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We develop a formalism for calculating forces on the nuclei within the linear-scaling stochastic
density functional theory (sDFT) in a nonorthogonal atom-centered basis-set representation (Fabian
et al. WIREs Comput Mol Sci. 2019;e1412. https://doi.org/10.1002/wcms.1412) and apply it to
Tryptophan Zipper 2 (Trp-zip2) peptide solvated in water. We use an embedded-fragment approach
to reduce the statistical errors (fluctuation and systematic bias), where the entire peptide is the main
fragment and the remaining 425 water molecules are grouped into small fragments. We analyze the
magnitude of the statistical errors in the forces and find that the systematic bias is of the order of
0.065 eV/Å (∼ 1.2 × 10−3Eh/a0) when 120 stochastic orbitals are used, independently of systems
size. This magnitude of bias is sufficiently small to ensure that the bond lengths estimated by
stochastic DFT (within a Langevin molecular dynamics simulation) will deviate by less than 1%
from those predicted by a deterministic calculation.

I. INTRODUCTION

Kohn-Sham density functional theory (KS-DFT) is of-
ten used for estimating the forces on the nuclei in ab-
initio molecular dynamics simulations, with which reli-
able predictions concerning structure and properties of
molecules can be made. Despite the fact that it can be
used to study extended molecular systems relevant to
biomolecular chemistry and materials science [1–4], the
conventional implementations are slow due to cubic al-
gorithmic complexity. Therefore, several approaches to
KS-DFT have been developed and are routinely used for
treating such extended systems. These include linear-
scaling approaches which rely on electron localization
within the system’s interior volume [5–33], or the tight-
binding DFT approach, which uses a very small basis set
complemented by approximations calibrated with empir-
ical data [34–36], and the orbital-free DFT, which is ap-
plicable to relatively homogeneous systems [37, 38].

Here, we focus on the stochastic DFT (sDFT) [39], a
linear-scaling approach based on the paradigm that the
expectation values of the system observables can be re-
garded as random variables in a stochastic process with
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an expected value and a fluctuation. In sDFT the mag-
nitude of fluctuations can be controlled by increasing the
sampling and/or by variance-reducing techniques, such
as the embedded-fragment method [40–43] or the energy
windowing approach [44, 45]. Due to the nonlinear na-
ture of the Kohn-Sham theory, the fluctuations create
bias errors, i.e. the random variable’s expected value de-
viates from the precise quantum mechanical expectation
value [43]. The magnitude of the bias can be controlled
by using the above-mentioned variance-reducing meth-
ods.

Early implementations of sDFT were based on real-
space grid representations of the electron density [39,
41, 42, 46, 47] and were applied to relatively homoge-
neous systems, either to bulk silicon or H-He mixtures
with periodic boundary conditions [42, 45, 47, 48] or
to finite-sized hydrogen-passivated silicon nanocrystals
(with impurities) and water cluster [41, 42, 49, 50]. We
also developed a Langevin dynamics approach to sam-
ple the Boltzmann-weighted configurations [41, 51]. The
real-space implementation of sDFT is useful as a start-
ing point for post-processing DFT-based methods, such
as the stochastic GW for charge excitations [52, 53],
the stochastic time-dependent DFT and Bethe-Salpeter
equations for neutral excitations [54–56], and for conduc-
tance calculations in warm dense matter [48].

Recently, we developed an sDFT approach based on a
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non-orthogonal atom-centered basis-set representation in
combination with norm-conserving pseudopotentials [43],
attempting to exploit the small energy range and the
compact basis set for DFT calculations of extended sys-
tems. Our original work focused on describing the total
energy per electron and the density of states, but lacked a
description of the forces on the nuclei, which is the main
subject of the current work. Here, we present a method
to calculate these forces maintaining the linear-scaling of
sDFT and discuss the statistical fluctuations and the re-
sulting biases for a heterogeneous system of Tryptophan
Zipper 2 (Trp-zip2) peptide solvated in water. Unlike
the QM/MM [57, 58] approach which uses quantum me-
chanics (QM) to describe the forces on the active site and
molecular mechanics (MM) to the remaining degrees of
freedom (DOF), we aim to develop a fully quantum me-
chanical approach, combining deterministic DFT applied
to the active site and sDFT to couple it to the remaining
DOF.

The manuscript is organized as follows: In Section II,
we introduce the new formalism for the stochastic forces
calculations. Then, in Section III, we present the bench-
mark calculations on the Tryptophan Zipper 2 (Trp-zip2)
peptide in solution. Finally, we summarize and discuss
the results in Section IV.

II. FORCE CALCULATIONS IN STOCHASTIC
DENSITY FUNCTIONAL THEORY

In this section we describe the theory of the electronic
forces on nuclei within the finite temperature KS-DFT
formalism. We set the notations and describe the basis-
set representation we use for Kohn-Sham DFT in subsec-
tion IIA with the combined implementation using real
space grids briefly described in subsection II B. Expres-
sions for the forces are given in subsection IIC with a de-
tailed derivation given in Appendix A. Finally, in subsec-
tions IID-II E we provide the detail behind the stochastic
evaluation of the electronic density and any other ob-
servables in sDFT (including the forces), and present the
statistical errors involved.

A. Setting the stage

The KS Hamiltonian is given by:

ĥKS = t̂s + v̂nlpp + v̂locpp + vHxc [n] (r) , (1)

where t̂s = − 1
2∇2 (we use atomic units throughout the

paper) is the electron kinetic energy operator, v̂nlpp =∑
C∈nuclei v̂

nl
pp(C), and v̂locpp =

∑
C∈nuclei v

loc
pp(C) (r̂ −RC)

are the non-local and local norm-conserving pseudopo-
tential terms in the Kleinman-Bylander form [59, 60] for
nucleus C, at positionRC . The last potential term, v̂Hxc,
is the Hartree and exchange correlation potential, de-

pending on the electron density, n (r):

vHxc [n] (r) =
δEHxc [n]

δn (r)
=

∫
n (r′)
|r − r′|d

3r′ + vxc [n] (r̂)

(2)
where EHxc [n] is the Hartree and exchange-correlation
energy functional.

We use a nonorthogonal atom-centered basis set,
φα (r), α = 1, . . . ,K, with an overlap matrix Sαγ =
〈φα |φγ 〉, α, γ = 1, . . . ,K. Within such a basis set ap-
proach, the K ×K density matrix (DM) is given as

P = S−1f
(
HS−1;β, µ

)
(3)

where Hαγ =
〈
φα

∣∣∣ĥKS

∣∣∣φγ
〉
and

f (ε;β, µ) ≡ 1

1 + eβ(ε−µ)
. (4)

is the Fermi-Dirac distribution function. The DM is used
to calculate expected values of single-electron observables
ô as:

〈ô〉 = 2× Tr [OP ] , (5)

where O is the matrix representing ô in the basis, with
elements:

Oαγ = 〈φα |ô|φγ〉 , (6)

and the factor of 2 accounts for the electron’s spin in a
closed shell representation. For example, the expectation
value of the density operator n̂ (r) is the electron density,
given by:

n [P ] (r) = 〈δ (r − r̂)〉 = 2×
∑

αγ

Pαγφα (r)φγ (r) , (7)

The DM in Eq. (3) minimizes the total electronic free-
energy:

Ω [P ] = E [P ]− µN [P ]− (kBβ)
−1 Sent [P ] .

Here E [P ] is the electronic internal energy,

E [P ] = 2× Tr
[(
Ts + V nlPP + V locPP

)
P
]

+ EHxc [n [P ]]

and the number of electrons is given by

N [P ] = 2× Tr [SP ] .

The actual value we use for the chemical potential µ is
tuned to enforce N [P ] to be equal to the actual number
of electrons in the system. Finally Sent [P ] is the entropy
of the non-interacting electrons of the KS system, given
by:

Sent [P ] = −2× kBTr [SP lnSP+

(1− SP ) ln (1− SP )]
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Equations (1)-(7) must be solved together, and the re-
sulting solution for the density n (r) and the DM P
is called the self-consistent field (SCF) solution to the
KS equations. The procedure for reaching SCF solution
is iterative: in each iteration, called an SCF cycle, P
is calculated from H using Eq. (3), n (r) from P from
which vHxc [n] (r) is calculated and a new KS Hamilto-
nian matrix H is built.

B. Combined real-space grid and basis set
implementation

The theory described in the section above uses, in ad-
dition to the basis function φα (r), also a Cartesian grid
(with uniform grid-spacing h) which spans the space oc-
cupied by the electron density. The grid is used to evalu-
ate the matrix elements of Eq. (6) of various observables
ô, expressible as operators on the grid:

Oαγ = h3
∑

g

φα (rg) [ôφγ ] (rg) , (8)

where rg are the grid points (g is a 3D index). Each
matrix element of Eq. (8) can be evaluated efficiently[61]
while we can also gain by parallel architecture, allow-
ing different cores to independently compute different
αγ pairs. In particular, the pseudopotentials v̂

nl/log
PP

are such grid operators. Evaluating the electron den-
sity of Eq. (7) at the grid points allows calculation of the
density-dependent Hartree and XC potentials. For the
former, we use fast Fourier transform techniques [62].

C. Electronic forces on the nuclei

In this subsection we give formal expressions for the
electronic forces on the nuclei expressible as matrix trace
operations. For this, we calculate the work done by the
electrons as nucleus C is displaced by δCX in the x-
coordinate. This work is the change in the free energy of
Eq. (??), and therefore

− FCδCX = δCΩ (9)

where FC , is the x-component of the force on the dis-
placed nucleus. The atom displacement δCX has three
types of effects: it causes an explicit change in its con-
tribution to the pseudopotential v̂nl/locpp → v̂

nl/loc
pp +

δC v̂
nl/loc
pp , it displaces the basis functions φα → φα +

δCφα, and it induces a variation in the DM, P →
P + δCP , since P is required to be the minimizer of
the free energy. Note that due to this minimum prin-
ciple δCΩ is unaffected (to first order) by δCP so that
the work done on the atom (see Appendix A),

−FCδCX = 2× Tr
[
P
(
δCH −

(
HS−1

)
δCS

)]
, (10)

is given solely in terms of the variations in the Hamilto-
nian,

(δCH)αβ =
〈
φα
∣∣δC

(
v̂nlpp + v̂locpp

)∣∣φβ
〉

+
〈
δCφα

∣∣∣ĥKS
∣∣∣φβ

〉
+
〈
φα

∣∣∣ĥKS
∣∣∣ δCφβ

〉
(11)

and the overlap

(δCS)αβ = 〈δCφα |φβ 〉+ 〈φα |δCφβ 〉 (12)

matrices. The first term in Eq. (11) is the explicit change
in the pseudopotential, giving the direct forces on the
atom. The second and third terms in δCH (and similar
terms in Eq. (12) for δCS) are due to the variation in basis
functions, and they lead to the so-called Pulay forces
on the atom. More details concerning the calculation
of (δCS)αβ and (δCH)αβ are given in the Supplementary
material Section I.

D. Stochastic estimation of observables and forces

In Section II of the Supplementary material we give the
necessary background and definitions of random variables
and stochastic vectors and use them to provide statistical
estimates for the trace of matrices, using the stochastic
trace formula [63]. Using these results, the expectation
values of a one-body observable ô, given in Eq. (5) can
be evaluated in terms of an expected value of a random
variable,

〈ô〉 = 2× E
[
χTOPχ

]
, (13)

where χT =
(
χ1, . . . , χK

)
is a stochastic column vector

and each χα is a random variable taking values of ±1.
Note, that this technique can be used also to evaluate
the electronic forces on the nuclei since they too are for-
mulated as matrix traces (see Eq. (10)). Also provided
in Section II C of the Supplementary material is a dis-
cussion on how to estimate the 70% confidence interval
[mI − σI ,mI + σI ] for 〈ô〉 using a sample of I stochastic
vectors, around a mean value

mI = 2× 1

I

I∑

i=1

χTi OPχi (14)

with an uncertainty

σI =
sI√
I

(15)

where sI =
√

1
I−1

∑I
i=1

(
χTi OPχi −mI

)2
.

We now use I stochastic vectors χi to estimate the
electron density at each grid point, based on Eq. (7). For
this, we define stochastic orbitals which are stochastic
linear combinations of the basis functions, defined on the
grid as

ηi (rg) =

K∑

α=1

χαi φα (rg)
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and projected stochastic orbitals

ξi (rg) =
K∑

α=1

[Pχi]
α
φα (rg) .

Using the above we can now calculate the center of the
confidence interval for the electron density at point rg as
the sample mean:

nI (rg) = 2× 1

I

I∑

i=1

ηi (rg) ξi (rg) . (16)

We see that the density’s and other observables’ es-
timation in sDFT involves operating with P on the
stochastic vectors χi. This operation has a linear scaling
algorithmic complexity because P can be expressed as a
power series related to the Fermi-Dirac function involving
repeated applications of S−1H to a column vector and
because the Hamiltonian and overlap matrices H and S
are sparse [64]. See [43] for additional details.

The SCF cycle of KS theory in sDFT involves using
our best estimate for the density, i.e. nI (r) to build
the Hamiltonian. Since nI (r) includes an uncertainty
(a fluctuation), the resulting Hamiltonian matrix H also
has a fluctuation. Then, plugging H into the Chebyshev
expansion from which a new nI (r) is calculated converts
the fluctuation into a bias, as discussed Section II C of the
Supplementary material. Thus after the SCF converges
all expectation values have both an uncertainty σI and a
bias error, which we define as:

∆ρI =
∣∣∣E [mI ]− 〈ô〉dDFT

∣∣∣ .

The estimation of the uncertainty σI can be done using
Eq. (15), but the estimation of ∆ρI is more complicated
since we need to determine E[mI ]. We discuss this is-
sue when we determine the bias error in the force (see
Section III).

E. Embedded fragments approach

In order to mitigate the fluctuation and bias errors we
developed a basis set version of the embedded-fragment
(EF) approach [40–43], which can be described in a gen-
eral way as introducing a correction term to the sDFT
calculation. We first decompose our system into F frag-
ments. Each atom (and all basis functions centered on it)
belongs to one and only one fragment. We calculate the
electron density in each fragment, using: 1.) determin-
istic DFT nfdDFT (r) (f = 1, . . . , F ) and 2.) stochastic
DFT nfI (r). We then use the difference

∆nf (r) = nfdDFT (r)− nfI (r) (17)

as a correction to the sDFT calculation of the density
nI (r) on the entire system:

nEFI (r) = nI (r) +
F∑

f=1

∆nf (r) . (18)

We note, that the correct result, nEFI (r) = ndDFT (r) is
obtained in two limits: 1) when F = 1 (i.e. the entire
system is a fragment) and 2) when I → ∞, so nfI (r) →
nfdDFT (r) etc. Similarly, the expectation value of any
operator of interest, ô:

〈ô〉EFI = 〈ô〉I +
∑

f

〈
∆ôf

〉
I

(19)

where
〈
∆ôf

〉
I

=
〈
ôf
〉
dDFT

−
〈
ôf
〉
I
. The EF approach

is applicable to the forces calculation, by choosing ô to
be the relevant operators from Eq. (10). For further de-
tail on the implementation of the embedded fragments
method in our program, see Supplementary material Sec-
tion III.

III. STATISTICAL ANALYSIS OF SDFT
FORCES IN THE TRYPTOPHAN ZIPPER 2

PEPTIDE

Our test system is a Tryptophan Zipper 2 (Trp-zip2)
peptide (pdb 1le1 ), composed of 220 atoms (left panel
of Fig. 1), solvated with 425 water molecules and built
using a universal force field (UFF) in ArgusLab [65, 66]
(right panel of Fig. 1). For benchmark calculations we
focused on the 20 nitrogen atoms of the peptide (indexed
by C) and calculated the forces acting on each Cartesian
degree of freedom. In these calculations, the embedded-
fragment method was used, for which we chose to con-
sider the peptide as a single fragment and then divided
the 425 water molecules into 27 fragments, with an aver-
age size of 16 molecules.

To study the statistical errors we performed the sDFT
calculations using increasing number of stochastic vec-
tors, I = 12, 120, 1200, according to Eq. (13). To esti-
mate the magnitudes of the bias and the uncertainty we
repeated the calculations M times (using independent
random number generator seeds) from which we calcu-
lated a sample average force vector:

F̄C =
1

M

M∑

m=1

Fm
C ,

and a 3× 3 force covariance matrix:

Σ2 =
1

M

M∑

m=1

(
Fm
C − F̄C

) (
Fm
C − F̄C

)T
,

as an estimate for the covariance of the sDFT calculation.
As the forces acting on each atom are represented as a 3-
dimensional vectors (over the Cartesian coordinates) we
would like to obtain scalar values, irrespective of the way
the Cartesian axes are defined, in order to estimate the
uncertainty and bias of the sDFT forces. For a canonical
estimate of the uncertainty we use an average over the
eigenstates of Σ2:

σC =

√
1

3
TrΣ2, (20)
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Figure 1. Left Panel: Tryptophan Zipper 2 (Trp-zip2) peptide, composed of 220 atoms. Right Panel: Trp-zip2 peptide (ribbon)
solvated by 425 water molecules. The full system is composed of 1495 atoms, 4024 valence electrons and 3118 basis functions
are necessary to describe it using a minimal basis set.

where F dDFTC =
∥∥∥F dDFT

C

∥∥∥, is the magnitude of the
dDFT electronic force on atom C. For a canonical es-
timate of the bias in the force we use the L2-Norm of the
error in the average force vector:

∆ρC =
∥∥∥F̄C − F dDFT

C

∥∥∥ . (21)

In Fig. 2 we present data for the statistical errors in
the forces of the 20 Nitrogen atoms, ordered by an atom
index according to their distance from the center of the
peptide (1 closest, 20 furthest). The estimates for the un-
certainty in the forces, σC of Eq. (20) are plotted in blue
circles, while the estimates of the bias ∆ρC of Eq. (21),
with an error bar calculated as ±σC/

√
M , in orange tri-

angles with blue error bars. The medians over all Nitro-
gen atoms are plotted as dashed lines. The used number
of stochastic vectors, I, as well as the number of repeti-
tions, M , is shown above each panel. We found that sta-
ble estimates of σC are obtained even when using a small
number of M ≈ 50 repetitions and observe that they
obey the expected 1/

√
I behavior in accordance with the

central limit theorem. Since the variance is given by the
matrix elements of the system, (see Supplementary ma-
terial Section II C, Eq. 14), the pattern seen for σC as
a function of atom index is almost unchanged for differ-
ent values of I. To estimate the bias we need a good
estimate of E[mI ] (the expected value of the forces when
calculated using I stochastic vectors in Eq. (14)). As σC
is much larger than ∆ρC , a very large number of repeti-
tions, M , was required in order to achieve a good enough
estimate of E[mI ] such that ∆ρC values are useful esti-
mates of the bias. It is clear from the error bars that for
almost all Nitrogen atoms we have good estimates of the

bias.
In the I = 12 column, for an added perspec-

tive, we plot in gray diamonds, the error ∆ρfragC =∥∥∥F frag
C − F dDFT

C

∥∥∥, where F frag
C is the force vector on

the Nitrogen atom C from a dDFT calculation on its
peptide only (gas-phase) fragment. The median is given
again, in a dashed line. We observe that the values of
∆ρfragC for the atoms closer to the center of the fragment
are mostly smaller than those further away, causing a
similar pattern in the sDFT errors. When comparing
the median of ∆ρfragC (plotted for all panels in a gray
dashed line) with those of the stochastic results, we see
they are higher even for the I = 12 stochastic vectors
case, whereas for the cases of I = 120, 1200 we observe
a reduction in the errors, showing that overall sDFT sig-
nificantly improves the force estimation in comparison to
the deterministic fragment calculation[67].

Additional sDFT calculations on a smaller system,
composed of the Trp-zip2 peptide and only 195 solvat-
ing water molecules, show that for a given number of
stochastic orbitals (I = 12) the uncertainty and bias are
very similar to the case of the original solvated system
(see Supplementary material Section IV) . This suggests
the statistical errors are roughly independent of system
size.

IV. SUMMARY AND CONCLUSIONS

We have presented a method for force calculations
using finite temperature sDFT in nonorthogonal atom-
centered basis sets. The forces are random variables
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Figure 2. The statistical errors in the sDFT forces acting on the 20 nitrogen atoms in the solvated-TrpZip2 system calculated
using I = 12,120, 1200 stochastic vectors (see left, center and right panels). For each Nitrogen atom, we show the uncertainty σC
(blue dots), and the estimate in the bias ∆ρC (orange triangles), see Eqs. 20,21 in text, with error bars calculated as ±σC/

√
M .

In the I = 12 column we also plot ∆ρfragC =
∥∥∥F frag

C − F dDFT
C

∥∥∥ (gray diamonds), where F frag
C is the dDFT force vector on

the Nitrogen atom C from the peptide-only fragment calculation. The dotted lines connecting the markers are presented as a
guide for the eye, while the dashed horizontal lines are medians over all atoms of σC and ∆ρC . For simplification of the image,
in the I = 120, 1200 columns we only present the median of ∆ρfragC (gray dashed line) taken over all 20 Nitrogen atoms.

evaluated using the stochastic trace formula applied to
various operators derived from the free energy, and are
therefore, like all sDFT observables, characterized by sta-
tistical errors, a fluctuation and a bias. The calculation
of the forces is adapted to benefit from the embedded-
fragment methodology.

In Section III we presented benchmarking calculations,
focusing on the statistical errors in the force estimates for
the 20 Nitrogen atoms of a solvated Tryptophan Zipper
2 peptide system. The results are given as a function of
I, the number of stochastic vectors used in the calcula-
tion according to Eq. (13). The uncertainty in the sDFT
forces follows the expected 1/

√
I behavior in accordance

with the central limit theorem. Using a very large num-
ber of repetitions we were also able to uncover the bias
and determine that it is at least an order of magnitude
smaller than the uncertainty. The magnitude of the force
bias is of the order of 0.065 eV/Å (∼ 10−3Eh/a0) when
120 stochastic orbitals are used, independently of sys-
tem size. A back of the envelop calculation shows that
this magnitude of bias is sufficiently small to ensure that
the bond lengths estimated by stochastic DFT (within
a Langevin molecular dynamics simulation) will deviate
by less than 1% from those predicted by a deterministic
calculation[68]. Indeed, this fact was demonstrated using
a Langevin Dynamics simulation on silicon nanocrystals
[41] within a real-space representation sDFT. Our present
results indicate that sDFT based on nonorthogonal atom-
centered basis sets can be also used successfully in this
way.
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Appendix A: Derivation of the changes in free
energy

In this appendix we derive the force expression of
Eq. (10). The force is given by the change in free en-
ergy

Ω [P ] = E [P ]− µN [P ]− (kBβ)
−1 Sent [P ]

due to displacement of the nuclei. When nuclei are dis-
placed the DM also changes, we will show that under
any change in the density matrix P → P + δ0P , while
keeping the nuclei fixed, the free energy of Eq. (??) does
not change when P is given by Eq. (3). This will be done
by examining each term in the above equation separately
and summing over all of them. Then we will consider the
direct change in free energy due to a displacement of the
nuclei (while P is held constant). It is only this latter
change which affects the free energy.

1. Calculating the variation in N [P ]

Starting from:

N [P ] =

∫
n [P ] (r) dr
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and

n [P ] (r) = 2×
∑

αγ

Pαγφα (r)φγ (r) .

Combining these we see

N [P ] = 2× Tr [SP ] .

We consider two types of variations: δ0 which change the
DM but not the atoms and δC which change the position
of atom C (and thus affects the basis functions associated
with that atom) but not P .

1. P → P + δ0P (assuming nuclei are constant): Here

δ0n (r) = 2×
∑

αγ

δ0Pαγφα (r)φγ (r) . (A1)

so

δ0N [P ] = 2× Tr [Sδ0P ] (A2)

2. Nucleus C moves by δCX (and φα → φα + δCφα)
(constraining P to be constant): the change in the
density is

δCn (r) = 2×
∑

αγ

Pαγ [δCφα (r)φγ (r)

+φα (r) δCφγ (r)] .

so:

δCN [P ] = 2× Tr [PδCS] (A3)

using the change in the overlap matrix

(δCS)αβ = 〈δCφα |φβ 〉+ 〈φα |δCφβ 〉 (A4)

2. Calculating the variation in E [P ]

Starting from:

E [P ] = 2× Tr
[(
Ts + V nlPP + V locPP

)
P
]

+ EHxc [n [P ]]

we have two types of variations, δ0 which change the DM
but not the atoms and δC which change the position of
atom C (and thus affects the basis functions associated
with that atom) but not P .

1. P → P + δ0P (freezing the nuclei). We have that

δ0EHxc [n [P ]] =

∫
vHxc (n [P ] (r)) δ0n (r) dr

so using Eq. (A1)

δ0E [P ] = 2× Tr [Hδ0P ] (A5)

2. Nucleus C moves by δCX (and φα → φα + δCφα)
(constraining P to be constant): we find

δCE [P ] = 2× Tr [PδCH] (A6)

where

(δCH)αβ =
〈
φα

∣∣∣δC ĥKS
∣∣∣φβ

〉

+
〈
δCφα

∣∣∣ĥKS
∣∣∣φβ

〉
+
〈
φα

∣∣∣ĥKS
∣∣∣ δCφβ

〉
(A7)

3. Calculating the variation in Sent [P ]

Starting from Sent [P ] =−2 × kBTr [SP ln (SP )
+ (1− SP ) ln (1− SP )],

1. P → P + δ0P (freezing the nuclei) We have by
derivation that

δ0Sent [n [P ]] = −2× kBTr
[
ln

(
SP

1− SP

)
Sδ0P

]
(A8)

2. Nucleus C moves by δCX (and φα → φα + δCφα)
(constraining P to be constant), we find:

δCSent [n [P ]] = −2× kBTr
[
ln

(
SP

1− SP

)
PδCS

]

(A9)

4. Calculating the variation in Ω [P ]

Here we use the above results and find:

1. P → P + δ0P (freezing the nuclei) Using
Eqs. (A2), (A5) and (A8), we have δ0Ω = 2 ×
Tr
[{
H −

(
µ− β−1 ln SP

1−SP

)
S
}
δP
]
and using (3)

we find

H −
(
µ− β−1 ln

SP

1− SP

)
S = 0,

and so

δ0Ω = 0.

This reflects the fact that P of Eq. (3) minimizes
Ω[P ].

2. Nucleus C moves by δCX (and φα → φα + δCφα)
(since a variation in P does not affect the value of
Ω we can take it as a constant): using Eqs. (A3),
(A6) and (A9), we find

δCΩ = 2× Tr
[
P
(
δCH −HS−1δCS

)]
.

We see that δ0Ω = 0 so the only change in free energy
is due to the changes in the matrices H and S (given in
Eqs. (A4) and (A7)).
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I. EVALUATING MATRIX ELEMENTS FOR FORCES

In this section we will describe how to calculate (δCS)αβ =
(

∂
∂XC

S
)
αβ
δCX:

(
∂

∂XC
S

)

αβ

=

〈
∂

∂XC
φα

∣∣∣∣φβ
〉

+

〈
φα

∣∣∣∣
∂

∂XC
φβ

〉

and (δCH)αβ =
(

∂
∂XC

H
)
αβ
δCX:

(
∂

∂XC
H

)

αβ

=

〈
φα

∣∣∣∣
∂

∂XC

(
v̂nlpp + v̂locpp

)∣∣∣∣φβ
〉

+

〈
∂

∂XC
φα

∣∣∣ĥKS
∣∣∣φβ

〉
+

〈
φα

∣∣∣ĥKS
∣∣∣ ∂

∂XC
φβ

〉

used in the force expression of Eq. (10) in the manuscript.

A. The Pulay forces

Here we give the detail of calculating the
〈

∂
∂XC

φα

∣∣∣φβ
〉
and

〈
∂

∂XC
φα

∣∣∣ĥKS
∣∣∣φβ

〉
type matrix elements. For these

we need to calculate the derivatives of the basis functions φ (rg −RC) with respect to nuclear coordinates RC =
(XC , YC , ZC). Since we use Cartesian Gaussian functions as our basis we enjoy the ease of calculating their values
and derivatives analytically on the grid. Each atom-centered basis function is a sum of primitives, e−γx

2

xl×e−γy2ym×
e−γx

2

zn, where n+l+m is the total angular momentum quantum number. Therefore each primitive can be represented
by three 1-dimensional vectors ξα (xg −XC), ηα (yg − YC) and ζα (zg − ZC) and the function is defined inside a
“window” surrounding the atom C and given as a product of three terms at each of its grid points:

φα (rg) = ξα (xg −XC) ηα (yg − YC) ζα (zg − ZC) .

∗ eran.rabani@berkeley.edu
† roi.baer@huji.ac.il
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The grid is then used to evaluate the matrix elements of the overlap and Hamiltonian matrices:

Sαβ = h3
∑

rg

φα (rg)φβ (rg) ,

Hαβ = h3
∑

rg

φα (rg)
[
ĥKSφβ

]
(rg) ,

where h is the uniform grid-spacing.
Since the forces are the derivatives with respect to nuclear coordinate XC , while our grid points are the electronic

coordinates, xg, we use the fact that for a basis function centered around RC , taking the derivative with respect to
XC is simply the negative of the derivative with respect to x evaluated at rg −RC :

∂

∂XC
φα (rg) = −ξ′α (xg −XC) ηα (yg − YC) ζα (zg − ZC) ,

such that derivatives can therefore also be defined inside a “window” surrounding the atom C and given as a product
of three terms at each of its grid points. The grid is then used to evaluate the Pulay matrix elements of δCS and
δCH:

〈
∂

∂XC
φα

∣∣∣∣φβ
〉

= h3
∑

rg

[
∂

∂XC
φα (rg)

]
φβ (rg) ,

〈
∂

∂XC
φα

∣∣∣ĥKS
∣∣∣φβ

〉
= h3

∑

rg

[
∂

∂XC
φα (rg)

] [
ĥKSφβ

]
(rg) ,

The above Pulay terms are non-zero only when the φα basis belongs to atom C, i.e. when φα ∈ C, and therefore need
to be calculated only for a very small number of α, β pairs, i.e. only when φα, φβ have overlapping windows on the
grid. The result of these conditions is that Pulay force matrices are incredibly sparse and their number of non-zero
elements, Nnon zero, is independent of the system size, as it depends only on the choice of basis set through the number
of basis functions per atom. As for each degree of freedom (DOF), XC (X direction of atom C), we have to compute
a Pulay force sparse-matrix, we exploit these conditions in our code by only evaluating non-zero matrix elements and
storing them in sparse-matrix structures. In Subsection IC we describe the method of storage and application (onto
a vector) of the sparse structure we have used.

The algorithm for computing
(

∂
∂XC

S
)
αβ

• For all basis functions α ∈ C
– loop over all basis function β < α that overlap with α, then:
– If β ∈ C

(
∂S

∂XC

)

αβ

=

〈
∂

∂XC
φα

∣∣∣∣φβ
〉

+

〈
φα

∣∣∣∣
∂

∂XC
φβ

〉

– otherwise
(
∂S

∂XC

)

αβ

=

〈
∂

∂XC
φα

∣∣∣∣φβ
〉

• For all basis functions α /∈ C
– loop over all basis function β < α that overlap with α, then:
– If β ∈ C

(
∂S

∂XC

)

αβ

=

〈
φα

∣∣∣∣
∂

∂XC
φβ

〉
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• All other terms are not 0, and we do not store them in the sparse matrix structure.

(To simplify the code, as
〈
φα

∣∣∣ ∂
∂XC

φβ

〉
=
〈

∂
∂XC

φβ

∣∣∣φα
〉
, we always take the derivative from the left side).

Overall we get:

(
∂S

∂XC

)

αβ

=





〈
∂

∂XC
φα

∣∣∣φβ
〉

+
〈
φα

∣∣∣ ∂
∂XC

φβ

〉
〈

∂
∂XC

φα

∣∣∣φβ
〉

〈
φα

∣∣∣ ∂
∂XC

φβ

〉

0

α, β ∈ C
α ∈ C, β /∈ C
α /∈ C, β ∈ C
α, β /∈ C

and the same can be done for the Hamiltonian Pulay terms:

(
∂H

∂XC

)Pulay

αβ

=





〈
∂

∂XC
φα

∣∣∣ĥKS
∣∣∣φβ

〉
+
〈
φα

∣∣∣ĥKS
∣∣∣ ∂
∂XC

φβ

〉
〈

∂
∂XC

φα

∣∣∣ĥKS
∣∣∣φβ

〉
〈
φα

∣∣∣ĥKS
∣∣∣ ∂
∂XC

φβ

〉

0

α, β ∈ C
α ∈ C, β /∈ C
α /∈ C, β ∈ C
α, β /∈ C

however, as the Hamiltonian includes terms that are explicitly dependent on nuclear coordinates in the form of the non-
local (nl) and local (loc) pseudopotential terms: v̂nl/locpp =

∑
C′∈nuclei v̂

nl/loc
pp(C′), there are also the

〈
φα

∣∣∣ ∂
∂XC

v̂
nl/loc
pp

∣∣∣φβ
〉

type terms that contribute to the overall force on atom C in the X direction. See Subsection IB below for the detail
of these force terms.

B. The direct forces

Here we give the detail of calculating the
〈
φα

∣∣∣ ∂
∂XC

v̂
nl/loc
PP

∣∣∣φβ
〉
type matrix elements.

Since the non-local and local pseudopotential operators are v̂nl/locpp =
∑
C′∈nuclei v̂

nl/loc
pp(C′), the derivative with respect

to a variation in nuclear coordinate XC is given by:

∂

∂XC
v̂nl/locpp |φβ〉 =

∂

∂XC
v̂
nl/loc
pp(C) |φβ〉 .

The v̂nl/locpp(C) operators have an analytical expression of the Kleinman-Bylander form [1], such that we can apply it, and

its derivative, ∂
∂XC

v̂
nl/loc
pp(C) , on a vector on the grid.

Due to its short-range nature, v̂nlpp(C) and subsequently ∂
∂XC

v̂nlpp(C) are stored on a small “window” of grid points

around RC . The
〈
φα

∣∣∣ ∂
∂XC

v̂nlPP

∣∣∣φβ
〉
matrix elements are therefore calculated as a multiplication of two grid vectors:

(
∂

∂XC
V nlpp(C)

)direct

αβ

= h3
∑

rg∈
(
α∩β∩v̂nl

pp(C)

)
φα (rg)

[[
∂

∂XC
v̂nlpp(C)

]
φβ

]
(rg) , (1)

where the sum over grid points rg is over only grid points that are inside the windows of all three terms, φα, φβand
v̂nlpp(C). This requirement of overlapping windows for all three terms results in very sparse matrices, with the number
of non-zero matrix elements, Nnon zeros, dependent only on the choice of basis set and independent of system size.

For each degree of freedom (DOF), XC (atom C in the X direction), we have to compute a ∂
∂XC

V nlpp(C) force sparse-
matrix and apply it to a stochastic vector as part of the evaluation using the stochastic trace formula. In Subsection
IC we describe the method of storage and application of the sparse structure we have used.

The algorithm for computing
(

∂
∂XC

V nlpp(C)

)direct

αβ

• loop over all basis functions β that have overlapping windows with v̂nlpp(C)
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– Calculate the
[

∂
∂XC

v̂nlpp(C)φβ

]
(rg) grid vector for all rg ∈ β ∩ v̂nlpp(C)

∗ loop over all basis functions α that overlap with both β, v̂nlpp(C)

· Calculate
(

∂
∂XC

V nlpp(C)

)
αβ

according to Eq.(1)

The local PP operator, v̂locpp , (which includes the long range Coulomb attraction), depends directly on the density
n (rg). In this case, an equivalent method to the trace calculation of the direct ∂

∂XC
v̂locpp is done by usual planewaves

calculations on the grid using n (rg) in reciprocal space. This scaling of this approach is quadratic with system size
when the forces on all atoms are calculated, however it is highly efficient.

C. Sparse matrix structures for Pulay and non-local PP forces

To exploit the sparsity of the above, direct and Pulay, force matrices, we do not store them in full K ×K matrix
structures (where K is the number of basis functions), but rather use compact a storage structure. In these, for every
degree of freedom we store three lists of length Nnon zeros: (val,I,J) ≡Mij where (I,J) gives the location of the value,
val, in the K ×K matrix M .

M =




0 0 0 0 0

0
. . . 0

...
...

0 0 0 0 0
...

...
... a b

0 0 0 c d



K×K

≡

val

a
b
c
d




I


4
4
5
5




J


4
5
4
5




As per the above example, the sparse structure allows for a significant reduction in the number of stored values in
memory as we only store (3×Nnon zeros ) elements per DOF as opposed to K2 elements per DOF. Since the number
of DOF’s, NDOF ∝ K and since Nnon zeros is a small number dependent only on the choice of basis set (but not on
system size!) our sparse structure reduces the scaling of the memory requirement from O

(
K3
)
to O (K) .

The sparse structure also allows for an efficient matrix vector multiplication. For a matrix M and vector |z〉 the
operation

|y〉 = M |z〉

is given by:

yk =
∑

n, I(n)=k

val (n)× zJ(n)

such that we only require Nnon zeros multiplications for a matrix vector operation (as all terms of c, that are not in
the I list, are zero).

For the stochastic trace formula we need to calculate expectation values using the stochastic vectors, χ. In a bra-ket
notation, for a matrix M :

r = 〈χ |M |χ〉

is given by:

r =

Nnon zeros∑

n

χI(n) × val (n)× χJ(n)

such that we only require 2×Nnon zeros multiplications. Calculating expectation values of the forces operators (direct
and Pulay) in sub-linear scaling per DOF, means that the overall scaling of the force calculations using this sparse
structure is O (K).
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II. BASIC CONCEPTS IN STATISTICS

A. Random variables

In order to understand the statistical errors involved in our procedures we briefly review the concept of a random
variable r [2]. It takes any one of a discrete set of values {r} with a given probability p (r) ≥ 0, where

∑
r p (r) = 1.

The expected value of r is: E [r] =
∑
r rp (r) and the variance is Var [r] = E

[
(r − E [r])

2
]
. Using a sample of I

independent draws from the population of r’s we calculate the mean

mI =
1

I

I∑

i=1

ri

and the standard deviation

sI =

√√√√ 1

I − 1

I∑

i=1

(ri −mI)
2
,

both can also be viewed as random variables with appropriate probability functions themselves. It can be shown that

1. The expected value of mI is the same as that of r:

E [mI ] = E[r]

2. The variance of mI is smaller by a factor I than that of r:

Var [mI ] =
1

I
Var [r]

3. The expected value of s2I is equal to the variance of:

E
[
s2I
]

= Var [r] .

From these properties, mI and s2I can serve as unbiased estimators of the expected value and variance of the original
random variable. When I is sufficiently large, the interval of values [mI − σI ,mI + σI ], where

σI =
sI√
I

is the uncertainty giving a 70% confidence interval for E [r]. Based on the sampled data, there is a probability of 70%
that E [r] falls within this interval.

B. Stochastic vectors

Now consider a stochastic column vector, which is a set of K statistically independent random variables χT =(
χ1, . . . , χK

)
taking the values ±1 with equal probability. Clearly for each component: (1)

∣∣χk
∣∣ = 1 (2) E

[
χk
]

= 0

and therefore Var
[
χk
]

= 1. Furthermore, E
[
χkχj

]
= δkj , or in matrix form

E
[
χχT

]
= Id (2)

where Id is the K ×K unit matrix.
As an example for the use of this concepts, consider a linear operator A in operating on column vectors, for which

we want to calculate the trace. In this case Tr [A] =
∑K
k=1 u

T
kAuk where uk are a set of K orthogonal unit vectors

and the estimate involves K applications of the operator A on a vector u. Using stochastic vectors, we can reduce
this workload by introducing the random variable χTAχ. Then, E

[
χTAχ

]
= E

[
Tr
[
χχTA

]]
and as a consequence,

from Eq. (2) we then find

Tr [A] = E
[
χTAχ

]
. (3)
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It can be shown (below) that the variance of the random variable χTAχ is given by :

Var
[
χTAχ

]
=

1

2

∑

i 6=j
(Aij +Aji)

2
. (4)

The relation in Eq. (3) is called the stochastic trace formula and it allows evaluating the trace of A by parameter
estimation techniques based on statistical sampling theory.

Proof of Eq. (4) We begin the proof using the definition of the variance of a random variable, Var [x] = E
[
x2
]
−

E [x]
2, and considering χTAχ as our random variable:

Var
[
χTAχ

]
= E

[(
χTAχ

)T
χTAχ

]
−
(
E
[
χTAχ

])2

= E
[
χTATχχTAχ

]
− (Tr [A])

2

= E [χkχlχiχj ]AklAij − (Tr [A])
2 (5)

where in the second line we have used Eq. (3), and in the third line the fact that the matrix A is completely
deterministic. We will now evaluate E [χkχlχiχj ], using that E [χiχj ] = δij :

E [χkχlχiχj ] = δklE [χiχj ] + (1− δkl) (δkiE [χlχj ] + (1− δki) (δkjE [χiχl]))

= δklδij + (1− δkl) (δkiδlj + (1− δki) δkjδil)
= δklδij + δkiδlj + δkjδil − 2δklδkjδik

and multiply by AklAij and sum over all indices:

E [χkχlχiχj ]AklAij = AkkAii +AijAij +AjiAij − 2A2
ii

= Tr [A]
2

+
∑

i6=j
Aij (Aij +Aji)

= Tr [A]
2

+
1

2

∑

i 6=j
(Aij +Aji)

2

Substituting back into Eq. (5), we arrive at

Var
[
χTAχ

]
=

1

2

∑

k 6=l
(Akl +Alk)

2

C. Parameter estimation and statistical errors

Often expected value E [r] of a distribution of a random variable r is not known. The estimation of this parameter
can be done, based on the use of a finite sample ri of size I, as discussed in section IIA. As an demonstration of this
procedure we return to the question of how to evaluate the Tr [A]. We take a sample of I stochastic vectors χi and
form a random variable 1

I

∑I
i=1 χ

T
i Aχi. Then

Tr [A] = E

[
1

I

I∑

i=1

χTi Aχi

]
, (6)

and

Var

[
1

I

I∑

i=1

χTi Aχi

]
=

1

2I

∑

k 6=l
(Akl +Alk)

2
.

As discussed above, the sample mean mI = 1
I

∑I
i=1 χ

T
i Aχi and corresponding standard deviation sI can be used to

provide a confidence interval of uncertainty σI = sI/
√
I for the value of Tr [A]. This statistical approach, of building

a confidence interval for Tr [A] involves I applications of A to a vector, whereas the deterministic calculation of Tr [A]
involves K such applications. Therefore, as long as I � K we obtain a large saving in the numerical effort, but at
the price of introducing an uncertainty.
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Now, suppose we wanted to estimate a given function of the expected value of a random variable, f (E [r]). The
simplest procedure is apply f to the sample mean mI and take f (mI) as such an estimate. This procedure works
when f (x) is a linear function of x but otherwise will generally incur a systematic error, called a bias. For example,

when f (x) = x2 and r is a random variable with E [r] = 0 and Var [r] = 1, then E [f (mI)] = E
[
m2
I

]
=

E[r2]
I = 1

I

which is clearly different from the exact value of f [E [r]] = E [r]
2

= 0. Hence we have the undesirable case, that
for a finite value of I, errors will involve fluctuations around the wrong value. Note however, that as I grows, the
bias diminishes in proportion to 1

I . To be useful, when a bias exists, we need to make sure it is of sufficiently small
magnitude.

III. EMBEDDED FRAGMENTS

A. Calculation detail in the sDFT code

We would like to explain here how the equation:

〈ô〉EFI = 〈ô〉I +
∑

f

〈
∆ôf

〉
I

(7)

is implemented within our sDFT code. We give here the steps in the calculation of the correction terms from each
fragment,

〈
∆ôf

〉
I
, where we defined the fragment-based correction as the difference between the dDFT and sDFT, for

every fragment:

〈
∆ôf

〉
I

=
〈
ôf
〉
dDFT

−
〈
ôf
〉
I

For the calculation of
〈
Ô
〉f

dDFT
we solve the generalised eigenvalue problem, find P f , the density matrix of the

fragment subsystem, and trace:

〈ô〉fdDFT = 2 Tr
[
(OP )

f
]

(8)

while 〈ô〉fI is calculated using the stochastic trace formula:

〈ô〉fI = 2
1

I

I∑

i=1

(
χTi
)f

(OP )
f
χfi

with the vectors χfi that are “cut-outs” of the vectors χi which we use in the stochastic trace formula for the full
system, such that the stochastic element in the fragment calculation corresponds with the one made on the full system.
Rearranging the above equation to be written as a trace expression gives:

〈ô〉fI = 2 Tr

[
(OP )

f

(
1

I

I∑

i=1

χfi
(
χTi
)f
)]

Finally, for the deterministic trace of Eq. (8) we multiply (OP )
f by (Id)

f , the identity matrix of the fragment
dimensions, which allows us to rewrite the fragment correction as:

〈
∆ôf

〉
I

= 2 Tr
[
(OP∆I)

f
]

where ∆f
I = (Id)

f − 1
I

∑I
i=1 χ

f
i

(
χTi
)f .
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Figure 1. The statistical errors in the sDFT forces acting on the 20 nitrogen atoms in two solvated-TrpZip2 systems (using 425
solvating water molecules on the left and 195 on the right). Forces for both systems were calculated using I = 12 stochastic
vectors. For each Nitrogen atom, we show the uncertainty σC (blue dots), and the estimate in the bias ∆ρC (orange triangles),
see Eqs. 27− 28 in manuscript. The dotted lines connecting the markers are presented as a guide for the eye, while the dashed
horizontal lines are medians over all atoms of σC and ∆ρC .

B. Another look at the fragments

A second useful outlook on the embedded-fragments method gives insight into the reason the statistical errors are
reduced when the method is used. We rearrange Eq. (7) to get:

〈ô〉EFI =
∑

f

〈ô〉fdDFT +


〈ô〉I −

∑

f

〈ô〉fI


 (9)

= 2 Trdet

∑

f

(OP )
f


+ 2 Trstoch


O


P −

∑

f

P f






such thatTrstoch
[
O
(
P −∑f P

f
)]

is a stochastic correction to the dDFT calculation summed over all fragments.
As per Eq. (4) the variance in the stochastic trace is given by the magnitude of the off-diagonal matrix elements of
O
(
P −∑f P

f
)
, and so clearly, as

∑
f P

f approaches P the stochastic trace will have much smaller variance.

IV. SYSTEM SIZE DEPENDENCY

We compare the statistical errors of sDFT forces of two Trp-zip2 peptide systems, each with a different number of
solvating water molecules. The first is the system we presented results for in Section III of the manuscript, solvated
by 425 water molecules, while the second is a smaller system, with only 195 solvating water molecules. To keep the
systems as similar as possible we cropped the smaller system directly from the larger one, such that the 195 solvating
water molecules that are closest to the peptide are identical in their geometry in both systems, and the embedded-
fragment method was employed such that, for both systems, the entire peptide composes one fragment, while the
remaining water molecules are split into fragments with an average number of 16 water molecules per fragment.
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In Fig. 1 we present the uncertainty and bias estimates for the sDFT forces on the 20 nitrogen atoms of the peptide,
in the two systems described above, for the case of I = 12 stochastic orbitals. To allow for a comparison of the bias
estimates, we repeated the calculation a large, M = 2800, times. The uncertainty values of each nitrogen atom are
near identical between the two systems. Since the errors fluctuate, even for 2800 repetitions, we compare the median
value over all nitrogen atoms, and find that it is practically identical for the two systems. These results give indication
to a weak dependency of the statistical errors, uncertainty and bias, on system size.

[1] L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).
[2] A. Papoulis and S. U. Pillai, Probability, random variables, and stochastic processes, 4th ed. (McGraw-Hill, Boston, 2002).


