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ABSTRACT
Simulating mixed-state evolution in open quantum systems is crucial for various chemical physics, quantum optics, and computer sci-
ence applications. These simulations typically follow the Lindblad master equation dynamics. An alternative approach known as quantum
state diffusion unraveling is based on the trajectories of pure states generated by random wave functions, which evolve according to a
nonlinear Itô–Schrödinger equation (ISE). This study introduces weak first-order and second-order solvers for the ISE based on directly
applying the Itô–Taylor expansion with exact derivatives in the interaction picture. We tested the method on free and driven Morse
oscillators coupled to a thermal environment and found that both orders allowed practical estimation with a few dozen iterations. The
variance was relatively small compared to the linear unraveling and did not grow with time. The second-order solver delivers a much
higher accuracy and stability with bigger time steps than the first-order scheme, with a small additional workload. However, the second-
order algorithm has quadratic complexity with the number of Lindblad operators as opposed to the linear complexity of the first-order
algorithm.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0191947

I. INTRODUCTION

When a physical system in a pure quantum state is brought
to interact weakly with a macroscopic thermal environment, it
changes its energy and chemical composition. At the same time,
it gradually loses its “quantumness” or, more technically, its phase
coherence. Ultimately, the system’s state resembles that drawn ran-
domly from the Gibbs ensemble at the environment’s temperature
and chemical potentials. All quantum systems interact with the
environment. Therefore, techniques to simulate decoherence and
decay processes are vital for developing quantum technologies and
studying chemical processes in solutions and condensed matter.1–17

The pure quantum state of an open system is not known with
certainty, and thus, we consider it a random mixture of pure states.
The density operator ρ is the mathematical object that best describes
this mixture, enabling the calculation of probabilities of outcomes
of measurements. Even when the initial mixture ρ(0) is known,
the density operator ρ(t) changes over time. The Redfield master
equation1,3,18–21 is one way to approximate this evolution, but it
sometimes creates mixtures with negative probabilities. Lindblad’s

master equation13,22–25 is an augmented form of Redfield’s equa-
tion, guaranteeing the density operator’s positivity. It is a quantum
Liouville-like equation but includes additional terms, relying on
Lindblad operators, to represent the dressed system–environment
interactions.

The density operator of the Lindblad equation can be mod-
eled by stochastic processes collectively called “quantum unraveling
models.”5,26,27 They provide recipes for generating a random time-
dependent normalized pure state ∣ψ(t)⟩ for which the expected
value of the projector, E[∣ψ(t)⟩⟨ψ(t)∣], is equal to the Lindblad
density operator ρ(t). One type of unraveling is the Monte-Carlo
wave function approach,28–30 also known as the “quantum jumps
model,” where the Lindblad operators create abrupt “jumps” in
quantum space. A second approach to unraveling is the “quantum
state diffusion model,”31 which involves a norm-conserving (but not
unitary) time-dependent stochastic Itô–Schrödinger equation (ISE)
for ∣ψ(t)⟩. The ISE contains drift (evolution) and diffusion (fluctua-
tion) terms. The quantum jump and quantum state diffusion models
yield different trajectories. The former evolves non-continuously. At
the same time, the latter is continuous but non-differentiable in time.
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One advantage of basing numerical simulations on the quan-
tum state diffusion model is the availability of well-established
high-order techniques for solving stochastic differential equations
(SDEs).5,32–34 In the present contribution, we deploy a simple
approach based on the exact derivatives in the interaction picture, an
Itô–Taylor expansion for weak second-order solutions. The method
is stable and allows for high accuracy and slight variance.

II. WEAK SECOND-ORDER QUANTUM STATE
DIFFUSION UNRAVELING
A. Comments on notation

Before we start the detailed theory, here are several comments
concerning the notation in this paper:

1. The time dimension of any quantity can be read off from its
superscripts or subscripts: a subscript 0 adds a dimension of
time−1 and a superscript 0 attributes a dimension of time+1.
Thus, the Hamiltonian H0 has the dimension of inverse time,
while the symbol I0 has the dimension of time. A Greek sub-
script attributes an additional factor of time−1/2, and a Greek
superscript attributes an additional factor of time1/2. Thus,
the symbol Iα has the dimension of time1/2, while Iαβ has the
dimension of time−1. The Kronecker delta δβα is dimension-
less. Furthermore, the symbols I0

α and Iαβγ have the dimension
of time1/2, while I0α has the dimensions of time3/2. These con-
ventions help ascertain that the different time orders we use in
our analytical developments are consistent (i.e., that we do not
add quantities with different time dimensions).

2. The indices α and α′ going from 1, . . . , NL denote one of the
NL Lindblad operators. When two quantities indexed with α
are multiplied in an expression, a summation over α from 1 to
NL is assumed and we omit the explicit∑NL

α=1 notation (this is
the so-called Einstein convention). If the index is decorated by
a dot α̇, then no such summation is implied.

3. In the following, we introduce a “0” operator, in addition to
the Lindblad operators. Unlike the α and α′ indices discussed
above going from 1, . . . , NL, we also use the β and β′ indices
to enumerate operators and quantities that range from 0 to
NL. Similar to the case with α, when two quantities indexed
with β are multiplied in an expression, a summation over β is
assumed and we omit the explicit ∑NL

β=0 notation. If the index
is decorated by a dot β̇, then no such summation is implied.

B. Quantum state diffusion unraveling
The Lindblad equation

ρ̇(t) = −i[H0 + θ(t)V0, ρ] +D0ρ, (1)

together with the initial condition ρ(0), determines ρ(t) for all
time t > 0. It contains unitary terms dependent on H0, an effec-
tive Hamiltonian operator, and θ(t)V0, a driving force with θ(t),
a dimensionless real time-dependent envelop with time derivative
θ0(t) ≡ θ̇(t). It also contains dissipative terms as follows:13,24,25,31

D0ρ ≡ [Lαρ, L†
α] + [Lα, ρL†

α], (2)

defined in terms of the Lindblad operators Lα, α = 1, . . . , NL.
Atomic units are used here (h = 1, me = 1), so the energy and inverse
time units are identical. Accordingly, Lα have the dimension of
time−1/2.

Evolving the mixed-state density operator ρ(t) using Eq. (1)
can be numerically expensive when systems are large. A pos-
sible simplification can be achieved by the unraveling proce-
dure, which evolves a pure random state ∣ψ(t)⟩ in such a way
that E[∣ψ(t)⟩⟨ψ(t)∣] = ρ(t). In quantum state diffusion, unravel-
ing ∣ψ(t)⟩ is obtained from the following Itô–Schrödinger equation
(ISE):31

∣dψ⟩ = −iH0∣ψ⟩dw0
+Λβ∣ψ⟩dw

β, (3)

starting from a random ket ∣ψ(0)⟩ for which E[∣ψ(0)⟩⟨ψ(0)∣]
= ρ(0). In Eq. (3),

Λα ≡ Lα − ⟨Lα⟩,

Λ0 ≡ −iθ(t)V0(t) + (2⟨L†
α⟩Lα − L†

αLα − ⟨L†
α⟩⟨Lα⟩),

and

⟨Lα⟩ ≡
⟨ψ∣Lα∣ψ⟩
⟨ψ∣ψ⟩

. (4)

Notice that ⟨Λα⟩ = 0 (for α = 1, . . . , NL). In Eq. (3), dw0
= dt is

the time-step, while dwα, α = 1, 2, . . . NL, are independent com-
plex Wiener processes, with real R[dwα

] and imaginary I[dwα
]

parts, each of which is an independent real Wiener process with
zero expected value and a variance equal to dt. As is common in
the stochastic differential equations literature, we omit the expected
value symbol E from differentials; hence, we are lead to the following
variances for dwα:

(dwα
)

2
= (dwα∗

)
2
= 0, ∣dwα

∣
2
= 2dt. (5)

Note that dwα are also independent of ∣ψ⟩. Note that the differen-
tial d⟨ψ∣ψ ⟩ ≡ ⟨dψ∣ψ ⟩ + ⟨ψ∣dψ ⟩ + ⟨dψ∣dψ ⟩ vanishes when evaluated
using Eqs. (3)–(5). Hence, ⟨ψ∣ψ ⟩ is a constant of motion, separately
for each trajectory.

C. Weak first-order and second-order propagators
The first step in providing a solution to the ISE is to move

to the interaction picture, defining ∣ϕ(t)⟩ ≡ eiH0t
∣ψ(t)⟩ and, for any

operator Y, Y(t) ≡ eiH0t Ye−iH0t . The ISE of Eq. (3) becomes

d∣ϕ⟩ = dwβΛβ(t)∣ϕ⟩, (6)

where

Λα(t) ≡ Lα(t) − ⟨Lα(t)⟩, (7)

and note that our definition of the expectation value

⟨Lα(t)⟩ ≡
⟨ψ(t)∣Lα∣ψ(t)⟩
⟨ψ(t)∣ψ(t)⟩

=
⟨ϕ(t)∣Lα(t)∣ϕ(t)⟩
⟨ϕ(t)∣ϕ(t)⟩

,

which includes division by the norm and is thus different from some
other applications.33 Formally, there is no need to divide by the
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norm since one can choose the initial norm as 1 and it is preserved.
However, in practice, the norm is never perfectly preserved, so this
division is not a trivial change and we found that division by the
norm leads to a more stable numerical behavior.

For developing the numerical scheme, we divide time
t ∈ [0, T f ], where T f is the final time, into NT discrete small
temporal segments ΔT = Tf /NT and designate tn+1 = t0 + nΔT,
n = 1, 2, . . . , NT . Using the notation ∣Φ⟩ ≡ ∣ϕ(tn)⟩, the change in the
evolving ket during the nth time step, ∣ΔΦ⟩ ≡ ∣ϕ(tn+1)⟩ − ∣Φ⟩, is
expressed as a stochastic integral over d∣ϕ⟩, which gives the following
equation:

∣ΔΦ⟩ = ∫
tn+ΔT

tn

Λβ(τ)∣ϕ(τ)⟩dw
β
τ . (8)

We strive for an approximation of this integral, which allows an
exact solution of the ISE in the limit of NT →∞ and, accordingly,
ΔT → 0. Our analysis follows closely that found in the classical lit-
erature on numerical solutions of real SDEs.35,36 Our contribution is
the adaptation of the theory to Eq. (6), including the use of complex
Wiener processes and exact analytical derivatives therein. We also
contribute a simplified notation scheme.

The change in the wave function is provided in terms of first-
order and second-order contributions, ∣ΔΦ⟩ ≈ ∣Δ(1)Φ⟩ + ∣Δ(2)Φ⟩.
The first-order term is obtained by approximating Λβ(τ)∣ϕ(τ)⟩ as
∣β⟩ ≡ Λβ(tn)∣Φ⟩ for τ ∈ [tn, tn + ΔT]. This gives

∣Δ(1)Φ⟩ = Iβ∣β⟩, (9)

where Iα = ∫
tn+ΔT

tn
dwα, α = 1, . . ., NL, are Itô integrals presented in

Table I and I0
= ΔT. In the numerical calculations, we use the model

for the complex stochastic Itô integrals given in the last column of
the table.

We use the Itô–Taylor expansion to the lowest order for the
second-order correction. For this, we introduce a notation in which
all quantities are first written as functions of a ket ∣x⟩ and a (differ-
ent) bra ⟨y∣, and then, we take separate derivatives with respect to

them and only after that do we set ∣x⟩ = ∣Φ⟩ and ⟨y∣ = ⟨Φ∣. In the
supplementary material, we provide a detailed explanation of the
results presented here. We define for α = 1, . . . , NL the ℓ-functions
of ∣x⟩, ⟨y∣, and the time t,

ℓα(∣x⟩, ⟨y∣, t) ≡
⟨y∣Lα(t)∣x⟩
⟨y∣x⟩

and

ℓ∗α(∣x⟩, ⟨y∣, t) ≡
⟨y∣L†

α(t)∣x⟩
⟨y∣x⟩

,

which when evaluated at Φ, become the expectation values of the
Lindblad operators,

(ℓα(∣x⟩, ⟨y∣, t))Φ ≡ ℓα(∣Φ⟩, ⟨Φ∣, t) = ⟨Lα(t)⟩,

(ℓ∗α(∣x⟩, ⟨y∣, t))Φ ≡ ℓ
∗
α(∣Φ⟩, ⟨Φ∣, t) = ⟨L†

α(t)⟩.

The derivative of ℓα(∣x⟩, ⟨y∣, t) with respect to the bra ⟨y∣ results in a
ket,

∣
∂

∂⟨y∣
ℓα(∣x⟩, ⟨y∣, t)⟩ =

(Lα(t) − ℓα(∣x⟩, ⟨y∣, t))∣x⟩
⟨y∣x ⟩

≡
∣λα(∣x⟩, ⟨y∣, t)⟩
⟨y∣x ⟩

, (10)

which is orthogonal to ∣y⟩,

⟨y∣λα ⟩ = 0.

Similarly, the derivative with respect to the ket ∣x⟩ results in a bra,

⟨
∂

∂∣x⟩
ℓα(∣x⟩, ⟨y∣, t)∣ =

⟨y∣(Lα(t) − ℓα(∣x⟩, ⟨y∣, t))
⟨y∣x ⟩

≡ ⟨μα(∣x⟩, ⟨y∣, t)∣,

TABLE I. The definition of the stochastic Itô integrals used in Eqs. (9)–(12), where tn are the propagation time steps, with tn+1 − tn = ΔT , and α,α′,α′′,α′′′ = 1, . . . , NL are
Lindblad indices, and α∗ ≡ α + NL. All the integrals have zero expected value and covariance described in the table. The integrals I0 and I00 are deterministic and equal to

ΔT and ΔT2

2 , respectively. The last column for each integral gives a model depending on 4 × NL independent complex random variables mα (α = 1, . . . , NL, m = a, b, c, d),

distributed with E[mα] = 0, E[mαm′α
′
] = 0, and E[mα∗m′α

′
] = 2ΔTδαα′δmm′ . For each time interval tn → tn+1, a new uncorrelated set of such random variables is used.

Integral Iα′∗ Iα′∗0 I0α′∗ Iα
′′∗α′′′∗ Iα

′′α′′′∗ Model

Iα ≡ ∫
ΔT

0 dwα
τ δαα′2ΔT δαα′ΔT2 δαα′ΔT2 0 0 aα

Iα0
≡ ∫

ΔT
0 ∫

τ
0 dwα

τ′dτ δαα′ΔT2 δαα′
2ΔT3

3 δαα′
ΔT3

3 0 0 (aα + 1√
3

bα)ΔT
2

I0α
≡ ∫

ΔT
0 (τ − tn)dwα

τ δαα′ΔT2 δαα′
ΔT3

3 δαα′
2ΔT3

3 0 0 (aα − 1√
3

bα)ΔT
2

Iαα
′
≡ ∫

ΔT
0 dwα

τ ∫
τ

0 dwα′
τ′ 0 0 0 δαα′′δ

α′′′
α′ 2ΔT2 0 1√

2
cαdα

′

Iα∗α
′
≡ ∫

ΔT
0 dwα∗

τ ∫
τ

0 dwα′
τ′ 0 0 0 0 δαα′′δ

α′′′
α′ 2ΔT2 1√

2
(cα)∗dα

′
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which is orthogonal to ∣x⟩,

⟨μα∣x ⟩ = 0.

We extend the definition of the “λ-kets,” by adding a “zero”
subscript,

∣λ0(∣x⟩, ⟨y∣, t)⟩ ≡ −iV0(t)θ(t)∣x⟩ + (2ℓ∗α(∣x⟩, ⟨y∣, t)Lα − L†
αLα

− ℓα(∣x⟩, ⟨y∣, t)ℓ∗α(∣x⟩, ⟨y∣, t))∣x⟩. (11)

When evaluated at Φ, for β = 0, . . . , NL, we have the following
equation:

∣λβ(∣x⟩, ⟨y∣, t)⟩Φ,tn
≡ Λβ∣Φ⟩ ≡ ∣β⟩.

With these definitions, the second-order correction is given in terms
of λ-kets, t, ∣x⟩, ⟨y∣ first derivatives, and the ∣x⟩⟨y∣ mixed derivatives
as follows:

∣Δ(2)Φ⟩ = I0β
(
∂

∂t
∣λβ⟩)

Φ,tn

+ Iββ
′
(

∂

∂∣x⟩
∣λβ′⟩)

Φ,tn

∣β⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
′X′

+ Iβ∗β
′
⟨β∣(

∂

∂⟨y∣
∣λβ′⟩)

Φ,tn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
′Y′

+ 2I0β
⟨α∣(

∂2

∂∣x⟩∂⟨y∣
∣λβ⟩)

Φ,tn

∣α⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
′XY′

, (12)

where Iββ
′

(β = 0, . . . , NL and β′ = 0, . . . , NL) are the Itô integrals
presented in Table I.

The derivatives in the expression for ∣ΔΦ(2)⟩ are

(
∂

∂t
∣λα⟩)

Φ,tn

= i([H0,Λα] − ⟨[H0,Λα]⟩)∣Φ⟩,

(
∂

∂t
∣λ0⟩)

Φ,tn

= (θ(tn)[H0, V0] − iθ0(tn)V0)∣Φ⟩

+ i(2⟨[H0,Λ†
α]⟩Λα − [H0,Λ†

αΛα])∣Φ⟩

+ i⟨L†
α⟩([H0,Λα] − ⟨[H0,Λα]⟩)∣Φ⟩.

Next, using the notations ∣β⟩ ≡ Λβ∣Φ⟩, ∣αβ⟩ ≡ ΛαΛβ∣Φ⟩, etc., the
x-derivatives are

(
∂

∂∣x⟩
∣λα⟩)

Φn

∣β⟩ = ∣αβ⟩ − ∣Φ⟩⟨Φ∣αβ ⟩,

(
∂

∂∣x⟩
∣λ0⟩)

Φn

∣β⟩ = ∣0β⟩ +
NL

∑
α=1
((2∣α⟩ + ∣Φ⟩⟨Lα⟩)

× ⟨α∣β ⟩ − ∣Φ⟩⟨Φ∣αβ ⟩⟨L†
α⟩);

the y-derivatives are

⟨β∣(
∂

∂⟨y∣
∣λα⟩)

Φn

= −∣Φ⟩⟨β∣α ⟩,

⟨β∣(
∂

∂⟨y∣
∣λ0⟩)

Φn

= ((∣α⟩2 + ∣Φ⟩⟨Lα⟩)⟨βα∣Φ ⟩ − ∣Φ⟩⟨β∣α ⟩⟨L†
α⟩);

and the mixed derivatives are

⟨α∣(
∂2

∂∣x⟩∂⟨y∣
∣λα′⟩)

Φn

∣α⟩ = −(∣α⟩⟨α∣α′ ⟩ + ∣Φ⟩⟨α∣α′α ⟩),

⟨α∣(
∂2

∂∣x⟩∂⟨y∣
∣λ0⟩)

Φn

∣α⟩

= ∣α⟩(2⟨α′α∣α′ ⟩ + ⟨Lα′⟩⟨α
′α∣Φ ⟩ − ⟨α′∣α ⟩⟨L†

α′⟩)

+ 2∣α′α⟩⟨αα′∣Φ ⟩ − ∣Φ⟩(∣⟨α∣α′ ⟩∣2 + ∣⟨0∣α′α ⟩∣2

+ 2iI[⟨αα′∣α ⟩⟨Lα′⟩]).

A further simplification is obtained using the following summed
kets:

∣e0
⟩ ≡ I0α

∣α⟩, ∣ f 0
⟩ ≡ Iα0

∣α⟩, ∣ f 0∗
⟩ ≡ Iα0∗

∣α⟩,

∣c⟩ ≡ cα∣α⟩, ∣d⟩ ≡ dα∣α⟩, ∣d∗⟩ ≡ dα∗∣α⟩, ∣dc⟩ ≡ dα
′
Λα′ ∣c⟩,

with which the ′X′, ′Y ′, and ′XY ′ terms of Eq. (12) become

′X′ =
ΔT2

2
(∣00⟩ + ((2∣α⟩ + ∣Φ⟩⟨Lα⟩)⟨α∣0 ⟩ − ∣Φ⟩⟨Φ∣α0 ⟩⟨L†

α⟩))

+ ∣0 f 0
⟩ + ∣e00⟩ + ((2∣α⟩ + ∣Φ⟩⟨Lα⟩)⟨α∣ f 0

⟩

− ∣Φ⟩⟨Φ∣α f 0
⟩⟨L†

α⟩) − ∣Φ⟩⟨Φ∣e
00 ⟩ + ∣dc⟩ − ∣Φ⟩⟨Φ∣dc ⟩,

′Y ′ =
ΔT2

2
((∣α⟩2 + ∣Φ⟩⟨Lα⟩)⟨0α∣Φ ⟩ − ∣Φ⟩⟨0∣α ⟩⟨L†

α⟩)

+ [(∣α′⟩2 + ∣Φ⟩⟨Lα′⟩)⟨ f 0∗α′∣Φ ⟩ − ∣Φ⟩⟨ f 0∗
∣α′ ⟩⟨L†

α′⟩]

− ∣Φ⟩⟨0∣e0
⟩ − ∣Φ⟩⟨d∗∣c ⟩,

′XY ′ = −2(∣α⟩⟨α∣e0
⟩ + ∣Φ⟩⟨α∣e0α ⟩)

+ ∣α⟩(2⟨α′α∣α′ ⟩ + ⟨Lα′⟩⟨α
′α∣Φ ⟩ − ⟨α′∣α ⟩⟨L†

α′⟩)ΔT2

+ ∣α′α⟩(2⟨αα′∣Φ ⟩)ΔT2
− ∣Φ⟩(∣⟨α∣α′ ⟩∣2 + ∣⟨0∣α′α ⟩∣2

+ 2iI[⟨αα′∣α ⟩⟨Lα′⟩])ΔT2. (13)

This completes the description of the method. As for the algo-
rithmic scaling in NL, the evaluation of each of the terms in the
“X” and “Y” expressions requires order NL operations (linear scal-
ing effort in the number of Lindblad operators). However, the “XY”
expression includes terms that require order N2

L operations, which
may dominate the calculation as NL grows.

After each time step is completed, we update the time tn → tn+1
= tn + ΔT and the operators Lα → eiH0ΔT Lαe−iH0ΔT

(α = 1, . . . , NL)

and V0 → eiH0ΔT V0e−iH0ΔT . Using the new value of Lα and Φ, we
calculate Λβ (β = 0, . . . , NL) in preparation for the next time-step.
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We set up the calculation in the following way: first, we define
a macro-time state τ = NΔT. We propagate from Φ0

= Ψ(0) with
N steps of ΔT, reaching ΦN , and then, we transform back to the
Schrödinger picture,

ΨN
= e−iH0τΦN.

It is worth mentioning that our algorithm covers, as a special
case, the linear unraveling procedure,6,32

∣dψ⟩ = −i(H0 + θ(t)V0(t) − iL†
αLα)∣ψ⟩dt + Lα∣ψ⟩dwα, (14)

which is obtained from Eq. (3) by setting ⟨Lα⟩→ 0. Indeed, one can
use the algorithm above and simplify by replacing Λα by Lα and
“X” by ΔT2

2 ∣00⟩ + ∣dc⟩ and by setting both “Y” and “XY” to zero in
Eq. (12).

III. VALIDATION: MORSE OSCILLATOR
The example for our method is a Morse oscillator cou-

pled to the environment at inverse temperature βe. The parti-
cle has mass m = 1, and the truncated Morse potential is U(x)
= max [Umax, V∞(1 − e−ax

)
2
] (see Fig. 1), with V∞ = 4, a = 0.2, and

Umax = 6. As before, we use atomic units a0 (Bohr radius) for lengths,
Eh (Hartree energy) for energy, me (electron mass) for mass, and
h̵E−1

h for time. The wave functions ψ(x) we consider here may have
non-zero values only in the interval x ∈ [−10, 30]. We represent the
system on a 31-point grid of unit spacing (Δx = 1),

xn = −10 + nΔx, n = 0, . . . , 30. (15)

The wave functions map into the vectors ψn = ψ(xn).
The position (X ) and potential U0 ≡ U(X ) operators oper-
ate as (Xψ)n = xnψn and (U0ψ)n = U(xn)ψn, respectively. The
kinetic energy operator is the finite difference operator (K0ψ)n

= − h̵2

2mΔx2 (ψn−1 − 2ψn + ψn+1), combined with the boundary con-
dition ψ−1 ≡ ψ31 ≡ 0. This defines the Hamiltonian H0 = K0
+ U0. The lowest lying bound energy levels of this Hamiltonian,
determined by diagonalization, are shown in Fig. 1.

FIG. 1. Morse potential U(x) used in this example. The dashed lines indicate the
low lying energy eigenvalues.

We take only two Lindblad operators

L±ωB , T =
√
γ±ωB ×

1
2T ∫

T

− T
e±iωBτXH(τ)dτ, (16)

where XH(τ) = e
i
h̵ H0τX e−

i
h̵ H0τ is the time-dependent Heisenberg

operator for X , T = 10, and ωB = h̵−1
(E1 − E0) = h̵−1

× 0.4903. The
rates in Eq. (16) are chosen as

γ±ωB =
γ0

1 + e±βe h̵ωB
,

where γ0 = 0.2 and the environment inverse temperature βe = 4.
These rates obey the detailed balance condition

γωB

γ−ωB

= e−βe h̵ωB. (17)

The last element of the model problem is the initial state, which
we take as a pure state ρ(0) = ∣ξ⟩⟨ξ∣:

∣ξ⟩ =
1
√

3
(∣ψ2⟩ + ∣ψ3⟩ + ∣ψ4⟩), (18)

where ∣ψn⟩ are the eigenvectors of the Hamiltonian operator H0.

A. The “free” oscillator
We first discuss a time-independent case, where the oscillator

is free, i.e., not subjected to an external driving force beyond the
interaction with the environment. Using a small time step and a
fourth-order Runge–Kutta propagator, we evolve the density oper-
ator according to the Lindblad equation [Eq. (1)], starting from
ρ(t = 0) and obtain highly accurate reference values for benchmark-
ing the stochastic propagators. We find that the extended time limit
of the evolved state is close, but not exactly equal, to the thermal state
at the environmental temperature. In order to converge fully into the
thermal state, we need to provide more Lindblad operators than just
the two we consider here.

The stochastic calculation provides confidence intervals for the
Lindblad expectation values Tr [ρt A] of any given observable of
interest A. The procedure is a straightforward application of statisti-
cal analysis. We run our propagator Ns times (with independent ran-
dom numbers) collecting Ns samples of quantum expectation values
A(k)t ≡ ⟨Ψ(k)t ∣A∣Ψ

(k)
t ⟩/⟨Ψ

(k)
t ∣Ψ

(k)
t ⟩ (k = 1, . . . , Ns) and then con-

struct the 95% confidence interval as [Āt − ΔAt , Āt + ΔAt], where Āt

is the sample average, ΔAt = 2 × St/
√

Ns is the interval width, and
St is the sample standard deviation. The factor 2 is the large sample
t-factor corresponding to a confidence level of ∼95%. In Fig. 2, we
show confidence intervals for two observables, the energy H0 and
the position X , using Ns = 64 and 1024 samples based on the first-
order and second-order propagators with time step ΔT = 0.25. For
reference, the red solid line in the figure also shows the numerically
exact expected value E[⟨ψt ∣A∣ψt⟩] = Tr [ρt A].

The first-order calculation exhibits a noticeable energy bias
at ΔT = 0.25, even when the confidence interval is broad (when
Ns = 64). At the same time, the bias from the second-order calcu-
lation is not noticeable even for the Ns = 1024 sampling. We discuss
the weak order convergence comparing first-order and second-order
methods below. The standard deviation St in the first-order and
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FIG. 2. The 95% confidence region (blue shade) for the energy (top panels) and position (bottom panels) transients of the free (left) and driven (right) Morse oscillator starting
from a hot state, obtained from the first-order and second-order solutions of the ISE [Eqs. (9) and (12)] using Ns = 64 and 1024 samples. In addition the red lines show the
numerically exact energy and the position transients calculated by solving Eq. (1).

second-order calculations is around 0.08 for the energy and 0.6
for the position; interestingly, it does not grow with time. We also
checked the algorithm for the case of over-damped dynamics where
a parameter of γ = 0.6 was used. We observed similar trends as in
weak coupling in terms of the accuracy of the calculation (see details
in the supplementary material). In terms of stability, both first-order
and second-order calculations required time steps of at least 0.0625,
and for larger time steps, the solution was unstable and diverged.

In a weak order-o method, E[⟨Ψt ∣A∣Ψt⟩] should approach the
exact value Tr [ρt A] as the o power ofΔT. More precisely, there exist
ΔT0 > 0 and C > 0 such that

ΔT < ΔT0 ⇒ ∣E[⟨Ψt ∣A∣Ψt⟩] − Tr [ρt A]∣ ≤ C × ΔTo. (19)

FIG. 3. Log-plots showing the first-order (red) and second-order (blue) confi-
dence intervals for the energy H0(t f ) (top panel) and position X (t f ) (bottom
panel) expectation values at t f = 7 vs time step ΔT . The dotted straight lines
show asymptotic first-order and second-order behaviors [Eq. (19)]. The number of
samples used for estimating the confidence intervals was Ns = 64 × 106.

To test whether this condition is obeyed, we need to know
E[⟨Ψt ∣A∣Ψt⟩] and this is not available directly. However, we can
build a very small 95% confidence interval by extensive sampling
(taking Ns = 64 × 106), as shown in Fig. 3, for the energy and posi-
tion observables at time tf = 7 as a function of the time step ΔT.
The asymptotic behavior of Eq. (19) is clearly seen as the asymptotic
lines do, indeed, fit through the very small confidence intervals. The
power of the second-order calculations is also evident as its error
with ΔT = 0.25 is smaller than the error in the first-order calculation
using a time step smaller by a factor of 8.

To assess the utility of the second-order vs the first-order
solvers, we note that for the example given here, the wall-time for
the former is only 1.5 times larger than the latter. This small ratio
in wall times will characterize larger systems, as long as there is only
one Lindblad operator. From the discussion above, concerning the
time-step (and, hence, the number of time steps) required by both
the methods, we conclude that in the present example, the second-
order solver is five times more efficient than the first-order one for
low-accuracy calculations. For higher accuracies, it is considerably
more efficient. However, the wall time in the second-order calcula-
tion depends quadratically on the number NL of Lindblad operators,
while that of the first-order calculation is linear in NL. Hence, the
numerical cost of the second-order calculation may exceed that of
the first-order calculation as NL grows.

We mention briefly that linear unraveling [Eq. (14)] has a vari-
ance one to two orders of magnitude larger than for the nonlinear
unraveling (and it grows linearly with time). Hence, the nonlinear
unraveling is expected to be superior.

B. The driven oscillator
In this example, we subject the Morse oscillator to a driving

time-dependent field,

V0θ(t) = X F sin (ωt), (20)

with F = 0.2 and ω = 0.49. The frequency is resonant between the
ground and the first excited states of the oscillator. In Fig. 2 (right),
we show first-order and second-order results for Ns = 64 and 1024
samples, respectively. The oscillator starts from the same pure state
as in the example given in Sec. III A [see Eq. (18)]. Under the
driving force, it strives to cool due to the interaction with the
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cold environment but the driving field acts to heat it. Eventually, a
quasi-stationary non-thermal state forms, with the oscillator energy
and position oscillating strongly in time. The first-order solution
is unstable for ΔT > 0.031 25, and even at this, a small time-step
exhibits a large energy bias (red line not passing in the confidence
interval for Ns = 1024). The second-order results are stable and
much more accurate even when ΔT = 0.125. As for the standard
deviation St in the driven oscillator, it is around 0.25 for energy and
0.6 for position. As with the free oscillator, St does not grow with
time.

IV. CONCLUSIONS
We have presented a weak second-order method for solving

the Itô–Schrödinger equation related to quantum state diffusion
unraveling of the Lindblad equation. One of the critical character-
istics of the approach is working in the interaction picture, helping
stability and accuracy even for relatively large time steps. Another
significant characteristic of our approach is nonlinear unraveling,
using the expectation value of the Lindblad operator within the
equation, which reduces the variance (in comparison with the lin-
ear unraveling schemes). Moreover, the use of explicitly normalized
expectation values of the Lindblad operators [Eq. (4)] further sta-
bilizes the propagation. Another characteristic of our approach is
using exact derivatives, which are readily available since our nonlin-
earity is analytical, for the Itô–Taylor expansion (as opposed to other
second-order approaches, such as the Runge–Kutta method, which
bypasses derivatives using finite difference). Finally, our method
uses complex Wiener processes.

We have tested the method on the problem of cooling an ini-
tially hot Morse oscillator coupled to a colder environment. We
studied both free and driven oscillators. In both cases, we showed
a good accuracy of the second-order method when the time step was
ΔTωB ≈ 0.1 or smaller, achieving useful confidence intervals with a
relatively small amount of sampling.

We have used 1D examples to benchmark our methods.
For such small systems, unraveling does not save computational
resources relative to a complete solution of the Lindblad equa-
tion. However, the latter method has cubic scaling in wall time and
quadratic scaling in memory, and therefore, unraveling can become
more efficient as systems grow. One clear advantage of unraveling
is that it does not require storing the density matrix, saving a vast
amount of computer memory. Furthermore, the most intensive part
of the unraveling calculation, namely transforming to and from the
interaction picture, can be accomplished by iterative methods37,38

involving a fixed number of Hamiltonian applications to any given
ket. As systems grow, this latter operation becomes linear-scaling
in complexity, endowing the entire unraveling procedure with the
same complexity. Thus, there is a massive reduction in computa-
tional time relative to a complete solution of the Lindblad equation
in the limit of large systems. Furthermore, multiprocessor paral-
lelization can easily overcome the burden of repeated sampling in
the unraveling procedure.

The propagator developed in the present paper is our first
step toward a more general goal of constructing a framework for
studying quantum decoherence and dissipation in large molecular
and nanoscale systems. The computational wall-time involved in
the second-order calculation scales quadratically with the number

NL of Lindblad operators. Therefore, our immediate future work
will involve a method to contract Lindblad operators so that a
small, hopefully, system-size-independent number of operators can
be used. In addition, in the future, we may try to develop solvers
for stochastic Schrödinger equations that unravel non-Markovian
master equations. Such solvers are required since the Markovian
dynamics may result in unreliable predictions of bath-induced
coherences.39–42

SUPPLEMENTARY MATERIAL

The supplementary material includes the derivation of Eq. (12)
and the results of the Morse oscillator in the overdamped limit.
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