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Simulating mixed-state evolution in open quantum systems is crucial for various chemical physics, quantum
optics, and computer science applications. These simulations typically follow the Lindblad master equation
dynamics. An alternative approach known as quantum state diffusion unraveling is based on the trajectories
of pure states generated by random wave functions, which evolve according to a nonlinear Itô-Schrödinger
equation (ISE). This study introduces weak first- and second-order solvers for the ISE based on directly
applying the Itô-Taylor expansion with exact derivatives in the interaction picture. We tested the method
on free and driven Morse oscillators coupled to a thermal environment and found that both orders allowed
practical estimation with a few dozen iterations. The variance was relatively small compared to the linear
unraveling and did not grow with time. The second-order solver delivers much higher accuracy and stability
with bigger time steps than the first-order scheme, with a small additional workload. However, the second-
order algorithm has quadratic complexity with the number of Lindblad operators as opposed to the linear
complexity of the first-order algorithm.

I. INTRODUCTION

When a physical system in a pure quantum state is
brought to interact weakly with a macroscopic ther-
mal environment, it changes its energy and chemical
composition. At the same time, it gradually loses its
"quantumness" or, more technically, its phase coher-
ence. Ultimately, the system’s state resembles that
drawn randomly from the Gibbs ensemble at the en-
vironment’s temperature and chemical potentials. All
quantum systems interact with the environment. There-
fore, techniques to simulate decoherence and decay pro-
cesses are vital for developing quantum technologies and
studying chemical processes in solutions and condensed
matter.1–17

The pure quantum state of an open system is not
known with certainty, and thus, we consider it a ran-
dom mixture of pure states. The density operator ρ is
the mathematical object that best describes this mix-
ture, enabling the calculation of probabilities of outcomes
of measurements. Even when the initial mixture ρ (0) is
known, the density operator ρ (t) changes over time. The
Redfield master equation1,3,18–21 is one way to approxi-
mate this, but it sometimes creates mixtures with neg-
ative probabilities. Lindblad’s master equation13,22–25

is an augmented form of Redfield’s equation, guaran-
teeing the density operator’s positivity. It is a quan-
tum Liouville-like equation but includes additional terms,
relying on Lindblad operators, to represent the dressed
system-environment interactions.

The density operator of the Lindblad equation can be
modeled by stochastic processes collectively called "quan-
tum unraveling models."5,26,27 They provide recipes for
generating a random time-dependent normalized pure
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state |ψ (t)⟩ for which the expected value of the projector,
E [|ψ (t)⟩ ⟨ψ (t)|], is identically equal to the Lindblad den-
sity operator ρ (t). One type of unraveling is the Monte-
Carlo wave function approach28–30, also known as the
"quantum jumps model," where the Lindblad operators
operate as "jump operators." A second approach to un-
raveling is the "quantum state diffusion model"31, involv-
ing a norm-conserving (but not unitary) time-dependent
stochastic Itô-Schrödinger equation (ISE) for |ψ (t)⟩. The
ISE contains drift (evolution) and diffusion (fluctuation)
terms. The quantum jump and quantum state diffusion
models yield different trajectories: the former evolves
non-continuously. At the same time, the latter is con-
tinuous but non-differentiable in time.

One advantage of basing numerical simulations on the
quantum state diffusion model is the availability of well-
established high-order techniques for solving stochastic
differential equations (SDEs)5,32–34. In the present con-
tribution, we deploy a simple approach based on exact
derivatives in the interaction picture, an Itô-Taylor ex-
pansion for weak second-order solutions. The method is
stable and allows for high accuracy and slight variance.

II. WEAK SECOND-ORDER QUANTUM STATE
DIFFUSION UNRAVELING

A. Comments on notation

Before we start the detailed theory, here are several
comments concerning the notation in this paper:

1. The time dimension of any quantity can be read-
off from its superscripts or subscripts: a subscript
0 adds a dimension of time−1 and a superscript 0
attributes a dimension time+1. Thus, the Hamilto-
nian H0 has the dimension of inverse time while the
symbol I0 has the dimension of time. A Greek sub-
script attributes an additional factor of time−1/2
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and a Greek superscript an additional factor of
time1/2. Thus, the symbol Iα has the dimension
of times1/2 while Iαβ has the dimension of time−1.
The Kronecker-delta δβα is dimensionless. Further-
more, the symbols I0α and Iαβγ have the dimension
of time1/2 while I0α has the dimensions of time3/2.
This convention helps to ascertain that the different
time orders we use in our analytical developments
are consistent (i.e. that we do not add quantities
with different time dimensions).

2. The index α, α′, going from 1, . . . , NL denotes one
of the NL Lindblad operators. When two quan-
tities indexed with α are multiplied in an expres-
sion, a summation over α from 1 to NL is assumed
and we omit the explicit

∑NL

α=1 notation (this is
the so-called Einstein convention). If the index is
decorated by a dot α̇ then no such summation is
implied.

3. Below we introduce a “0” operator, in addition to
the Lindblad operators. Unlike the α, α′ indices
discussed above, going from 1, . . . , NL, we also use
the β, β′ indices to enumerate operators and quan-
tities that range from 0 to NL. Similar to the case
with α , when two quantities indexed with β are
multiplied in an expression, a summation over β is
assumed and we omit the explicit

∑NL

β=0 notation.
If the index is decorated by a dot β̇ then no such
summation is implied.

B. Quantum state diffusion unraveling

The Lindblad equation

ρ̇ (t) = −i [H0 + θ (t)V0, ρ] + D0ρ (1)

together with the initial condition ρ (0), determines ρ (t)
for all time t > 0. It contains unitary terms dependent on
H0, an effective Hamiltonian operator, and θ (t)V0 a driv-
ing force with θ (t) a dimensionless real time-dependent
envelop with time derivative θ0 (t) ≡ θ̇ (t). It also con-
tains dissipative terms13,24,25,31:

D0ρ ≡
[
Lαρ,L†

α

]
+
[
Lα, ρL†

α

]
, (2)

defined in terms the Lindblad operators Lα, α =
1, . . . , NL. Atomic units are used (ℏ = 1, me = 1) here,
so the energy and inverse time units are identical. Ac-
cordingly, Lα have the dimension of time−1/2.

Evolving the mixed state density operator ρ (t) us-
ing Eq. (1) can be numerically expensive when systems
are large. A possible simplification can be achieved by
the unraveling procedure, which evolves a pure random
state |ψ (t)⟩ in such a way that E [|ψ (t)⟩ ⟨ψ (t)|] = ρ (t).
In quantum state diffusion unraveling |ψ (t)⟩ is obtained

from the following Itô-Schrödinger equation (ISE)31

|dψ⟩ = −iH0 |ψ⟩ dw0 + Λβ |ψ⟩ dwβ , (3)

starting from a random ket |ψ (0)⟩ for which
E [|ψ (0)⟩ ⟨ψ (0)|] = ρ (0). In Eq. (3),

Λα ≡ Lα − ⟨Lα⟩
Λ0 ≡ −iθ (t)V0 (t) +

(
2
〈
L†
α

〉
Lα − L†

αLα −
〈
L†
α

〉
⟨Lα⟩

)
,

and

⟨Lα⟩ ≡
⟨ψ |Lα|ψ⟩
⟨ψ |ψ ⟩

. (4)

Notice that ⟨Λα⟩ = 0 (for α = 1, . . . , NL). In the above,
dw0 = dt is the time-step while dwα, α = 1, 2, . . . NL are
independent complex Wiener processes, with real ℜ [dwα]
and imaginary ℑ [dwα] parts, each of which is an inde-
pendent real Wienner process with zero expected value
and a variance equal to dt. As is common in the stochas-
tic differential equations literature we omit the expected
value symbol E from differentials hence we are lead to
the following variances for dwα:

(dwα)
2
= (dwα∗)

2
= 0, |dwα|2 = 2dt. (5)

Note that dwα are also independent of |ψ⟩. Note, that
the differential d ⟨ψ |ψ ⟩ ≡ ⟨dψ |ψ ⟩ + ⟨ψ |dψ ⟩ + ⟨dψ |dψ ⟩
vanishes when evaluated using Eqs. (3)-(5). Hence ⟨ψ |ψ ⟩
is a constant of motion, separately for each trajectory.

C. Weak first- and second-order propagators

The first step in providing a solution to the
ISE, is to move to the interaction picture, defining
|ϕ (t)⟩ ≡ eiH0t |ψ (t)⟩ and for any operator Y, Y (t) ≡
eiH0tYe−iH0t. The ISE of Eq. (3) becomes

d |ϕ⟩ = dwβΛβ (t) |ϕ⟩ (6)

where

Λα (t) ≡ Lα (t)− ⟨Lα (t)⟩ , (7)

and note our definition of the expectation value

⟨Lα (t)⟩ ≡ ⟨ψ (t) |Lα|ψ (t)⟩
⟨ψ (t) |ψ (t) ⟩

=
⟨ϕ (t) |Lα (t)|ϕ (t)⟩

⟨ϕ (t) |ϕ (t) ⟩
,

which includes division by the norm and thus different
from some other applications (e.g.,33). Formally there is
no need to divide by the norm, since one can choose the
initial norm as 1 and it is preserved. However, in practice
the norm is never perfectly preserved so this division is
not a trivial change and we found that division by the
norm leads to a more stable numerical behavior.

For developing the numerical scheme, we divide time
t ∈ [0, Tf ] where Tf is the final time, into NT discrete
small temporal segments ∆T = Tf/NT , and designate
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tn+1 = t0 + n∆T , n = 1, 2, . . . , NT . Using the notation
|Φ⟩ ≡ |ϕ (tn)⟩, the change in the evolving ket during the
nth time step, |∆Φ⟩ ≡ |ϕ (tn+1)⟩ − |Φ⟩, is expressed as a
stochastic integral over d |ϕ⟩, which gives, using Eq. (6):

|∆Φ⟩ =
∫ tn+∆T

tn

Λβ (τ) |ϕ (τ)⟩ dwβ
τ . (8)

We strive for an approximation of this integral, which al-
lows an exact solution of the ISE in the limit of NT → ∞
and, accordingly, ∆T → 0. Our analysis follows closely
that found in the classical literature on numerical solu-
tions of real SDEs35,36. Our contribution is the adap-
tation of the theory to Eq. 6, including the use of com-
plex Wiener processes and exact analytical derivatives
therein. We also contribute a simplified notation scheme.

The change in the wave function is provided in terms of
first- and second-order contributions, |∆Φ⟩ ≈

∣∣∆(1)Φ
〉
+∣∣∆(2)Φ

〉
. The first-order term is obtained by approx-

imating Λβ (τ) |ϕ (τ)⟩ as |β⟩ ≡ Λβ (tn) |Φ⟩ for τ ∈
[tn, tn +∆T ]. This gives:∣∣∣∆(1)Φ

〉
= Iβ |β⟩ , (9)

where Iα =
∫ tn+∆T

tn
dwα, α = 1, . . . , NL are Itï¿œ inte-

grals given in Table (I) and I0 = ∆T . In the numerical
calculations we use the model for the complex stochastic
Itï¿œ integrals given in the last column of the table.

We use the Itï¿œ-Taylor expansion to the lowest order
for the second-order correction. For this, we introduce a
notation in which all quantities are first written as func-
tions of a ket |x⟩ and a (different) bra ⟨y|, then we take
separate derivatives with respect to them, and only after
that do we set |x⟩ = |Φ⟩ and ⟨y| = ⟨Φ|. In the supple-
mentary information we give a detailed explanation of
the results we present here. We define, for α = 1, . . . , NL

the ℓ-functions of |x⟩, ⟨y| and the time t,

ℓα (|x⟩ , ⟨y| , t) ≡ ⟨y |Lα (t)|x⟩
⟨y |x ⟩

,

and

ℓ∗α (|x⟩ , ⟨y| , t) ≡
〈
y
∣∣L†

α (t)
∣∣x〉

⟨y |x ⟩
,

which, when evaluated at Φ, become the expectation val-
ues of the Lindblad operators:

(ℓα (|x⟩ , ⟨y| , t))Φ ≡ ℓα (|Φ⟩ , ⟨Φ| , t) = ⟨Lα (t)⟩ ,
(ℓ∗α (|x⟩ , ⟨y| , t))Φ ≡ ℓ∗α (|Φ⟩ , ⟨Φ| , t) =

〈
L†
α (t)

〉
.

The derivative of ℓα (|x⟩ , ⟨y| , t) with respect to the bra
⟨y|results in a ket:

∣∣∣∣ ∂

∂ ⟨y|
ℓα (|x⟩ , ⟨y| , t)

〉
=

(Lα (t)− ℓα (|x⟩ , ⟨y| , t)) |x⟩
⟨y |x ⟩

≡ |λα (|x⟩ , ⟨y| , t)⟩
⟨y |x ⟩

, (10)

which is orthogonal to |y⟩:

⟨y |λα ⟩ = 0.

Similarly, the derivative with respect to the ket |x⟩ results
in the bra:〈

∂

∂ |x⟩
ℓα (|x⟩ , ⟨y| , t)

∣∣∣∣ = ⟨y| (Lα (t)− ℓα (|x⟩ , ⟨y| , t))
⟨y |x ⟩

≡ ⟨µα (|x⟩ , ⟨y| , t)| ,

which is orthogonal to |x⟩:

⟨µα |x ⟩ = 0.

We extend the definition of the ’λ-kets’, by adding a
“zero” subscript:

|λ0 (|x⟩ , ⟨y| , t)⟩ ≡ −iV0 (t) θ (t) |x⟩+
(
2ℓ∗α (|x⟩ , ⟨y| , t)Lα − L†

αLα − ℓα (|x⟩ , ⟨y| , t) ℓ∗α (|x⟩ , ⟨y| , t)
)
|x⟩ . (11)

When evaluated at Φ we have, for β = 0, . . . , NL:

|λβ (|x⟩ , ⟨y| , t)⟩Φ,tn
≡ Λβ |Φ⟩ ≡ |β⟩ .

With these definitions, the second-order correction is
given in terms of the λ-kets t, |x⟩, ⟨y| first derivative
and the |x⟩ ⟨y| mixed derivatives as follows:

∣∣∣∆(2)Φ
〉
= I0β

(
∂

∂t
|λβ⟩

)
Φ,tn

+ Iββ
′
(

∂

∂ |x⟩
|λβ′⟩

)
Φ,tn

|β⟩︸ ︷︷ ︸
′X′

(12)

+ Iβ∗β
′
⟨β|

(
∂

∂ ⟨y|
|λβ′⟩

)
Φ,tn︸ ︷︷ ︸

′Y ′

+ 2I0β ⟨α|
(

∂2

∂ |x⟩ ∂ ⟨y|
|λβ⟩

)
Φ,tn

|α⟩︸ ︷︷ ︸
′XY ′

where Iββ
′
(β = 0, . . . , NL, α′ = 0, . . . , NL) are the Itï¿œ integrals defined in Table I.
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Table I. The definition of the stochastic Itï¿œ integrals used in Eqs. (9)-(12), where tn are the propagation time steps, with
tn+1 − tn = ∆T , and α, α′, α′′, α′′′ = 1, . . . , NL are Lindblad indices and α∗ ≡ α + NL, etc. All the integrals have zero
expected value and covariance described in the table. The integrals I0 and I00 are deterministic and equal to ∆T and ∆T2

2
,

respectively. The last column for each integral gives a model depending on 4×NL independent complex random variables mα

(α = 1, . . . , NL, m = a, b, c, d), distributed with E [mα] = 0, E
[
mαm′α′

]
= 0, and E

[
mα∗m′α′

]
= 2∆Tδαα′δmm′ . For each

time interval tn → tn+1 a new uncorrelated set of such random variables is used.

Integral Iα
′∗ Iα

′∗0 I0α
′∗ Iα

′′∗α′′′∗ Iα
′′α′′′∗ Model

Iα ≡
∫∆T

0
dwα

τ δαα′2∆T δαα′∆T 2 δαα′∆T 2 0 0 aα

Iα0 ≡
∫∆T

0

∫ τ

0
dwα

τ ′dτ δαα′∆T 2 δαα′
2∆T3

3
δαα′

∆T3

3
0 0

(
aα + 1√

3
bα

)
∆T
2

I0α ≡
∫∆T

0
(τ − tn) dw

α
τ δαα′∆T 2 δαα′

∆T3

3
δαα′

2∆T3

3
0 0

(
aα − 1√

3
bα

)
∆T
2

Iαα′
≡

∫∆T

0
dwα

τ

∫ τ

0
dwα′

τ ′ 0 0 0 δαα′′δα
′′′

α′ 2∆T 2 0 1√
2
cαdα

′

Iα∗α′
≡

∫∆T

0
dwα∗

τ

∫ τ

0
dwα′

τ ′ 0 0 0 0 δαα′′δα
′′′

α′ 2∆T 2 1√
2
(cα)∗ dα

′

The derivative in the expression for
∣∣∆Φ(2)

〉
are:(

∂

∂t
|λα⟩

)
Φ,tn

= i ([H0,Λα]− ⟨[H0,Λα]⟩) |Φ⟩ ,(
∂

∂t
|λ0⟩

)
Φ,tn

=(θ (tn) [H0,V0]− iθ0 (tn)V0) |Φ⟩+ i
(
2
〈[
H0,Λ

†
α

]〉
Λα −

[
H0,Λ

†
αΛα

])
|Φ⟩

+ i
〈
L†
α

〉
([H0,Λα]− ⟨[H0,Λα]⟩) |Φ⟩ .

Next, using the notation |β⟩ ≡ Λβ |Φ⟩, |αβ⟩ ≡ ΛαΛβ |Φ⟩ etc., the x-derivatives are:

(
∂

∂ |x⟩
|λα⟩

)
Φn

|β⟩ = |αβ⟩ − |Φ⟩ ⟨Φ |αβ ⟩ ,

(
∂

∂ |x⟩
|λ0⟩

)
Φn

|β⟩ = |0β⟩+
NL∑
α=1

(
(2 |α⟩+ |Φ⟩ ⟨Lα⟩) ⟨α |β ⟩ − |Φ⟩ ⟨Φ |αβ ⟩

〈
L†
α

〉)
,

the y-derivatives are:

⟨β|
(

∂

∂ ⟨y|
|λα⟩

)
Φn

= − |Φ⟩ ⟨β |α ⟩ ,

⟨β|
(

∂

∂ ⟨y|
|λ0⟩

)
Φn

=
(
(|α⟩ 2 + |Φ⟩ ⟨Lα⟩) ⟨βα |Φ ⟩ − |Φ⟩ ⟨β |α ⟩

〈
L†
α

〉)
,

and the mixed derivatives are:

⟨α|
(

∂2

∂ |x⟩ ∂ ⟨y|
|λα′⟩

)
Φn

|α⟩ = − (|α⟩ ⟨α |α′ ⟩+ |Φ⟩ ⟨α |α′α ⟩) ,

⟨α|
(

∂2

∂ |x⟩ ∂ ⟨y|
|λ0⟩

)
Φn

|α⟩ = |α⟩
(
2 ⟨α′α |α′ ⟩+ ⟨Lα′⟩ ⟨α′α |Φ ⟩ − ⟨α′ |α ⟩

〈
L†
α′

〉)
+ 2 |α′α⟩ ⟨αα′ |Φ ⟩

− |Φ⟩
(
|⟨α |α′ ⟩|2 + |⟨0 |α′α ⟩|2 + 2iℑ [⟨αα′ |α ⟩ ⟨Lα′⟩]

)
.

A further simplification is obtained using the following summed kets:∣∣e0〉 ≡ I0α |α⟩ ,
∣∣f0〉 ≡ Iα0 |α⟩ ,

∣∣f0∗〉 ≡ Iα0∗ |α⟩

|c⟩ ≡ cα |α⟩ , |d⟩ ≡ dα |α⟩ , |d∗⟩ ≡ dα∗ |α⟩ , |dc⟩ ≡ dα
′
Λα′ |c⟩ ,
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with which the ′X ′, ′Y ′ and ′XY ′ terms of Eq. (12) become:

′X ′ =
∆T 2

2

(
|00⟩+

(
(2 |α⟩+ |Φ⟩ ⟨Lα⟩) ⟨α |0 ⟩ − |Φ⟩ ⟨Φ |α0 ⟩

〈
L†
α

〉))
+

∣∣0f0〉+ ∣∣e00〉
+
(
(2 |α⟩+ |Φ⟩ ⟨Lα⟩)

〈
α
∣∣f0 〉− |Φ⟩

〈
Φ
∣∣αf0 〉 〈L†

α

〉)
− |Φ⟩

〈
Φ
∣∣e00〉+ |dc⟩ − |Φ⟩ ⟨Φ |dc ⟩ ,

′Y ′ =
∆T 2

2

(
(|α⟩ 2 + |Φ⟩ ⟨Lα⟩) ⟨0α |Φ ⟩ − |Φ⟩ ⟨0 |α ⟩

〈
L†
α

〉)
+
[
(|α′⟩ 2 + |Φ⟩ ⟨Lα′⟩)

〈
f0∗α′ |Φ

〉
− |Φ⟩

〈
f0∗ |α′ 〉 〈L†

α′

〉]
− |Φ⟩

〈
0
∣∣e0 〉− |Φ⟩ ⟨d∗ |c ⟩ ,

′XY ′ = −2
(
|α⟩

〈
α
∣∣e0 〉+ |Φ⟩

〈
α
∣∣e0α〉)

+ |α⟩
(
2 ⟨α′α |α′ ⟩+ ⟨Lα′⟩ ⟨α′α |Φ ⟩ − ⟨α′ |α ⟩

〈
L†
α′

〉)
∆T 2

+ |α′α⟩ (2 ⟨αα′ |Φ ⟩)∆T 2

− |Φ⟩
(
|⟨α |α′ ⟩|2 + |⟨0 |α′α ⟩|2 + 2iℑ [⟨αα′ |α ⟩ ⟨Lα′⟩]

)
∆T 2. (13)

This completes the description of the method. As for
the algorithmic scaling, the evaluation of each of the
terms in the ’X’ and ’Y’ expressions requires order-NL

operations (linear scaling effort in the number of Lind-
blad operators). However, the ’XY’ expression includes
terms that require order-N2

L operations, which may dom-
inate the calculation as NL grows.

After each time step is completed, we update
the time tn → tn+1 = tn + ∆T , the operators
Lα → eiH0∆TLαe

−iH0∆T (α = 1, . . . , NL) and V0 →
eiH0∆TV0e

−iH0∆T . Using the new value of Lα and Φ we
calculate Λβ (β = 0, . . . , NL) in preparation for the next
time-step.

We set up the calculation in the following way. First
we define a macro time state τ = N∆T . We propagate
from Φ0 = Ψ(0) with N steps of ∆T , reaching ΦN and
then we set

ΨN = e−iH0τΦN .

It is worth mentioning that our algorithm covers as a
special case the linear unraveling procedure6,32,

|dψ⟩ = −i
(
H0 + θ (t)V0 (t)− iL†

αLα

)
|ψ⟩ dt+Lα |ψ⟩ dwα,

(14)
which is obtained from Eq. (3) by setting ⟨Lα⟩ → 0.
Indeed, one can use the algorithm above and simplify by
replacing Λα by Lα, ’X’ by ∆T 2

2 |00⟩ + |dc⟩ and setting
both ’Y’ and ’XY’ to zero in Eq. (12).

III. VALIDATION: MORSE OSCILLATOR

The example for our method is a Morse oscillator cou-
pled to the environment at inverse temperature βe. The
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Figure 1. The Morse potential U (x) used in this example.
The dashed lines indicate the low lying energy eigenvalues.

particle has mass m = 1 and the truncated Morse poten-
tial is U (x) = max

[
Umax, V∞ (1− e−ax)

2
]

(see Fig. 1),
with V∞ = 4, a = 0.2, and Umax = 6. As before, we use
atomic units: a0 (Bohr radius) for lengths , Eh (Hartree
energy) for energy, me (electron mass) for mass and ℏE−1

h
for time. The wave functions ψ (x) we consider here may
have non zero values only in the interval x ∈ [−10, 30].
We represent the system on a 31-point grid of unit spac-
ing (∆x = 1):

xn = −10 + n∆x, n = 0, . . . , 30. (15)

The wave functions map into the vectors ψn = ψ (xn).
The position (X ) and potential U0 ≡ U (X ) operators op-
erate as (Xψ)n = xnψn and (U0ψ)n = U (xn)ψn respec-
tively. The kinetic energy operator is the finite difference
operator (K0ψ)n = − ℏ2

2m∆x2 (ψn−1 − 2ψn + ψn+1), com-
bined with the boundary condition ψ−1 ≡ ψ31 ≡ 0. This
defines the Hamiltonian H0 = K0 +U0. The lowest lying
bound energy levels of this Hamiltonian, determined by
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diagonalization, are given in Fig. 1.
We take only two Lindblad operators

L±ωB ,T =
√
γ±ωB

× 1

2T

∫ T

−T
e±iωBτXH (τ) dτ (16)

where XH (τ) = e
i
ℏH0τX e− i

ℏH0τ is the time-dependent
Heisenberg operator for X , T = 10 and ωB =
ℏ−1 (E1 − E0) = ℏ−1 × 0.4903. The rates in Eq. (16)
are chosen as

γ±ωB
=

γ0
1 + e±βeℏωB

where γ0 = 0.2 and the environment inverse temperature
βe = 4. These rates obey the detailed balance condition

γωB

γ−ωB

= e−βeℏωB . (17)

The last element of the model problem is the initial
state, which we take as a pure state ρ (0) = |ξ⟩ ⟨ξ|:

|ξ⟩ = 1√
3
(|ψ2⟩+ |ψ3⟩+ |ψ4⟩) (18)

where |ψn⟩ are the eigenvectors of the Hamiltonian oper-
ator H0.

A. The ’free’ oscillator

We first discuss a time-independent case, where the os-
cillator is free, i.e., is not subjected to an external driving
force beyond the interaction with the environment. Us-
ing a small time step and a fourth-order Runge-Kutta
propagator, we evolve the density operator according to
the Lindblad Equation (Eq. 1), starting from ρ (t = 0)
and obtain highly accurate reference values for bench-
marking the stochastic propagators. We find that the
extended time limit of the evolved state is close, but not
exactly equal, to the thermal state at the environment
temperature. In order to converge fully into the thermal
state, we need to provide more Lindblad operators than
just the two we consider here.

The stochastic calculation provides confidence inter-
vals for the Lindblad expectation values Tr [ρtA] of any
given observable of interest A. The procedure is a
straightforward application of statistical analysis. We
run our propagator Ns times (with independent ran-
dom numbers) collecting Ns samples of quantum ex-
pectation values A(k)

t ≡
〈
Ψ

(k)
t |A|Ψ(k)

t

〉
/
〈
Ψ

(k)
t

∣∣∣Ψ(k)
t

〉
(k = 1, . . . , Ns) and then construct the 95% confidence
interval as

[
Āt −∆At, Āt +∆At

]
, where Āt is the sam-

ple average, ∆At = 2 × St/
√
Ns is the interval width,

and St is the sample standard deviation. The factor 2 is
the large sample t-factor corresponding to a confidence
level of ∼ 95%. In Fig. 2, we show confidence intervals
for two observables, the energy H0 and the position X ,

using Ns = 64 and 1024 samples based on the first- and
second-order propagators with time step ∆T = 0.25. For
reference, the figure also shows, as a red solid line, the nu-
merically exact expected value E [⟨ψt |A|ψt⟩] = Tr [ρtA].

The first-order calculation exhibits a noticeable energy
bias at ∆T = 0.25, even when the confidence interval is
broad (when Ns = 64). At the same time, the bias from
the second-order calculation is not noticeable even for
Ns = 1024 sampling. We discuss the weak order conver-
gence comparing first- and second-order methods below.
The standard deviation St in the first- and second-order
calculations is around 0.08 for the energy and 0.6 for the
position; interestingly, it does not grow with time. We
also checked the algorithm for the case of over-damped
dynamics where a parameter of γ = 0.6 was used. We
observed similar trends as in weak coupling in terms of
the accuracy of the calculation (see details in the supple-
mentary material). In terms of stability, both first- and
second- order calculations required time steps of at least
0.0625, for larger time steps the solution was unstable
and diverged.

In a weak order-o method E [⟨Ψt |A|Ψt⟩] should ap-
proach the exact value Tr [ρtA] as the o power of ∆T .
More precisely, there exist ∆T0 > 0 and C > 0 such
that:

∆T < ∆T0 ⇒ |E [⟨Ψt |A|Ψt⟩]− Tr [ρtA]| ≤ C ×∆T o.
(19)

To test whether this condition is obeyed we need to know
E [⟨Ψt |A|Ψt⟩], and this not available directly. However
we can build a very small 95% confidence interval by
extensive sampling (taking Ns = 64 × 106), as shown in
Fig. 3 for the energy and position observables at time
tf = 7 as function of the time step ∆T . The asymptotic
behavior of Eq. (19) is clearly seen as the asymptotic lines
do indeed fit through the very small confidence intervals.
The power of the second-order calculations is also evident
as its error with ∆T = 0.25 is smaller than the error in
the first-order calculation using a time step smaller by a
factor 8.

To assess the utility of the second-order vs the first-
order solvers, we note that for the example given here,
the wall-time for the former is only a 1.5 times larger
than the latter. This small ratio in wall-times will char-
acterize larger systems, as long as there is only one Lind-
blad operators. From the discussion above, concerning
the time-step (and hence number of time steps) required
by both methods we conclude that in the present exam-
ple, the second-order solver is five times more efficient
than the first-order one, for low-accuracy calculations.
For higher accuracies, it is considerably more efficient.
However, the wall time in the second-order calculation
depends quadratically on the number NL of Lindblad
operators, while that of the first-order is linear in NL.
Hence, the numerical cost of the second-order calcula-
tion may exceed that of the first-order calculation as NL

grows.
We mention briefly that linear unraveling (Eq. (14))

has a variance one to two orders of magnitude larger than
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Figure 2. The 95% confidence region (blue shade) for the energy (top panels) and position (bottom panels) transients of the
free (left) and driven (right) Morse oscillator starting from a hot state, obtained from the first- and second-order solutions
of the ISE (Eqs. (9) and (12)) using Ns = 64 and 1024 samples. Also shown, as red lines, the numerically exact energy and
position transients calculated by solving Eq. (1).
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Figure 3. Log-plots showing the first- (red) and second- (blue)
order confidence intervals for the energy H0 (tf ) (top panel)
and position X (tf ) (bottom panel) expectation values at tf =
7 vs the time step ∆T . Dotted straight lines show asymptotic
first- and second- order behavior (Eq. (19)). The number
of samples used for estimating the confidence intervals was
Ns = 64× 106.

for the nonlinear unraveling (and it grows linearly with
time). Hence, the nonlinear unraveling is expected to be
superior in actual applications.

B. The driven oscillator

In this example, we subject the Morse oscillator to a
driving time-dependent field

V0θ (t) = XF sin (ωt) (20)

with F = 0.2 and ω = 0.49. The frequency is resonant
between the ground and the first excited states of the os-
cillator. In Fig. 2 (right) we show first- and second-order
results for Ns = 64 and 1024 samples. The oscillator
starts from the same pure state as in the example of the
previous section (see Eq. (18)). Under the driving force it
strives to cool due to the interaction with the cold envi-
ronment but the driving field acts to heat it. Eventually,
a quasi-stationary non-thermal state forms, with the os-
cillator energy and position oscillating strongly in time.
The first-order solution is unstable for ∆T > 0.03125
and even at this small time-step exhibits a large energy
bias (red line not passing in the confidence interval for
Ns = 1024). The second-order results are stable and
much more accurate even when ∆T = 0.125. As for
the standard deviation St in the driven oscillator, it is
around 0.25 for energy and 0.6 for position. As with the
free oscillator, St does not grow with time.

IV. CONCLUSIONS

We have presented a weak second-order method for
solving the Itô-Schrödinger equation related to quantum
state diffusion unraveling of the Lindblad equation. One
of the approach’s critical characteristics is working in the
interaction picture, helping stability and accuracy even
for relatively large time steps. Another significant char-
acteristic of our approach is nonlinear unraveling, using
within the equation the expectation value of the Lind-
blad operator, which reduces the variance (in compari-
son to the linear unraveling schemes). Moreover, the use
of explicitly normalized expectation values of the Lind-
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blad operators (Eq. (4)), further stabilizes the propaga-
tion. Another characteristic of our approach is using
exact derivatives, which are readily available since our
nonlinearity is analytical, for the Itô-Taylor expansion
(as opposed to other second-order approaches, such as
the Runge-Kutta method, which bypasses derivatives us-
ing finite difference). Lastly, our method uses complex
Wiener processes.

We have tested the method on the problem of cooling
an initially hot Morse oscillator coupled to a colder envi-
ronment. We studied both a free and a driven oscillator.
In both cases, we showed good accuracy of the second-
order method when the time step was ∆TωB ≈ 0.1 or
smaller, achieving useful confidence intervals with a rel-
atively small amount of sampling.

We have used 1D examples to benchmark our meth-
ods. For such small systems, unraveling does not save
computational resources relative to a complete solution
of the Lindblad equation. However, the latter method
has cubic scaling in wall time and quadratic scaling in
memory, and therefore, unraveling can become more effi-
cient as systems grow. One clear advantage of unraveling
is that it does not require storing the density matrix,
saving a vast amount of computer memory. Further-
more, the most intensive part of the unraveling calcu-
lation, namely transforming to and from the interaction
picture, can be accomplished by iterative methods37,38
involving a fixed number of Hamiltonian applications to
any given ket. As systems grow, this latter operation be-
comes linear-scaling in complexity, endowing the entire
unraveling procedure with the same complexity. Thus,
there is a massive reduction in computational time rel-
ative to a complete solution of the Lindblad equation
in the limit of large systems. Furthermore, multipro-
cessor parallelization can easily overcome the burden of
repeated sampling in the unraveling procedure.

The propagator developed in the present paper is our
first step towards a more general goal of constructing a
framework for studying quantum decoherence and dis-
sipation in large molecular and nanoscale systems. The
computational wall-time involved in the second-order cal-
culation scales quadratically with the number NL of
Lindblad operators. Therefore, our immediate future
work will involve a method to contract Lindblad oper-
ators so that a small, hopefully, system-size-independent
number of operators can be used. In addition, in the
future, we may try to develop solvers for stochastic
Schrödinger equations that unravel non-Markovian mas-
ter equations. Such solvers are required since the Marko-
vian dynamics may result in unreliable predictions of
bath-induced coherences39–42).

Supplementary Material Supplementary material is
given on the derivation of Eq. (12) and on the results
of the Morse oscilator in the overdamped limit.
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