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A semiclassical cellular method is proposed. Signals generated by semiclassical techniques
generally deteriorate over time as trajectories become chaotic. One approach to remedy this problem
has been to have each trajectory weighted by an entire cell of nearby traje(dites/ transform.

But even in this approach the exponential part of the propagator typically becomes large and
positive over time. Here the cellularizatidRilinov) parameter is subject to constraints which make

it time dependent and trajectory dependent. It also depends on dimensionality, so it ends up as a
matrix. Physically, the Filinov transform is done differently in different directions associated with
the stability matrix for the phase—essentially a more confined integration in directions where the
matrix diverges and a wider integration in other directions. This squelches the contribution from any
part of a trajectory that becomes excessively chaotic. A trajectory-dependent cellurized frozen
Gaussian is applied here within the Herman—Kluk semiclassical approach. It is tested by looking at
a single-particle three-dimensional problem, He attached to a rigid immovable naphtalene, where it
is shown to be more accurate than the original HK approach, without the divergence of the
correlation function common in the usual cellular dynamiekk) formulation, and is able to
separate a low-lying excited state from the ground state.2003 American Institute of Physics.

[DOI: 10.1063/1.1568071

I. INTRODUCTION than 1. A large number of trajectories is required to compen-
sate for this.

Semiclassical methods for wave packet propagation have  Two possible categories of approaches to counteract this
recently been an area of rich research because of the abilityeficiency are using a signal processing method that requires
to treat quantum effects in heavy-particle motioh These  only a short-time signal or filtering to improve the sampling
methods offer the hope of being numerically more feasiblest phase spaceA third set of approaches, the backward—
than full quantum calculations for very large systems and argorward or interaction-picture method, is complementary to
potentially accurate enough to properly describe quantunfhe methods suggested here and can be used in conjunction
observables. with them?)

The basis of semiclassical methods is that the full  The first approach has been effectively done using signal
Green’s function in the Feymann path integral formulation isprocessing tools, such as filter diagonalization with a corre-
replaced by classical paths, with a preexponential term thgktion matrixC;; ,* which extracts a large amount of infor-
contains phase information of the nonclassical trajectoriegyation about a short-time signgt'®
around each classical path. An additional improvement has  The approaches to remove the difficulties associated
been a substitution of integration variables, so that each inith proplematic trajectories have evolved. One possibility is
tegration is done over initial position and momenttf'* 4 method in which any chaotic trajectory is removed asin
This area—initial variable representatidVR)—has been a hqcproceduré. Alternately, a stationary phase approach was
focus of substantial research. Within this area, the Herma”aeveloped that weighted chaotic trajectories through a Monte

Kluk EHK) propagator has proved to be exceptionally carig truncation methofiThis method is not related to the
useful: In the HK method, the coherent wave function is HK approach.

represented by a swarm of frozen Gauss_i'érgn that each Approaches that deal with modifying the original HK
classical path has an associated term weighting the Contrlblﬂ,-]tegral have also been develoged.Many of these meth-
tion of nearby trajectories. This method has the correchqq inyolve using the Filinov transform. The idea of these
asymptotic behavior in the limit oh—0. Unfortunately, approximations is that a “cell” of trajectories is averaged

many trajectories become chaotic over time and can contribyng each of these cells is propagated. In this case, the chaotic
ute to a calculated correlation function that becomes Iargeﬁart is hopefully suppressed. The cell is determined by a

parametrized size which is equally applied to all trajectories
dElectronic mail: dxn@chem.ucla.edu at all times in all dimensions. This can prolong the length of
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have very different chaotic behavior, this method also breaks e —_——i—
down. For one dimension the phase is well behaved, but in 2\op; oq;  dpi dq
another it can become chaotic. In the usual cellular dynamicggch of terms iR, o« is aNX N matrix that can easily be
equations, both dimensions would be equally damped an L
one must choose between losing useful information or keepg
ing a wildly chaotic trajectory.

A further problem is that the Gaussian integral which

enters the cellularization can become either very ldfge L ) . .
y lafg When the initial (and fina) wave function is itself a

scattering systemr, even worse, formally divergent. . o e

In this paper, we present a method that changes the a\gausaa}n, with 'T““a' momentum a.m.d p05|t|qqa,q0, the
eraging parameter of the cellularization over time and gi-cormelation function with the explicit. Gaussian  overlaps
mension for each trajectory. The advantages of this are twc}flelds
fold. The damping can be adjusted for each trajectory at each
time step so that the cellularization only damps the dimen- CH=

sion that becomes problematic at the time it is problematic.

the signal. In cases where trajectories in different dimensions 1
Ry g .t \/ d { ( . 3

@ dq; . 0 I%)

ropagated over time, whef¢ is the dimensionality of the
problem. The one challenge WitR, ¢ « is that we are tak-

ing a square root of a complex number, but it can be ensured
that it is always continuous.

1\N .
Z) ffd”pid”qiRpi G PERCE
1

Simultaneously, we check and ensure that the Gaussian X exg — ~(gu— )z_i_( Do) (G — o)
which enters the cellularization is never formally divergent X~ 2197 90~ 5 (P PG o
or large.

In the remainder of this paper we first review the
Herman—Kluk method and discuss the challenges of the Fili-
nov transformation. Then we show the derivation of the 1 i
trajectory-dependent cellularized frozen GaussiBRCFG) xexr{— —(gi—90)%+ = (P;+ Po) (4 — o)
method. We have initially used this method on the 4 2

1
—Z(pt—po)z}

naphtalene—helium system and will show results comparing 1

the usual HK method with improvements from the TDCFG - Z(pi—po)2

method. The last section is a conclusion pointing to further

research with this method. This is easily calculated for each trajectory using Monte
Carlo integration with the following sampling function:

[(9p, .o ] =exp(— 3(ai—00)*— 2(Pi—P0)?). (5

All the terms are easily propagated over time. Unfortunately,
over time the HK method develops two problems. Depend-
The time-dependent correlation function associated withng on the system being studied, each trajectory can become
a specific initial function is defined ag €1) chaotic, leading to a large magnitude of the differentials in
. Ry q .t- Additionally, the action can become large. So the
C(t)=(¥|e "W). ) A . . .
signal (the correlation functiondegrades over time.

To the usual semiclassical propagator, the HK approach adds
a swarm of frozen Gaussians which is substituted as a basi& Filinov transformation
set representing the wave functibiising the semiclassical

H Kluk tor. th lation funct b Currently, these shortcomings with the HK propagator
erman—riuk-propagator, the correfafion function can be&, o frequently treated with some form of the Filinov trans-
expressed as

4

II. METHODOLOGY

A. Herman—KIluk propagator

form:
1\N N
C(t)= E) f f d’\‘pid'\‘QK‘I’|€«qu(t),pf(t)>Rpi,qi t 1= (;/n_)N dNVe‘l/z(y_W”’Z, 6)
a
Xexp(iSy, g 1(dg;.p| V), 2 wherey=(q,p). In these methods is usually a single num-

. L ber (or has a different fixed value in each dimension, which
where we introduced the classical initial momentum and po-

sition which are scaled by, the natural width of the wave amounts to a coordinate S?a"”g“?‘t effgctwely averages in
. . - . : phase space the surrounding trajectories. Essentially, instead
function near the potential minimur{Since the potential has L . : e
. o of an individual trajectory being propagated, a “cell” of tra-
a different curvature near the minimum for and . Lo . o
. : jectories is propagated. By taking the Filinov average, the
X,y—wherex,y is the plane of the naphtalene—a different . ; L
. , chaotic parts will hopefully be damped out. Anticipating the
was used forz andx,y. This amounts to rescaling the coor-

dinates; the modifications needed are straightforward angevglopment in the nex.t paragraph, we rewntasagen_e ral
) . matrix, though usually it is treated as a scalar or a diagonal
will not be repeated hereAlso, g .p, are frozen-width

matrix:
Gaussians,S, o ¢ is the standard classical action, and
Ry, g .t is the prefactor that contains the phase information vdet ’7J' dNy e~ V2=V,

resulting from the interference of the Gaussian wave packets: 2m)N

(7
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The general derivation of the correlation function is then adurization parameter§in this case, one for the position and

follows: We write the correlation function as another for the momentumin this formulation, once a tra-
jectory becomes chaotic, it remains s&ven if unstable
C(t)= ( ) f f dVp dNq F(p,q;t), (8)  trajectories are thrown out, eventuallpnger-time propaga-
tion) all trajectories can become chaotic. So far, no method
where we have defined has been developed that explicitly restricts this from occur-
ring. Of course, a quick solution to this would be to restrict
E(oat)= vdet f f N the entire cellularization term for each trajectory from be-
(p,q,t)= dVp,dNgR pqte Sp, a1t NN ) : .
2m)N i coming infinite by placing a cap on its value or removing the

trajectory completely. But then information is lost because
the chaotic nature of the trajectory is usually coming from
only one dimension, while the other dimensions are well
1 behaved. Also, in the case of completely removing a trajec-
exfl — = (g;—do)? tory, future useful information is being removed from that
4 path.

Xex;{ —(gy—do)?— (pt+ Po) (Gt — o)

1
)

C. TDCFG method

The idea behind the TDCFG method is to allayto
become dependent on the trajectory. Then the real part of the
9 exponential is always prevented from becoming positive and
large, by choosing appropriately. This is an approximation
We will define B as the exponential part of the integration, since rigorously the Filinov transformation requires thate

i 1
—§(m+pw(m—qw—zxm—qw}

1_
Xw%—zw—an—W-

excluding the term withy: constant. Nevertheless, this approximation is controllable.
1 : We find that the results are insensitive to this approximation.
. I . .
B=iSp gt~ Z(qt_q0)2_ E(pt+ Po) (T — o) The details are as follows: We do the following transfor-

mation to determine wha# should be. SeBﬁz ANAT (N is

, 1 , diagonal andAAT=1). Then we choose to have the same
~ 7 (Pt=Po)" = 7(4i= o)~ 5 (Pi +Po) (G — o) eigenvectors aB”, with the eigenvalues denoted lg
1 n=ApAT.
— 2 (Pi—po)*. (10
We also define
B is then expanded to the second order, so that rewrking ATR/
g=
F(p! ! 2 )Nf f N quI and
—AT(v—V)
X Ry, (€507 +By 01+ 12y, 3B ), ), E=ATY=Y).

(11) The constraints on the diagonal matgixwill be derived in

the following way. First, the exponential part &{(p,q,t)
As mentioned previouslyy is usually treated as a constant || pe rewritten in our new coordinates:

scalar. Two problems that are related arise then with this

method. B(y)=B(y)+B/AAT(Y-Y)
First, choosingy is not straightforward. If the surround-
ing trajectories are spread olghaotio, a large is needed — 3(y=y)"ATA(7—B)AAT(Yy—Y)
to average them. The longer a propagation is run, the larger o
the » needs to be to keep the trajectories “in check.” =B(y)+9'{~ 3" (¢—N)L. (12

The second problem arises from the fact that in this
method a second-order expansion Bfis employed, as USIng
shown above. It is easy to see that at times the second-order ———~ ——
term can in fact acquire a large positive real part. The expo- de() = Vde(¢
nential t_hen formally diverges. Of course, this is because o": is rewritten as
only taking the second-order expansion. We found that for
the naphtalene—helium system any trajectory would eventu- o _
ally became chaotic, and at least one of the eigenvalués of ~ F(p,q,t)= f dZNii( Rp, g 182 N,
acquires a large positive part that continued to increase and (14)
became infinitely large. Specifically, in the formulation
shown? p; ,q; are only expanded to first order. Some trajec-where
tories become unstable and have an infinite contribution to
the correlation function, regardless of the choice of the cel-  J({,¢,\,0)=9"¢(— 3¢T(p—N)L. (15

(13

det ¢) N/2
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TABLE I. Parameters, including Lennard-Jones values, used in all the simu-

lations (see also Table Il for individual run parameterblote that cm?
refers here to an energy unit, wave numbers.

Time step (t) 10.618 f{ = 0'002)
cm?

He mass 1) 0.12 (cm *A?~1

Thec 3.099 A

€hec 13.92 cm?

Then 2.903 A

€nen 5.761 cm?

Minimum potential —122.70 cm?

Location of minimum potential (0.794, 0.000, 3.132A

Anderson, Neuhauser, and Baer

We can now return to the original derivation. We use the

analytical formuld®
N
T 1
- T 1
detDllzeXF{Afm b m>’

(19

wherez=y,—y, sod?Ny; is replaced byd?Nz. Given that

C(t)— ( ) fdeN—FHB(yW

Yt (2 )N

J d®Nz exd —z'Dz—m"z]=

(—0.794, 0.000, 3.132A 1
Position of first C(in naphtaleng (0.0,0.7,0.0 A X J d?Nz ex;{ B T7+ =2'(B™—n)z|. (20)
Position of first H(in naphtaleng (1.212, 2.480, 0.000A Y 2 y
We define
n—B§
Ry, g, is only calculated to zeroth order, so that it is essen- D= 2 (21)
tially the same and therefore can be removed from the inte-
gration overy; . and
We want to ensure that at long timé@ss negative, or a ,
small positive definite number, for all values &f The first m=—Bg. (22)

constraint is therefore immediately clear: the coefficient of. The end equation that is to be integrated becomes

the second-order term ity ¢—\, must be positive.

To develop all the constraints systematically, we com-

plete the square:

2 2

g g
(p—N)Y2 +2<¢—x>'

J=—% {M(p—N)V2— (16)

C(t= ( )J'J'dequR— eBY)

det

x—
Vdel 7—BY)

(23

1
“BYn—BHlB-
ex;{szﬁn By) By

The first part ofJ, by identity, is guaranteed to become a _ _ _
constant upon integration of the exponential. The seconwher_e, as ment_lone_d previously, the one approxmate aspect
termg?/2(¢p—\) needs to be constrained from having a largeof this expression is that we do not take into account the

positive real part. We have done this by placing three conposition dependence of in doing the integral.

straints ong.

The challenging aspect of this method is that while all

First, ¢ must at least have some minimum value ofthe terms in the usual HK method can easily be calculated at
émin- If NoOt, we found that the initial results degraded im- each time step through simple Hamiltonian-type equations,
mediately. In effect, we do not want the cellurization turnedthe calculations oB)’,—is more complicated. At this time, they
on immediately because initially all the trajectories are wellare obtained by explicitly calculating the derivatives. This is

behaved. Second, the real part @f; ¢ \;) (wherei repre-
sents thdath diagonal element in the matjixs always pre-
vented from reaching zero. We use the paramgter denote
the minimum allowed difference betweeh and \. These
two constraints can be expressed as

¢>maxX pmin,REN+B). 17

done by a three-point formula. The middle point is the actual
trajectory, and therB is calculated at-é§ away from each
trajectory in each dimension 9. This leads to an addi-
tional 4N X 4N matrix around each trajectory. This is obvi-
ously the most time-consuming part of the calculation.

Finally, the entire term must be kept from increasing, so wq||. RESULTS

impose

g2
Re——<a;, (18

(di—Ni)

The system we used for our trial is naphtalene with a
single helium atom, i.e., a three-dimensioitdD) system.
We used the Lennard-Jones potential energy surface where
the carbons and hydrogens are idealized, with infinite mass

wherea is a small positive definite number. We are going toand equidistant apart. The origin is the center of the naphtal-
chooseg; to be real as this simplifies the calculation. From ene ring, which is defined to lie in the—y plane. The pa-

these constraints o and thereforey, we determiner. It

should be noted that the relation betweeand the eventual

“cell” that is averaged is not linear. Iix= and =0, the

rameters we used are given in Table I. Unlike the helium—
benzene system we studied in an earlier wérthe x andy
components are not symmetrical here. The placement of the

factor will give the more traditional constant cellurization initial wave function and conditions are given in Table II.

dynamics.

Unless otherwise noted, the runs were for 5000 trajectories.
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TABLE Il. Parameters for the runs shown. Ground State for Naphtalene -He
Case A B c D 72 1000 trajectoneys
- —— TDCell
Num. of traj. 5000 1000 2000 5000 e Herman Kiuk
o 5.0 5.0 5.0 5.0 74 L |
B 10.0 10.0 10.0 10.0
Dumin 100 100 100 100
o} (1.2,0.0,3.1 (1.2,0.0,3.1 (1.2,0.0,3.1 (0.8,05,3.1 -76 7

Very high energy trajectories that had an initial energy over
100 cm ! were thrown out. This does not affect the final

. | \\/\ \

Energy (wavenumbers)
3

\\
results.
Even with the restrictions, at times an individual corre- 82 ¢
lation contribution can become largkut not infinite) for a
short period of time. At a later time, they again become well g

. . 3
behaved. By not removing the trajectory permanently, the Time (ps)
information is retained. For our runs we did induce a cap on _ ' _
the total contribution to the correlation function. Because the'!G- 2. Comparison of ground-state eigenvalues resolved with respect to

. . . . . signal length used for 1000 trajectories, case B.
trajectories did not have infinite values, even without a cap,

the phase information can be retained. The specific value of
the cap does not appear to affect the eventual outcome of th§ 1 having the second-order and at times the first- and

calculr?ted elgeln\(aluefs. _ I second-order terms in the exponential, which can cancel each
The fclo:cre at|c|)n unction proved to Ee stai;e arr'ldother except for a high-energy oscillation. We have used fil-
meaningful for a longer-time propagation than without the., iaqonalization for signal processing. This method filters

TDCFG method. An example is shown in Fig. 1, depicting ¢ thig high-energy “jitter” and does not appear to effect the
the real part of the correlation function. In the Herman—KIukenergieS of interest.

method, the correlation function becomes larger than one at Figures 2—4 show the ground and first excited energies

about 3 PS, while the TD,CFG stays P__e'o"y,l-, . derived from both the HK and TDCFG methods. Conditions
i A certain amour_1t.of high-energy fjitter” is |ntr.oducedl|n for each case are listed in Table Il. The advantages of the
this approach. It originates from two sources. First, at imeS 5~ can be seen. First looking at Figs. 2, 3, and 4, the

the damping is turned on rather suddenly because of & rapiaaq for fewer trajectories is evident. Semiclassical tech-

idly changingh. In t,h's case there carr: be aITO_St afd'scpnt"niques usually require a large number of trajectories in order
nuity in a trajectory’s contribution to the correlation function. " o erae the signal. Both Figs. 2 and 3, with 1000 and

Second, the Filinov approachincluding the TDCFG 5440 trajectories, respectively, show results for exceptionally
method is an approximation based on only the second-ordef,, nymbers of trajectories. Even with as few as 1000 tra-

expansion oB. Under certain conditions, a very-high-energy jo qries the TDCFG method converges and becomes stable
oscillation appears in the exponential. We believe it is relate({ii

round—80.6 cm L. The HK method has values fluctuating

Comparison between smoothed TDCell and HK Ground State for Naphtalene—He

2 2000 trajectories

e TD Cell
—~—-—- Herman Kluk

®

. [}

S Q -76 /

g 5

g c

© [0

5 (% -78

e = )

3 =

2 @ ooy \/\
c
w

~~~~~~~~~~~~~~~~~ Herman Kluk 82
smoothed TD Cell
..2 - ; ) I ‘ I
o ' . 84 3 ] 4 5
Time (ps) Time (ps)

FIG. 1. Comparison of R€(t) ] for the TDCFG and standard HK methods, FIG. 3. Comparison of ground-state eigenvalues resolved with respect to
case A. signal length used for 2000 trajectories, case C.
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Ground State Naphtalene-He
Exact = ~79.6 wavenumbers
-70 H— s ' —  TDCFGE_1
! —— TDCFG Celll TDOFG E 2
! —eee HKI e _

-72 ;' —— TDCFG Cell ll ] ——— HKonlyone E
N ‘ ———- HKII . — ExactE_1
g ’ @ 60 ExactE_2 .
© H @
o -4t : Pe)
£ S
> 3
5 §
z 78 E & 65T -
2 3
> >
> st i o
g 2
Wi T 1

_80 -

-82 L i L = 1 L i

2 5 ™, 3 5

4 4
Time (ps) time (ps)

FIG. 4. Comparison of ground-state eigenvalues resolved with respect tB1G. 5. Comparison of the first two excited eigenvalues resolved with re-
signal length used for 5000 trajectories, case D. Two different applicationspect to signal length used for 5000 trajectories, case D.
of the signal processing are shown. There is always some deviation, based

on parameters used in the filter diagonalization. The more stable the resul{%r 's specific dimension at the time thev become problem-
are with respect to these parameters, the more reliable are the results. y p y p

atic. This method greatly expands the time a signal is still
viable. Other ways of calculating the second-order terms
from —77.5 to—82.5 cm L. This is too varied to pull out an need to be investigated in the future in order to increase the
eigenvalue. Though the TDCFG method is about a wavepeed of this method.
number off from the exact calculation, it gives a relatively Overall, we believe these results are promising and
good result. By 5000 trajectorié&ig. 4), the usual number should be further studied as semiclassical techniques are
we used, then with the signal processiitPG) the results pushed to longer-time signals and less ideal potentials and,
come close to the exact and are stable. The HK methochost importantly, higher dimensions.
barely stabilizes aroune 78.8 cmi'! and then drifts.
Finally, Fig. 5 shows one of the more astounding advan—i'\A"- g- cvzﬁ?;ﬁ”aingE-EK':A'zniroe”;mZZﬁ,\ib |27 F’(;987LD'961(1996
tages of the TDCFG method. Th? ground and .fiI’St eXCited38: G.arashchuk, F. éréssman, pand D’. Tar{nor,%a’araday Dis@é,si’Sl
states are only separated by 4.5 ¢mUsually, this would (1997.
require a large number of trajectories and symmetrization of'B. E. Guerin and M. F. Herman, Chem. Phys. Le86, 361(1998.
the correlation function to resolve. In this case a single wave, K- G- K&y, J. Chem. Physl01, 2250(1994.
. . e X. Sun and W. H. Miller, J. Chem. Phy&08 8870(1998.
packet is able to resolve this splitting remarkably well. The 7, A " mandelshtam and M. Ovchinnikov, J. Chem. Phy€8 9206
HK method only picks up one state well, and the higher- (199s.
energy one is not resolved. In this case the TDCFG methodG. Campolieti and P. Brumer, J. Chem. Phy89, 2999(1998.

: f 9K. Thompson and N. Makri, J. Chem. Phyid.0, 1343(1999.
is obviously advantageous to the HK method. 19W, . Miller, Adv. Chem. Phys25, 69 (1974,

1w. H. Miller, J. Chem. Phys95, 9428(1991).
IV. CONCLUSIONS 12E.J. Heller, J. Chem. Phy85, 9431(1991).
) . _ E. J. Heller, J. Chem. Phyg5, 2923(198)).
The trajectory-dependent frozen cellularized Gaussiar‘s. M. Anderson, J. K. Ka, P. Felker, and D. Neuhauser, Chem. Phys. Lett.
method appears to be a very promising extension to semil-5328 516(2000. (1990
; ; ; ; ; 'D. Neuhauser, J. Chem. Phya3, 2611(1990.
_classmal dynamics. Us_ua_l sem|cIaSS|c_aI signals degrade ARy, R Wall and D. Neuhauser, J. Chem. Phy82, 8011(1995.
idly and become chaotic in nature. This method allows us ta7y £ Herman, Chem. Phys. Le@75 445 (1997).
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