l, has been achieved.

A.2.1.2 Finding an optimal update coefficient

The nonlinearity of the balance equations implies that the update coefficient,

α, should not be evaluated by Eq. (A.5). Here, α is found numerically, by minimizing

Π
(

θk − αk ∇θΠ|
θ

k

)

with respect to αk. We perform this minimization iteratively, using an

algorithm which combines the golden section search and parabolic interpolation methods2

[Forsythe et al., 1977; Press et al., 1986]. To avoid non-physical deformation path such as

grain permutations3, we restrict the update of the grain displacements within each iteration

by limiting the value of α: the maximum grain displacement within a single iteration does

1The number of iterations between application of each incremental displacement, kinc, that provided the
smallest number of iterations until convergence, was found by trial and error.

2The function fminbnd in MATLAB software [The MathWorks Inc., 2008] was employed in our code.
3A numerical artifact which corresponds to a non-local minimum of Π.
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not exceed 10−3–10−1 of its radius. The optimal constraint value varies with the packing

density and microstructure, among other factors, and is determined by trial and error.

A.2.1.3 Convergence criteria

The CG method yields an exact solution to a system of linear equations with

symmetric, positive-definite matrix, within a number of iterations which does not exceed

the dimensions of the matrix, N [Press et al., 1986]. Here, the nonlinearity of the equations

together with accumulated round-off errors may lead to loss of conjugacy, i.e. violation of

Eq. (A.8) [Renouf & Alart, 2005]. Such violation implies that the algorithm may not work

in the same manner as it works for a linear system of equations. For example, ∇θΠ may

point to a direction of increase in Π. To avoid loss of conjugacy, the iterative procedure is

periodically refreshed every kSD iterations by setting βk = 0, equivalent to performing an

SD step, see Figure A.2. The frequency of this operation is determined by trial and error.

The iterative scheme is stopped if convergence has been achieved within a given

tolerance, or otherwise if a specified number of iterations kmax has been exceeded. The

tolerance is specified by

Πk−1 −Πk < τ1

∣

∣

∣
Π(xk−1)

∣

∣

∣
or

∥

∥∇θΠ|
θ

k

∥

∥

2
< τ2N

(

ĒR̄2
)2

(A.12)

where R̄ and Ē are the mean grain radius and Young’s modulus. For example, for sample

G2740 with Ē = 7 · 1010 Pa and R̄ = 10−4 m, the following tolerance parameters were

chosen: τ1 = 10−11 and τ2 = 10−5. These values provide for each grain a residual force,

F i, and moment, M i, which are smaller than the maximum contact force and moment on

that grain by at least 4 orders of magnitude. Note that due to inevitable round-off errors,

the chosen tolerance cannot be arbitrarily small.

Finally, we note that the zero gradient of a functional may correspond to a local

maximum, saddle point, or a flat surface of a functional. While we do not provide here

a rigorous proof, we stress that the physical meaning of Π implies that its zero gradient

corresponds to a local minimum.
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A.2.2 Conjugate gradient implemented in the cemented pack model

In modeling a cemented grain pack (Chapter 4), we improve the performance of

the minimization algorithm presented in Sections A.2.1.1–A.2.1.3 by linearizing the con-

stitutive relations. This linearization is justified by the smallness of the incremental grain

displacements following each load increment, ui. Linearization is performed within the

iterative scheme by: (I) evaluating the intergranular loads based on the reference con-

figuration, i.e. fixing the load directions, the effective contact stiffness, and the contact

network; followed by (II) updating the grain locations with the grain displacements ob-

tained in (I), and resolving for the intergranular loads based on the updated reference

configuration, see Figure A.3. Note that in step (II), the boundary conditions are not per-

turbed. However, since the directions of the loads are updated, the system will reach a new

equilibrium configuration. In both (I) and (II), the linear equations and the corresponding

quadratic functional allow to compute the update coefficient α by Eq. (A.5). The use of a

closed-form expression rather than an iterative minimization (cf. Section A.2.1.2) reduces

the computational cost, and improves the accuracy of the computations, see Section 4.8.2.

Since loss of conjugacy can occur due to round-off errors, the search directions are refreshed

every kSD iterations, see Section A.2.1.3.
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(1) Begin step (I): set FLAG=I.

(2) Initial guess (k = 0): θk=0 = 0. Set pk=0 = ∇θΠ|
θ

k=0 .

(3) IF k divisible by kinc AND uk
w < uw, apply incremental perturbation:

(a) Update boundary conditions: xk
w ← xk

w + ∆uk
w and uk

w ← uk
w + ∆uk

w

(b) Update the grain displacements (“initial guess”): uk
i ← uk

i + ∆uk
i , cf.

Eq. (A.11), keeping the grain positions fixed: rk
i =

{

rk=0
i If FLAG=I

rk=k∗

i If FLAG=II

(4) Evaluate ∇θΠ|
θ

k .

(5) IF k = 1 OR k = k∗ OR k divisible by kSD, refresh with an SD step: set βk = 0.

ELSE βk = −

(

∥

∥∇θΠ|
θ

k

∥

∥

∥

∥∇θΠ|
θ

k−1

∥

∥

)2

.

(6) pk = ∇θΠ|
θ

k − βkpk−1.

(7) Given θk, pk and ∇θΠ|
θ

k , find αk by Eq. (A.5).

(8) Update the generalized coordinates, θk+1 = θk−αkpk, keeping the grain positions
fixed.

(9) Check convergence:

IF Π(xk−1)−Π(xk) < τ1

∣

∣Π(xk−1)
∣

∣ OR
∥

∥∇θΠ|
θ

k

∥

∥

2
< τ2N

(

ĒR̄2
)2

OR k > kmax:

IF FLAG=I, set FLAG=II and k = k∗, and begin step (II). Update the
grain positions with θk+1, i.e. rk∗

i = r0
i + uk+1

i , and reset the generalized
coordinates to zero, uk∗+1

i = 0 and Ωk∗+1
i = 0, to be used as an initial guess.

Set k ← k + 1, uw = 0, and restart the process from Step 4.

ELSE (FLAG=II), STOP.

ELSE Set k ← k + 1 and GOTO Step 3.

Figure A.3: A numerical algorithm used in simulating application of a load increment and ob-
taining an equilibrium configuration, employed in the cemented pack model, cf. Chapter 4.


