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Trajectory-dependent cellularized frozen Gaussians, a new approach
for semiclassical dynamics: Theory and application
to He–naphtalene eigenvalues
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A semiclassical cellular method is proposed. Signals generated by semiclassical techniques
generally deteriorate over time as trajectories become chaotic. One approach to remedy this problem
has been to have each trajectory weighted by an entire cell of nearby trajectories~Filinov transform!.
But even in this approach the exponential part of the propagator typically becomes large and
positive over time. Here the cellularization~Filinov! parameter is subject to constraints which make
it time dependent and trajectory dependent. It also depends on dimensionality, so it ends up as a
matrix. Physically, the Filinov transform is done differently in different directions associated with
the stability matrix for the phase—essentially a more confined integration in directions where the
matrix diverges and a wider integration in other directions. This squelches the contribution from any
part of a trajectory that becomes excessively chaotic. A trajectory-dependent cellurized frozen
Gaussian is applied here within the Herman–Kluk semiclassical approach. It is tested by looking at
a single-particle three-dimensional problem, He attached to a rigid immovable naphtalene, where it
is shown to be more accurate than the original HK approach, without the divergence of the
correlation function common in the usual cellular dynamics~HK! formulation, and is able to
separate a low-lying excited state from the ground state. ©2003 American Institute of Physics.
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I. INTRODUCTION

Semiclassical methods for wave packet propagation h
recently been an area of rich research because of the a
to treat quantum effects in heavy-particle motion.1–9 These
methods offer the hope of being numerically more feasi
than full quantum calculations for very large systems and
potentially accurate enough to properly describe quan
observables.

The basis of semiclassical methods is that the
Green’s function in the Feymann path integral formulation
replaced by classical paths, with a preexponential term
contains phase information of the nonclassical trajecto
around each classical path. An additional improvement
been a substitution of integration variables, so that each
tegration is done over initial position and momentum.10–12

This area—initial variable representation~IVR!—has been a
focus of substantial research. Within this area, the Herm
Kluk ~HK! propagator has proved to be exceptiona
useful.1 In the HK method, the coherent wave function
represented by a swarm of frozen Gaussians,13 so that each
classical path has an associated term weighting the cont
tion of nearby trajectories. This method has the corr
asymptotic behavior in the limit of\→0. Unfortunately,
many trajectories become chaotic over time and can con
ute to a calculated correlation function that becomes lar

a!Electronic mail: dxn@chem.ucla.edu
9100021-9606/2003/118(20)/9103/6/$20.00

Downloaded 09 May 2003 to 132.64.1.37. Redistribution subject to AIP
ve
lity

e
re
m

ll
s
at
s
s

n-

–

u-
t

b-
er

than 1. A large number of trajectories is required to comp
sate for this.

Two possible categories of approaches to counteract
deficiency are using a signal processing method that requ
only a short-time signal or filtering to improve the samplin
of phase space.~A third set of approaches, the backward
forward or interaction-picture method, is complementary
the methods suggested here and can be used in conjun
with them.9!

The first approach has been effectively done using sig
processing tools, such as filter diagonalization with a cor
lation matrixCi j ,7,14 which extracts a large amount of infor
mation about a short-time signal.15,16

The approaches to remove the difficulties associa
with problematic trajectories have evolved. One possibility
a method in which any chaotic trajectory is removed, anad
hocprocedure.5 Alternately, a stationary phase approach w
developed that weighted chaotic trajectories through a Mo
Carlo truncation method.8 This method is not related to th
HK approach.

Approaches that deal with modifying the original H
integral have also been developed.2,17 Many of these meth-
ods involve using the Filinov transform. The idea of the
approximations is that a ‘‘cell’’ of trajectories is average
and each of these cells is propagated. In this case, the ch
part is hopefully suppressed. The cell is determined b
parametrized size which is equally applied to all trajector
at all times in all dimensions. This can prolong the length
3 © 2003 American Institute of Physics
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the signal. In cases where trajectories in different dimensi
have very different chaotic behavior, this method also bre
down. For one dimension the phase is well behaved, bu
another it can become chaotic. In the usual cellular dynam
equations, both dimensions would be equally damped
one must choose between losing useful information or ke
ing a wildly chaotic trajectory.

A further problem is that the Gaussian integral whi
enters the cellularization can become either very large~for
scattering systems! or, even worse, formally divergent.

In this paper, we present a method that changes the
eraging parameter of the cellularization over time and
mension for each trajectory. The advantages of this are t
fold. The damping can be adjusted for each trajectory at e
time step so that the cellularization only damps the dim
sion that becomes problematic at the time it is problema
Simultaneously, we check and ensure that the Gaus
which enters the cellularization is never formally diverge
or large.

In the remainder of this paper we first review th
Herman–Kluk method and discuss the challenges of the
nov transformation. Then we show the derivation of t
trajectory-dependent cellularized frozen Gaussian~TDCFG!
method. We have initially used this method on t
naphtalene–helium system and will show results compa
the usual HK method with improvements from the TDCF
method. The last section is a conclusion pointing to furt
research with this method.

II. METHODOLOGY

A. Herman–Kluk propagator

The time-dependent correlation function associated w
a specific initial function is defined as (\51)

C~ t !5^Cue2 iHt uC&. ~1!

To the usual semiclassical propagator, the HK approach a
a swarm of frozen Gaussians which is substituted as a b
set representing the wave function.1 Using the semiclassica
Herman–Kluk propagator, the correlation function can
expressed as

C~ t !5S 1

2p D NE E dNpid
Nqi^Cugqf ~ t !,pf ~ t !&Rpi ,qi ,t

3exp~ iSpi ,qi ,t!^gqi ,pi
uC&, ~2!

where we introduced the classical initial momentum and
sition which are scaled bys, the natural width of the wave
function near the potential minimum.~Since the potential ha
a different curvature near the minimum forz and
x,y—wherex,y is the plane of the naphtalene—a differents
was used forz andx,y. This amounts to rescaling the coo
dinates; the modifications needed are straightforward
will not be repeated here.! Also, gqi ,pi

are frozen-width
Gaussians,Spi ,qi ,t is the standard classical action, an
Rpi ,qi ,t is the prefactor that contains the phase informat
resulting from the interference of the Gaussian wave pack
Downloaded 09 May 2003 to 132.64.1.37. Redistribution subject to AIP
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Rpi ,qi ,t5AdetF1

2 S ]pt

]pi

1
]qt

]qi

2 i
]qt

]pi

1 i
]pt

]qi
D G . ~3!

Each of terms inRpi ,qi ,t is aN3N matrix that can easily be
propagated over time, whereN is the dimensionality of the
problem. The one challenge withRpi ,qi ,t is that we are tak-
ing a square root of a complex number, but it can be ensu
that it is always continuous.

When the initial ~and final! wave function is itself a
Gaussian, with initial momentum and positionp0 ,q0 , the
correlation function with the explicit Gaussian overla
yields

C~ t !5S 1

2p D NE E dnpid
nqiRpi ,qi ,te

iSpi ,qi ,t

3expF2
1

4
~qt2q0!22

i

2
~pt1p0!~qt2q0!

2
1

4
~pt2p0!2G

3expF2
1

4
~qi2q0!21

i

2
~pi1p0!~qi2q0!

2
1

4
~pi2p0!2G . ~4!

This is easily calculated for each trajectory using Mon
Carlo integration with the following sampling function:

u^gpi ,qi
uCu5exp~2 1

4 ~qi2q0!22 1
4 ~pi2p0!2!. ~5!

All the terms are easily propagated over time. Unfortunate
over time the HK method develops two problems. Depe
ing on the system being studied, each trajectory can bec
chaotic, leading to a large magnitude of the differentials
Rpi ,qi ,t . Additionally, the action can become large. So t
signal ~the correlation function! degrades over time.

B. Filinov transformation

Currently, these shortcomings with the HK propaga
are frequently treated with some form of the Filinov tran
form:

15
AhN

~2p!NE dNȳ e21/2~y2 ȳ!2h/2, ~6!

whereȳ5(q̄,p̄). In these methodsh is usually a single num-
ber ~or has a different fixed value in each dimension, whi
amounts to a coordinate scaling! that effectively averages in
phase space the surrounding trajectories. Essentially, ins
of an individual trajectory being propagated, a ‘‘cell’’ of tra
jectories is propagated. By taking the Filinov average,
chaotic parts will hopefully be damped out. Anticipating th
development in the next paragraph, we rewriteh as a general
matrix, though usually it is treated as a scalar or a diago
matrix:

15
Adet h

~2p!N E dNȳ e21/2~y2 ȳ!h~y2 ȳ!. ~7!
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The general derivation of the correlation function is then
follows: We write the correlation function as

C~ t !5S 1

2p D NE E dNp̄ dNq̄ F~ p̄,q̄,t !, ~8!

where we have defined

F~ p̄,q̄,t !5
Adet h

~2p!N E E dNpid
NqiRpi ,qi ,te

iSpi ,qi ,t

3expF2
1

4
~qt2q0!22

i

2
~pt1p0!~qt2q0!

2
1

4
~pt2p0!GexpF2

1

4
~qi2q0!2

2
i

2
~pi1p0!~qi2q0!2

1

4
~pi2q0!G

3expF2
1

2
~ ȳ2y!h~ ȳ2y!G . ~9!

We will define B as the exponential part of the integratio
excluding the term withh:

B5 iSp,q,t2
1

4
~qt2q0!22

i

2
~pt1p0!~qt2q0!

2
1

4
~pt2p0!22

1

4
~qi2q0!22

i

2
~pi1p0!~qi2q0!

2
1

4
~pi2p0!2. ~10!

B is then expanded to the second order, so that rewritingF,

F~ p̄,q̄,t !5
Adeth

~2p!NE E dNpid
Nqi

3Rq,q,te
B~ ȳ…1By8~yi2 ȳ!11/2~yi2 ȳ!T~Bȳ

92h!~yi2 ȳ!.

~11!

As mentioned previously,h is usually treated as a consta
scalar. Two problems that are related arise then with
method.

First, choosingh is not straightforward. If the surround
ing trajectories are spread out~chaotic!, a largeh is needed
to average them. The longer a propagation is run, the la
the h needs to be to keep the trajectories ‘‘in check.’’

The second problem arises from the fact that in t
method a second-order expansion ofB is employed, as
shown above. It is easy to see that at times the second-o
term can in fact acquire a large positive real part. The ex
nential then formally diverges. Of course, this is because
only taking the second-order expansion. We found that
the naphtalene–helium system any trajectory would eve
ally became chaotic, and at least one of the eigenvaluesB
acquires a large positive part that continued to increase
became infinitely large. Specifically, in the formulatio
shown,2 pi ,qi are only expanded to first order. Some traje
tories become unstable and have an infinite contribution
the correlation function, regardless of the choice of the c
Downloaded 09 May 2003 to 132.64.1.37. Redistribution subject to AIP
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lurization parameters~in this case, one for the position an
another for the momentum!. In this formulation, once a tra
jectory becomes chaotic, it remains so.2 Even if unstable
trajectories are thrown out, eventually~longer-time propaga-
tion! all trajectories can become chaotic. So far, no meth
has been developed that explicitly restricts this from occ
ring. Of course, a quick solution to this would be to restr
the entire cellularization term for each trajectory from b
coming infinite by placing a cap on its value or removing t
trajectory completely. But then information is lost becau
the chaotic nature of the trajectory is usually coming fro
only one dimension, while the other dimensions are w
behaved. Also, in the case of completely removing a traj
tory, future useful information is being removed from th
path.

C. TDCFG method

The idea behind the TDCFG method is to allowh to
become dependent on the trajectory. Then the real part o
exponential is always prevented from becoming positive a
large, by choosingh appropriately. This is an approximatio
since rigorously the Filinov transformation requires thath be
constant. Nevertheless, this approximation is controllab
We find that the results are insensitive to this approximati

The details are as follows: We do the following transfo
mation to determine whath should be. SetBȳ95AlAT ~l is
diagonal andAAT51). Then we chooseh to have the same
eigenvectors asB9, with the eigenvalues denoted byf:

h5AfAT.

We also define

g[ATB8

and

z[AT~y2 ȳ!.

The constraints on the diagonal matrixf will be derived in
the following way. First, the exponential part ofF(p̄,q̄,t)
will be rewritten in our new coordinates:

B~y!5B~ ȳ!1Bȳ8AAT~y2 ȳ!

2 1
2 ~y2 ȳ!TATA~h2Bȳ8!AAT~y2 ȳ!

5B~ ȳ!1gTz2 1
2 zT~f2l!z. ~12!

Using

Adet~h!5Adet~f!, ~13!

F is rewritten as

F~ p̄,q̄,t !5E d2Nz i S det f

p D N/2

Rpi ,qi ,te
B~ ȳ!1J~z,f,l,g!,

~14!

where

J~z,f,l,g!5gTz2 1
2 zT~f2l!z. ~15!
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Rpi ,qi ,t
is only calculated to zeroth order, so that it is ess

tially the same and therefore can be removed from the i
gration overyi .

We want to ensure that at long timesJ is negative, or a
small positive definite number, for all values ofz. The first
constraint is therefore immediately clear: the coefficient
the second-order term inz, f2l, must be positive.

To develop all the constraints systematically, we co
plete the square:

J52
1

2 S zT~f2l!1/22
g

~f2l!1/2D 2

1
g2

2~f2l!
. ~16!

The first part ofJ, by identity, is guaranteed to become
constant upon integration of the exponential. The sec
termg2/2(f2l) needs to be constrained from having a lar
positive real part. We have done this by placing three c
straints onf.

First, f must at least have some minimum value
fmin . If not, we found that the initial results degraded im
mediately. In effect, we do not want the cellurization turn
on immediately because initially all the trajectories are w
behaved. Second, the real part of (f i2l i) ~where i repre-
sents theith diagonal element in the matrix! is always pre-
vented from reaching zero. We use the parameterb to denote
the minimum allowed difference betweenf and l. These
two constraints can be expressed as

f.max~fmin ,Rel1b!. ~17!

Finally, the entire term must be kept from increasing, so
impose

Re
gi

2

~f i2l i !
,a i , ~18!

wherea is a small positive definite number. We are going
choosef i to be real as this simplifies the calculation. Fro
these constraints onf and thereforeh, we determineh. It
should be noted that the relation betweena and the eventua
‘‘cell’’ that is averaged is not linear. Ifa5` and b50, the
factor will give the more traditional constant cellurizatio
dynamics.

TABLE I. Parameters, including Lennard-Jones values, used in all the s
lations ~see also Table II for individual run parameters!. Note that cm21

refers here to an energy unit, wave numbers.

Time step (dt) 10.618 fsS 5
0.002

cm21D
He mass (M ) 0.12 ~cm21 Å2!21

sHeC 3.099 Å
eHeC 13.92 cm21

sHeH 2.903 Å
eHeH 5.761 cm21

Minimum potential 2122.70 cm21

Location of minimum potential ~0.794, 0.000, 3.132! Å
~20.794, 0.000, 3.132! Å

Position of first C~in naphtalene! ~0.0, 0.7, 0.0! Å
Position of first H~in naphtalene! ~1.212, 2.480, 0.000! Å
Downloaded 09 May 2003 to 132.64.1.37. Redistribution subject to AIP
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We can now return to the original derivation. We use t
analytical formula18

E d2Nz exp@2zTDz2mTz#5
pN

det D1/2
expS 1

4
mTD21mD ,

~19!

wherez5yi2 ȳ, sod2Nyi is replaced byd2Nz. Given that

C~ t !5S 1

2p D NE E d2Nȳ Rȳt
eB~ ȳ!

Adet h

~2p!N

3E d2NzexpFBȳ8
Tz1

1

2
zT~Bȳ92h!zG . ~20!

We define

D5
h2Bȳ9

2
~21!

and

m52Bȳ8 . ~22!

The end equation that is to be integrated becomes

C~ t !5S 1

2p
D NE E dNp̄ dNq̄Rp̄i ,q̄ i ,te

B~ ȳ!

3
Adet h

Adet~h2Bȳ9!
expF1

2
Bȳ8(h2Bȳ9)

21Bȳ8G , ~23!

where, as mentioned previously, the one approximate as
of this expression is that we do not take into account
position dependence ofh in doing the integral.

The challenging aspect of this method is that while
the terms in the usual HK method can easily be calculate
each time step through simple Hamiltonian-type equatio
the calculations ofBȳ8 is more complicated. At this time, the
are obtained by explicitly calculating the derivatives. This
done by a three-point formula. The middle point is the act
trajectory, and thenB is calculated at6d away from each
trajectory in each dimension (2N). This leads to an addi-
tional 4N34N matrix around each trajectory. This is obv
ously the most time-consuming part of the calculation.

III. RESULTS

The system we used for our trial is naphtalene with
single helium atom, i.e., a three-dimensional~3D! system.
We used the Lennard-Jones potential energy surface w
the carbons and hydrogens are idealized, with infinite m
and equidistant apart. The origin is the center of the naph
ene ring, which is defined to lie in thex2y plane. The pa-
rameters we used are given in Table I. Unlike the helium
benzene system we studied in an earlier work,14 the x andy
components are not symmetrical here. The placement of
initial wave function and conditions are given in Table
Unless otherwise noted, the runs were for 5000 trajector

u-
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Very high energy trajectories that had an initial energy o
100 cm21 were thrown out. This does not affect the fin
results.

Even with the restrictions, at times an individual corr
lation contribution can become large~but not infinite! for a
short period of time. At a later time, they again become w
behaved. By not removing the trajectory permanently,
information is retained. For our runs we did induce a cap
the total contribution to the correlation function. Because
trajectories did not have infinite values, even without a c
the phase information can be retained. The specific valu
the cap does not appear to affect the eventual outcome o
calculated eigenvalues.

The correlation function proved to be stable a
meaningful for a longer-time propagation than without t
TDCFG method. An example is shown in Fig. 1, depicti
the real part of the correlation function. In the Herman–Kl
method, the correlation function becomes larger than on
about 3 ps, while the TDCFG stays below 1.

A certain amount of high-energy ‘‘jitter’’ is introduced in
this approach. It originates from two sources. First, at tim
the damping is turned on rather suddenly because of a
idly changingl. In this case there can be almost a discon
nuity in a trajectory’s contribution to the correlation functio
Second, the Filinov approach~including the TDCFG
method! is an approximation based on only the second-or
expansion ofB. Under certain conditions, a very-high-ener
oscillation appears in the exponential. We believe it is rela

TABLE II. Parameters for the runs shown.

Case A B C D

Num. of traj. 5000 1000 2000 5000
a 5.0 5.0 5.0 5.0
b 10.0 10.0 10.0 10.0
fmin 100 100 100 100
qi ~1.2,0.0,3.1! ~1.2,0.0,3.1! ~1.2,0.0,3.1! ~0.8,0.5,3.1!

FIG. 1. Comparison of Re@C(t)# for the TDCFG and standard HK method
case A.
Downloaded 09 May 2003 to 132.64.1.37. Redistribution subject to AIP
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to only having the second-order and at times the first- a
second-order terms in the exponential, which can cancel e
other except for a high-energy oscillation. We have used
ter diagonalization for signal processing. This method filt
out this high-energy ‘‘jitter’’ and does not appear to effect t
energies of interest.

Figures 2–4 show the ground and first excited energ
derived from both the HK and TDCFG methods. Conditio
for each case are listed in Table II. The advantages of
TDCFG can be seen. First, looking at Figs. 2, 3, and 4,
need for fewer trajectories is evident. Semiclassical te
niques usually require a large number of trajectories in or
to converge the signal. Both Figs. 2 and 3, with 1000 a
2000 trajectories, respectively, show results for exception
low numbers of trajectories. Even with as few as 1000 t
jectories the TDCFG method converges and becomes st
around280.6 cm21. The HK method has values fluctuatin

FIG. 2. Comparison of ground-state eigenvalues resolved with respe
signal length used for 1000 trajectories, case B.

FIG. 3. Comparison of ground-state eigenvalues resolved with respe
signal length used for 2000 trajectories, case C.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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from 277.5 to282.5 cm21. This is too varied to pull out an
eigenvalue. Though the TDCFG method is about a w
number off from the exact calculation, it gives a relative
good result. By 5000 trajectories~Fig. 4!, the usual number
we used, then with the signal processing~FDG! the results
come close to the exact and are stable. The HK met
barely stabilizes around278.8 cm21 and then drifts.

Finally, Fig. 5 shows one of the more astounding adv
tages of the TDCFG method. The ground and first exci
states are only separated by 4.5 cm21. Usually, this would
require a large number of trajectories and symmetrization
the correlation function to resolve. In this case a single w
packet is able to resolve this splitting remarkably well. T
HK method only picks up one state well, and the high
energy one is not resolved. In this case the TDCFG met
is obviously advantageous to the HK method.

IV. CONCLUSIONS

The trajectory-dependent frozen cellularized Gauss
method appears to be a very promising extension to se
classical dynamics. Usual semiclassical signals degrade
idly and become chaotic in nature. This method allows us
tune the damping so that it affects only the individual traje

FIG. 4. Comparison of ground-state eigenvalues resolved with respe
signal length used for 5000 trajectories, case D. Two different applicat
of the signal processing are shown. There is always some deviation, b
on parameters used in the filter diagonalization. The more stable the re
are with respect to these parameters, the more reliable are the results
Downloaded 09 May 2003 to 132.64.1.37. Redistribution subject to AIP
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tory’s specific dimension at the time they become proble
atic. This method greatly expands the time a signal is s
viable. Other ways of calculating the second-order ter
need to be investigated in the future in order to increase
speed of this method.

Overall, we believe these results are promising a
should be further studied as semiclassical techniques
pushed to longer-time signals and less ideal potentials a
most importantly, higher dimensions.
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FIG. 5. Comparison of the first two excited eigenvalues resolved with
spect to signal length used for 5000 trajectories, case D.
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