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Molecular electronic ground-state theories, whethbrinitio, or semiempirical are most often
formulated as a variational principle, where the electronic ground-state energy, considered a linear
or nonlinear functional of a reduced density matrix, obtains a constrained minimum. In this
communication, we present a Lagrangian analysis of the self-consistent-field electronic structure
problem, which does not resort to the concept of orthogonal molecular orbitals. We also develop a
method of constrained minimization efficiently applicable to nonlinear energy functional
minimization, as well as to linear models such as tight-binding. The method is able to treat large
molecules with an effort that scales linearly with the system size. It has built-in robustness and leads
directly to the desired minimal solution. Performance is demonstrated on linear alkane and polyene
chains. ©2001 American Institute of Physic§DOI: 10.1063/1.1383590

I. INTRODUCTION

p2(r,r’)zf p(r,rp(r”,r"yd3". (1.2
Ab initio and semiempirical electronic structure methods
for studying systems containing hundreds or more atoms ar€he first constraint fixes the number of electrdws. The
useful for diverse fields such as chemistry, materials scienceecond, DM idempotency, results from Pauli’s principle.
biology, and condensed matter physics. Developing methods
for accomplishing this feat includes adapting for computa-
tion suitable formulations of electronic structure theories.A. Lagrangian saddle point

Recently, such theories and methods have drawn consider-

able attentiort:? One of the widely used approaches is based The constrained minimum problem can be handled using

on minimizing an energy functional dependent on the idem:[he method of Lagrange multipliers, which we discuss now.

potent density matrix.X° These methods utilize the fact that Define the Lagrangian
the density matrixDM) is sparsél!? L, alp]=E[p]—u(trp—Ng)—trAp(1—p), 1.3

This communication develops a new linear scaling . .
. L where the numbew and the symmetric matrix elements
method based on the theory of constrained optimization. Th('g\(r r') are Lagrange multipliers. Next, define the following

functionals may be linear as in extended Huckel or tight . T
o 2 . . . functional of the Lagrange multipliers:

binding approximatior’$ or nonlinear, as in self-consistent

field (SCH theories, whether semiempirical ab initio. The Alp,Al=minL, Al p], (1.4

method has built-in robustness and flexibility to enhance P

convergence rate based on the combined use of penalty agéd assume now that obtains a maximum at* and A*.

Lagrange multiplier terms. We now outline the theory andror anyp under the constraints of Eql.1), the following
then demonstrate the algorithmic complexity properties orho|ds:

linear polyenes.

Alp* A*]<L i« ax[p]=E[p]. 1.9
In particular,pys Obeys the constraints so
Il. THEORY A[p* A*]<Egs. (1.9

Given E[p], an energy functional of the one-electron Thus, the maximum of\ is a lower bound tdEys, which is
density matrixp(r,r'), the ground-state density and energytlght l_Jnder condltl_ons of convexnv.The constraln_ed mini-
are obtained by solving the doubly constrained optimizatiorimization problem is thus transformed tsaddle point prob-

problem: lem The Lagrangian is minimum with respect to the density,
_ 5 when u=u* andA=A*, and maximum with respect ta
Egs=mIinE[p] under: trp=N¢; p“=p, (1.1 andA when the density=py is held fixed. At the saddle-
s point, the following relations hold:
where the following shorthand matrix-multiply notation is SL
used 025— =H'—A*+pgSA*+A*pgS, 1.7
p pgs'A*wU‘*
¥Electronic mail: Roi.Baer@huiji.ac.il whereH'’ = SE/ 5P|P:pgs_ u*, and
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JA SA rithm is not necessarily an efficient or robust method. Con-
0=£ =Ne=trpgs, 0=—-r =pgs(pgs— 1). (1.8)  vergence is not guaranteed unless one starts from a close
* * approximation to the ground-state density.

Multiplying Eq. (1.7 by pgs from one side and by Another way to impose the constraints, suggested by
(1—pgs) from the other, we obtain Haynes and Payreis to minimize an analytical penalized
(1 T HY(1 =0 1.9 functional
T Pgs/F Pgs™ Pgs T Pgs) =Y .
. L[p]=Elp]+zc{(trp—Ne)*+tr(p*(1—p)?)}.
which also leads to (1.189
[H',pgs]|=0. (1.10  The second term here, weighted by the @osD is a penalty

L ) for violating the constraints. Another possibility is the square
Now multiplying Eq.(1.7) by pgs from the right leads to root of the right trace in Eq1.18, proposed by Kohfi,but

H' pgs= — pgsA* pys. (1.1p  this Ieadg to a nonanalytical functiorfdl.Minimizing L, '
o o _ leads to ill posedness because of the absolute necessity to
likewise, multiplying by (1-pgs) from the right closely approach the limit— o.

H' (1= pgd) = (1= pgd A* (1~ pgs). (1.12

. . . . B. Th ted L i
These two conditions are fulfilled by the following choice of € aligmented Lagrangian
the Lagrange multiplier matrix: Enhancing robustness and convergence without encoun-
. ) tering ill posedness may be achieved by using the penalized
AT =H"(1-2pgs). (113 function LJ]p] as afunction to be minimized under con-

The energy is minimized when the density matpiy, de- straints S4uch an approach is termadgmented Lagrangian
scribes the occupation of the lowest eigenstateld ‘of Now approach

consider _the Hessian of thg Lagrangian. Th_is is composed of Lagclpl=Ldpl—u(trp—Ng)—tr{Ap(1—p)}.

the Hessian of the enerdy“E andthe Hessian of the con- (1.19

straint At the saddle pointl[p] and its first derivatives are iden-

D2L=D?E+I®A* +A*®]l. (1.14  tical to those ofE[p] and the Lagrange multipliers equal

] ) . those of Eq.(1.3. It is possible to show that there exists a
The Hessian of the energy is problem specific. For exampl%onstant* such that for alc>c*, the unconstrained mini-

in tight binding models it is zero. In most cases, the demand, ;i of Lax 4+ o[p] is the solution to the primary problem
that the matrixA* be positive definite is enough to ensure arEq. (L.D)]. T“ﬁe're is no need to take the lintit> but one

stable minimum. We shall suppose this is so. Becaysés  ap jncrease to accelerate convergence without hampering
a projection operator which is commutative wikh', the stability.

pr_ﬂ_y way to ensure ppsitive definitenessAf and compat- SinceA* and u* are not known, an iterative algorithm
ibility with Eq. (1.13 is to take needs to be set up. For a guégsandw, , the densityp, that

A*=[H']. (1.15  minimizesLa _, c[p]. satisfies the following condition:
(We define the absolute value of a matbas follows. Sup- OL Ay 1 i
poseX= »x7~ ! wherex is a diagonal matrix of eigenvalues, 0= Sp
then [X|=7|x|»~%) This leads to the condition: 12p
=Sign(—H"), or the usual zero-temperature Fermi—Dirac SE
distribution =% + Ci(tr p—Ne) — = At pirAk
Pk
pgs=60(—H'), (1.19
” + Apict Ot Crp( 1= pi) (1= 2p1). (120

wheref(x) is the Heaviside function. Consider the following Let us define the

Lagrangian, obtained by inserting in E(..3 the relation updated” Lagrange multipliers as

Alp]=H'(1-2p): M+ 1= Mk C(trpe—No),
1.2
L e [p1=Lagyy L] A 1= A= Cip 1 pi). (120
=E[p]—tr(Hp)+tr(H'(3p?—2p%)+ u*N,, To see why these updates are used, let us insert them into Eq.
(1.20, obtaining after rearrangement
(1.17
. . SE

where_, H=H'+,u._ After proper selection ofu, this _La— o=5_ — i1~ Ars 1 PP 1T Akt 1Pk (1.22
grangian has a minimum at the ground-state density. Note Pl

the natural emergence of the McWeeny purified defity

3p?—2p°. This Lagrangian is a generalization of the func-

tional of Li et al® that is obtained for linear functionals,

whereE[ p]=tr(Hp), is obtained. It should be pointed out,

that the use of Eq.1.17) in an actual minimum search algo- (1) Initialize: Setk=0. GuessAy, wg, andcy;
RIGHTSE LI MN iy

which is exactly the minimum condition of E¢L.7).
The following algorithm for the constrained minimization of
the energy is then obtained:
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FIG. 1. The total CPU timeincluding search fo* and A*) for the TB FIG. 2. The CPU time for the DM SCF computation of polyene chains as a
DM computation of an alkane chain as a function of chain length. Twofunction of chain length. The four curves refer to four values of the trunca-

truncation thresholds are shown, as well as the cubic CPU time based dion thresholdT. We usec,=1 and\=2.
diagonalization.

Here h is a NXN matrix describing interaction of

m-electrons with ther-system.h has the following nonzero
ing a conjugate gradient method; elementsh;j=¢, hjj;1=hjy1;=Bo andh; j_1=h;j_1;=pB;

(3) Use EQ.(1.21) to updateA,.; and u,., and setc,,,  forieven. The second term is an on-site direct repulsion and
=\c, (a value ofA>1 leading to efficient convergence the last term describes long-range interactions between the
can be determined by some experimentation mr-electrons, and the nuclei. In the equatignis the residual

(4) Setk—k+1 and go to step 2. charge on nucleus andbﬁlzrﬁle* *Mij is a Yukawa inter-

action at a distance. Yukawa rather than Coulomb potential
is used because of linear scaling Fock build considerations.

(2) Minimize unconstrained,_ck,Ak,Mk[p], for example, us-

lll. RESULTS The following parameters and definitions are used:
The method in the' previous section was coded using Bo=—0.0&,, B,=-0.1E,, y=0.8&,,
SPARSKIT 2 sparse matrix library by Y. Saad. The sparsity is
imposed by zeroing matrix elements of the DM, which are  &;=—0.4,, Z;=1, ry =Dccli—ijl,
smaller than a threshol@ during each iteration. During the _
d g by=rje™i a=0.7a5%, Dg.=2.6a,.

computation the matrix of Lagrange multipliers tends to
loose sparsity, however, since its exact value is immaterialn Fig. 2, it is seen that the algorithmic complexity ap-
we truncate it using a larger threshold. proaches the linear scaling regime. CPU times are for the

We show two applications for hydrocarbon chains. Thecomplete energy computation, starting from a density matrix
first is a linear unbranched alkangt, ., using a tight of P=0.5 and initial value ofA;=1 and u,=0. The SCF
binding model of Wanget all” The algorithm starts by set- iterations are converged in about 10 iterations. Work is under
ting Ap=1, anduy=0 and ends when the Lagrangian cor- way to study applications on two- and three-dimensional sys-
rections are smaller than a given threshold. CPU timing retems and semiconductors.
sults are shown in Fig. 1. The algorithmic complexity
approaches a linear scaling regime although differences in
number of conjugate gradient iterations cause fIuctuationéo.‘CKNOWLEDGMENTS
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Next, an SCF system is tested. Linear conjugated poly-
enes HC=CH—(CH=CH),,_;— CH=CH, are treated with
Pople’s molecular orbital SCEwhere the energy functional
of the 7-electron density matri®;; is:
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