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Molecular electronic ground-state theories, whetherab initio, or semiempirical are most often
formulated as a variational principle, where the electronic ground-state energy, considered a linear
or nonlinear functional of a reduced density matrix, obtains a constrained minimum. In this
communication, we present a Lagrangian analysis of the self-consistent-field electronic structure
problem, which does not resort to the concept of orthogonal molecular orbitals. We also develop a
method of constrained minimization efficiently applicable to nonlinear energy functional
minimization, as well as to linear models such as tight-binding. The method is able to treat large
molecules with an effort that scales linearly with the system size. It has built-in robustness and leads
directly to the desired minimal solution. Performance is demonstrated on linear alkane and polyene
chains. © 2001 American Institute of Physics.@DOI: 10.1063/1.1383590#

I. INTRODUCTION

Ab initio and semiempirical electronic structure methods
for studying systems containing hundreds or more atoms are
useful for diverse fields such as chemistry, materials science,
biology, and condensed matter physics. Developing methods
for accomplishing this feat includes adapting for computa-
tion suitable formulations of electronic structure theories.
Recently, such theories and methods have drawn consider-
able attention.1,2 One of the widely used approaches is based
on minimizing an energy functional dependent on the idem-
potent density matrix.3–10 These methods utilize the fact that
the density matrix~DM! is sparse.11,12

This communication develops a new linear scaling
method based on the theory of constrained optimization. The
functionals may be linear as in extended Huckel or tight
binding approximations13 or nonlinear, as in self-consistent
field ~SCF! theories, whether semiempirical orab initio. The
method has built-in robustness and flexibility to enhance
convergence rate based on the combined use of penalty and
Lagrange multiplier terms. We now outline the theory and
then demonstrate the algorithmic complexity properties on
linear polyenes.

II. THEORY

Given E@r#, an energy functional of the one-electron
density matrixr(r ,r 8), the ground-state density and energy
are obtained by solving the doubly constrained optimization
problem:

Egs5min
r

E@r# under: trr5Ne ; r25r, ~1.1!

where the following shorthand matrix-multiply notation is
used

r2~r ,r 8![E r~r ,r 9!r~r 9,r 8!d3r 9. ~1.2!

The first constraint fixes the number of electronsNe . The
second, DM idempotency, results from Pauli’s principle.

A. Lagrangian saddle point

The constrained minimum problem can be handled using
the method of Lagrange multipliers, which we discuss now.
Define the Lagrangian

Lm,A@r#5E@r#2m~ trr2Ne!2trAr~12r!, ~1.3!

where the numberm and the symmetric matrix elements
A(r ,r 8) are Lagrange multipliers. Next, define the following
functional of the Lagrange multipliers:

L@m,A#5min
r

Lm,A@r#, ~1.4!

and assume now thatL obtains a maximum atm* andA* .
For anyr under the constraints of Eq.~1.1!, the following
holds:

L@m* ,A* #<Lm* ,A* @r#5E@r#. ~1.5!

In particular,rgs obeys the constraints so

L@m* ,A* #<Egs . ~1.6!

Thus, the maximum ofL is a lower bound toEgs , which is
tight under conditions of convexity.14 The constrained mini-
mization problem is thus transformed to asaddle point prob-
lem: The Lagrangian is minimum with respect to the density,
whenm5m* andA5A* , and maximum with respect tom
andA when the densityr5rgs is held fixed. At the saddle-
point, the following relations hold:

05
dL

drU
rgs ,A* ,m*

5H82A* 1rgsA* 1A* rgs , ~1.7!

whereH85dE/drur5rgs
2m* , anda!Electronic mail: Roi.Baer@huji.ac.il
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05
]L

]mU
*

5Ne2trrgs , 05
dL

dAU
*

5rgs~rgs21!. ~1.8!

Multiplying Eq. ~1.7! by rgs from one side and by
(12rgs) from the other, we obtain

~12rgs!H8rgs5rgsH8~12rgs!50, ~1.9!

which also leads to

@H8,rgs#50. ~1.10!

Now multiplying Eq.~1.7! by rgs from the right leads to

H8rgs52rgs A* rgs , ~1.11!

likewise, multiplying by (12rgs) from the right

H8~12rgs!5~12rgs!A* ~12rgs!. ~1.12!

These two conditions are fulfilled by the following choice of
the Lagrange multiplier matrix:

A* 5H8~122rgs!. ~1.13!

The energy is minimized when the density matrixrgs de-
scribes the occupation of the lowest eigenstates ofH8. Now
consider the Hessian of the Lagrangian. This is composed of
the Hessian of the energyD2E and the Hessian of the con-
straint

D2L5D2E1I ^ A* 1A* ^ I . ~1.14!

The Hessian of the energy is problem specific. For example,
in tight binding models it is zero. In most cases, the demand
that the matrixA* be positive definite is enough to ensure a
stable minimum. We shall suppose this is so. Becausergs is
a projection operator which is commutative withH8, the
only way to ensure positive definiteness ofA* and compat-
ibility with Eq. ~1.13! is to take

A* 5uH8u. ~1.15!

~We define the absolute value of a matrixX as follows. Sup-
poseX5hxh21 wherex is a diagonal matrix of eigenvalues,
then uXu5huxuh21.! This leads to the condition: 122rgs

5Sign(2H8), or the usual zero-temperature Fermi–Dirac
distribution

rgs5u~2H8!, ~1.16!

whereu(x) is the Heaviside function. Consider the following
Lagrangian, obtained by inserting in Eq.~1.3! the relation
A@r#5H8(122r):

Lm* @r#5LA@r#,m* @r#

5E@r#2tr ~Hr!1tr ~H8~3r222r3!!1m* Ne ,

~1.17!

where, H5H81m. After proper selection ofm, this La-
grangian has a minimum at the ground-state density. Note
the natural emergence of the McWeeny purified density15

3r222r3. This Lagrangian is a generalization of the func-
tional of Li et al.3 that is obtained for linear functionals,
whereE@r#5tr (Hr), is obtained. It should be pointed out,
that the use of Eq.~1.17! in an actual minimum search algo-

rithm is not necessarily an efficient or robust method. Con-
vergence is not guaranteed unless one starts from a close
approximation to the ground-state density.

Another way to impose the constraints, suggested by
Haynes and Payne,9 is to minimize an analytical penalized
functional

Lc@r#5E@r#1 1
2 c$~ trr2Ne!

21tr ~r2~12r!2!%.
~1.18!

The second term here, weighted by the costc.0 is a penalty
for violating the constraints. Another possibility is the square
root of the right trace in Eq.~1.18!, proposed by Kohn,6 but
this leads to a nonanalytical functional.16 Minimizing Lc

leads to ill posedness because of the absolute necessity to
closely approach the limitc→`.

B. The augmented Lagrangian

Enhancing robustness and convergence without encoun-
tering ill posedness may be achieved by using the penalized
function Lc@r# as a function to be minimized under con-
straints. Such an approach is termedaugmented Lagrangian
approach14

LA,m,c@r#5Lc@r#2m~ trr2Ne!2tr $Ar~12r!%.
~1.19!

At the saddle point,Lc@r# and its first derivatives are iden-
tical to those ofE@r# and the Lagrange multipliers equal
those of Eq.~1.3!. It is possible to show that there exists a
constantc* such that for allc.c* , the unconstrained mini-
mum of LA* ,m* ,c@r# is the solution to the primary problem
@Eq. ~1.1!#. There is no need to take the limitc→` but one
can increasec to accelerate convergence without hampering
stability.

SinceA* andm* are not known, an iterative algorithm
needs to be set up. For a guessAk andmk , the densityrk that
minimizesLAk ,mk ,ck

@r#, satisfies the following condition:

05
dLAk ,mk ,ck

dr

5
dE

dr
U

rk

1ck~ trrk2Ne!2mk2Ak1rkAk

1Akrk1ck1ckrk~12rk!~122rk!. ~1.20!

Let us define the ‘‘updated’’ Lagrange multipliers as

mk115mk2ck~ trrk2Ne!,
~1.21!

Ak115Ak2ckrk~12rk!.

To see why these updates are used, let us insert them into Eq.
~1.20!, obtaining after rearrangement

05
dE

drU
rk

2mk112Ak111rkAk111Ak11rk , ~1.22!

which is exactly the minimum condition of Eq.~1.7!.
The following algorithm for the constrained minimization of
the energy is then obtained:

~1! Initialize: Setk50. GuessA0 , m0 , andc0 ;
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~2! Minimize unconstrained,Lck ,Ak ,mk
@r#, for example, us-

ing a conjugate gradient method;
~3! Use Eq.~1.21! to updateAk11 and mk11 and setck11

5lck ~a value ofl.1 leading to efficient convergence
can be determined by some experimentation!;

~4! Setk→k11 and go to step 2.

III. RESULTS

The method in the previous section was coded using
SPARSKIT 2, sparse matrix library by Y. Saad. The sparsity is
imposed by zeroing matrix elements of the DM, which are
smaller than a thresholdT during each iteration. During the
computation the matrix of Lagrange multipliers tends to
loose sparsity, however, since its exact value is immaterial,
we truncate it using a larger threshold.

We show two applications for hydrocarbon chains. The
first is a linear unbranched alkane CnH2n12 using a tight
binding model of Wanget al.17 The algorithm starts by set-
ting A051, andm050 and ends when the Lagrangian cor-
rections are smaller than a given threshold. CPU timing re-
sults are shown in Fig. 1. The algorithmic complexity
approaches a linear scaling regime although differences in
number of conjugate gradient iterations cause fluctuations.
The CPU times, measured on a PENTIUM III 500 MHZ/
LINUX, correspond to a total energy computation, including
the search form* and A* . The search takes typically be-
tween 8 and 12 iterations. The number of iterations is almost
system independent, increasing slightly as system grows.

Next, an SCF system is tested. Linear conjugated poly-
enes H2CvCH–~CHvCH!n21– CHvCH2 are treated with
Pople’s molecular orbital SCF18 where the energy functional
of the p-electron density matrixPi j is:

E@P#5tr ~hP!1
g

2 (
i 51

N

Pii
2

1
1

2 (
iÞ j 51

N F ~2Pii 2Zi !~2Pj j 2Zj !

bi j
22

Pi j
2

bi j
G .

~1.23!

Here h is a N3N matrix describing interaction of
p-electrons with thes-system.h has the following nonzero
elements:hii 5«, hi ,i 115hi 11,i5b0 andhi ,i 215hi 21,i5b1

for i even. The second term is an on-site direct repulsion and
the last term describes long-range interactions between the
p-electrons, and the nuclei. In the equationZi is the residual
charge on nucleusi, andbi j

215r i j
21e2ar i j is a Yukawa inter-

action at a distance. Yukawa rather than Coulomb potential
is used because of linear scaling Fock build considerations.
The following parameters and definitions are used:

b0520.08Eh , b1520.1Eh , g50.8Eh ,

« i520.4Eh , Zi51, r i j 5DCCu i 2 j u,

bi j 5r i j e
ar i j a50.7a0

21, Dcc52.6a0 .

In Fig. 2, it is seen that the algorithmic complexity ap-
proaches the linear scaling regime. CPU times are for the
complete energy computation, starting from a density matrix
of P50.5I and initial value ofA05I and m050. The SCF
iterations are converged in about 10 iterations. Work is under
way to study applications on two- and three-dimensional sys-
tems and semiconductors.
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