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An ab initio Langevin dynamics approach is developed based on stochastic density functional theory
(sDFT) within a new embedded saturated fragment formalism, applicable to covalently bonded sys-
tems. The forces on the nuclei generated by sDFT contain a random component natural to Langevin
dynamics, and its standard deviation is used to estimate the friction term on each atom by satisfying
the fluctuation–dissipation relation. The overall approach scales linearly with the system size even
if the density matrix is not local and is thus applicable to ordered as well as disordered extended
systems. We implement the approach for a series of silicon nanocrystals (NCs) of varying size with
a diameter of up to 3 nm corresponding to Ne = 3000 electrons and generate a set of configurations
that are distributed canonically at a fixed temperature, ranging from cryogenic to room temperature.
We also analyze the structure properties of the NCs and discuss the reconstruction of the surface
geometry. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4984931]

I. INTRODUCTION

Ab initio molecular dynamics based on density functional
theory (DFT) is becoming an important tool for studying the
plethora of structural and dynamical processes in a broad
range of systems in material science, chemistry, biology, and
physics.1–11 The application of this approach to very large
systems is still limited by the computational scaling of the
electronic structure portion of the calculation, regardless of
whether one uses a Lagrangian-based or Born-Oppenheimer-
based method. This is because of the cubic scaling involved
in solving the Kohn-Sham equations coupled with the need
to iterate to self-consistency or to propagate the Kohn-Sham
(KS) orbitals, as both of these options further increase the
computational times by an order of magnitude.

Significant advances in these respects have been made
along two major directions. One primary direction is based on
a Lagrangian formulation of density functional theory1,11 and
circumvents the need for SCF iterations by the propagation of
the KS orbitals. This venue does not eliminate the cubic scaling
and is therefore limited to relatively small systems. Another
approach is based on linear-scaling techniques,12–15 which
reduces the algorithmic complexity by finding the density
matrix directly, relying on its asymptotic sparseness in real-
space. However, sparsity sets in only for very large systems,

a)Electronic mail: eran.rabani@berkeley.edu
b)Electronic mail: dxn@chem.ucla.edu
c)Electronic mail: roi.baer@huji.ac.il

limiting the applicability sparse-matrix methods, especially in
3D.

In a recent set of papers, we have introduced the stochastic
DFT (sDFT) methods16–19 which scale linearly (or even sub-
linearly) with the system size and do not rely on the sparsity
of the density matrix. sDFT is a general approach to the elec-
tronic structure based on a stochastic process and is applicable
to extended ordered as well as disordered materials. Some of
the techniques we use, based on the stochastic trace formula,20

have been developed for the tight-binding electronic struc-
ture,21–23 for molecular electronics24 and for multi-exciton
generation in nanocrsytals.25 The success of sDFT in reduc-
ing the scaling comes at a price of introducing a stochastic
error in all its predictions, including forces, and that precludes
application to ab initio molecular dynamics.

In this paper, we show that sDFT can be used to study
equilibrium structural properties of large nanocrystals (NCs),
despite the statistical fluctuations in the force estimates. For
this, we invoke the Langevin equation following the work of
Attaccalite and Sorella,26 and generate a sequence of con-
figurations distributed according to the canonical ensemble.
These configurations can be used in a variety of applications
for studying the structural, electronic and optical properties of
NCs. Here we demonstrate their use for studying the structural
properties of silicon nanocrystals (NCs) with a diameter of up
to 3 nm, and Ne = 3000 electrons.

The paper includes development of the embedded satu-
rated fragments method which allows reducing the statistical
errors in sDFT. This new method is inspired by, but more
general than, the embedded fragments method developed in

0021-9606/2017/146(22)/224111/9/$30.00 146, 224111-1 Published by AIP Publishing.
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Ref. 17. It uses small saturated fragments of the system and
carves out the relevant part of the density to be embedded
in the system. Hence, it is applicable not only to clusters of
molecules, like Ref. 17, but also to covalently bonded sys-
tems, such as silicon NCs. The method is described in detail
in Appendix A.

II. METHODS
A. Stochastic DFT

Kohn-Sham density functional theory27,28 maps a sys-
tem of Ne interacting electrons in an external electron-nucleus
potential veN (r) =− e

4πε0

∑
N

ZN e
|r−RN |

, where RN (N = 1, 2, . . .)
are the nuclei positions and ZN e are their charge (e is the elec-
tron charge), onto a system of non-interacting electrons (the
KS system), having the same ground-state density n (r). This
mapping is performed by solving the KS equations27,28

ĥKSφn (r) = εnφn (r) , (1)

where the KS Hamiltonian is

ĥKS = −
~2

2me
∇2 + vKS (r) , (2)

and the KS potential vKS (r) is the sum of the external electron-
nuclear potential veN (r), the density-dependent Hartree poten-
tial vH (r) = e2

4πε0
∫

n(r′)
|r- r′ |dr′, and the exchange-correlation

potential vxc (r),

vKS (r) = veN (r) + vH (r) + vxc (r) . (3)

In the KS system, the density is expressed in terms of the nor-
malized single electron KS eigenstates φn (r) and eigenvalues
εn,

n (r) = 2
∑

n

θ (µ − εn) |φn (r)|2, (4)

where θ (x) is the Heaviside function and µ is the chemical
potential chosen so that 2

∑
n θ (µ − εn) = Ne. Equations (1)–

(4) must be solved self-consistently since ĥKS depends on the
density. While the entire scheme is a significant simplification
over the original many-electron problem, it remains a chal-
lenge for large systems since the computational effort scales
as O

(
N3

e

)
.

An important step towards reducing the computational
scaling of KS-DFT was recently proposed by Baer, Neuhauser,
and Rabani (BNR),16 where the density of Eq. (4) was
expressed as a trace over the projected density operator,16

n (r) = 2Tr
[
θ
(
µ − ĥKS

)
δ (r − r̂)

]
. (5)

The problem now shifts into calculating self-consistently the
trace in Eq. (5) [since ĥKS depends on n (r)] rather than solv-
ing the KS equations by brute-force diagonalization. When
the trace is performed using the KS eigenstates, the computa-
tional cost remains O

(
N3

e

)
similar to the traditional approach.

However, since the trace is invariant to the basis, alternative
schemes that potentially lead to improved scaling can be used.
One such scheme is based on the concept of a stochastic trace
formula, which reduces the scaling of the trace operation by
introducing a controlled statistical error.20

Using the stochastic trace formula, the density can be
estimated as a symmetrized stochastic trace formula, given
by16

nI (r) =
〈
〈χ|

√
θβ

(
µ − ĥKS

)
2δ (r − r̂) ,

×

√
θβ

(
µ − ĥKS

)
|χ〉

〉
χ

, (6)

where 〈· · · 〉χ denotes an average over I stochastic orbitals |χ〉,
defined as

〈r| χ〉 = h−3/2eiϕr (7)

for each grid point r, the parameter h (not to be confused with
the KS Hamiltonian ĥKS operator) is the grid spacing, and
ϕr are statistically independent random variables in the range
[0, 2π] (

〈
eiϕr e−iϕr′

〉
ϕ
= δr r′). The density n (r) is, strictly speak-

ing, given by the limit n (r) = limI→∞ nI (r) and we approx-
imate it with a finite I. The Heaviside function in Eq. (6) is
smoothed by the function θβ (ε) ≡ 1

2 erfc
[
βε

]
, where β is a

large constant satisfying βEg� 1, where Eg is the KS-DFT
fundamental gap. Throughout this paper we set the value of

β to 100E−1
h . The action of

√
θβ

(
µ − ĥKS

)
on |χ〉 is evalu-

ated by a Chebyshev expansion in powers of the sparse KS
Hamiltonian, ĥKS.29 The length of the Chebyshev series is
determined by the value of (µ − Emin) /∆E and β∆E, where
∆E = (Emax − Emin) /2 and Emin/max are the minimal and max-
imal eigenvalues of ĥKS . Under the conditions of the present
systems, the length of the series is ∼3000 terms.

The stochastic trace evaluation [Eq. (6)] reduces the
computational scaling of KS-DFT to O (Ne) and for cer-
tain properties even to a sub-linear scaling.16 Linear-scaling
complexity is achieved due to the following facts: (1) the
application of a Hamiltonian to a stochastic orbital, ĥKS |χ〉,
requires a linear scaling effort (irrespective of the structure of
the orbital); (2) the length of the Chebyshev series is inde-
pendent (or at most weakly dependent) of the system size;
and (3) only a system-size independent number of stochas-
tic orbitals are required. This type of assumptions is differ-
ent from the linear-scaling approaches depending on density
matrix sparsity,12,30 which assume that locality of orbitals is
not completely destroyed by the repeated operation of the
Hamiltonian.

A converged self-consistent solution of Eq. (6) provides an
estimate of the electron density and in addition can be used to
generate other quantities, such as the density of states (DOS),
the total energy per electron, and the forces acting on the nuclei.
All estimates contain a statistical error that can be controlled
by increasing the number of stochastic orbitals (I) used to
evaluate the trace in Eq. (6). Of particular relevance to this work
are the Cartesian forces exerted by the electrons on N nuclei
(α = 1, . . . , N), which can be evaluated through the Hellmann-
Feynman theorem,31,32

f α = −
∫

∂veN (r)
∂Rα

nI (r) d3r. (8)

It should be stressed that for finite sampling, these forces are
only approximately commensurate with the stochastic esti-
mate of the energy (which is not used in the sampling procedure
at all), as discussed in Appendix B. The stochastic estimate of
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FIG. 1. The x-component of the atomic force statistics for the 71 atoms of Si35H36 calculated by sDFT (black dashed line for I = 16) and efsDFT (solid lines,
using passivated fragments of size smaller or equal to Si5, depending on the way surface atoms are treated). For each atomα = 1, . . . , N and number of stochastic

orbitals I, we present the standard deviation (STD)σ (fx) =
√〈(

f x
α −

〈
f x
α
〉)2

〉
I

(left) and the mean-absolute-deviation (MAD) from the deterministic DFT (dDFT)

value,
〈���f

x
α −

(
f x
α
)det���

〉
I
. These statistics were calculated using 60 independent efsDFT/sDFT runs. Atoms are ordered by their distance from the origin, the first

35 atoms are Si atoms followed by 36 H atoms.

the Hellmann-Feynman forces is an excellent estimator of the
deterministic forces, as can be seen in Fig. 1, where the mean
absolute deviation is dominated by the fluctuations and not by
additional bias terms.

These sDFT forces can be expressed as

f α = f det
α + f fluc

α + f bias
α , (9)

where f det
α is the deterministic (generally unknown) force, f fluc

α

is the pure fluctuating term, and f bias
α is the bias expected

to be proportional to 1
I in leading order. The choice of I

should be large enough to reduce f bias
α to negligible values,

and the only source of error in the procedure is then the sta-
tistical fluctuations proportional to 1√

I
with vanishing mean(〈

f fluc
α

〉
= 0

)
.

B. Embedded saturated fragments sDFT

The reduction of the scaling in sDFT is achieved by replac-
ing the deterministic, numerically exact, trace evaluation with
a stochastic sampling of the density. In return, this leads to
statistical errors in the computed observables. To reduce the
size of the statistical fluctuations, an embedded saturated frag-
ments method is introduced inspired by (but different from)
the method of Ref. 17. The latter approach was suitable mainly
for systems composed of proximate but chemically separated
molecules (like clusters of water molecules, for examples).
The present method is applicable for fragmenting covalently
bonded systems, like silicon NCs.

In this approach, the system is divided into F small frag-
ments that are possibly overlapping. The division to fragments
is flexible, and any desired physically motivated fragmentation
can be used. The density is then a sum of the fragment density
and a small correction term,

n (r) = nF (r) + ∆n (r) , (10)

where nF (r) =
∑F

f=1 nf (r) is the density generated by the
individual fragments obtained from a deterministic KS-
DFT (dDFT) calculation for each fragment and ∆n (r)
=

(
nI (r) − nI

F (r)
)

is a correction term evaluated using stocha-

stic orbitals. Here, nI (r) is given by Eq. (6) and
nI

F (r) =
∑F

f=1 nI
f (r) is a sum over a stochastic estimate of

the fragments density. In the limit I→∞, Eqs. (6) and (10)
are identical and equal to the deterministic density. For finite
values of I, the size of the statistical fluctuations of the two
approaches are quite different. Since the deterministic frag-
mented density, nF (r), provides a reasonable approximation
for the full density n (r), the correction term, ∆n (r), which is
evaluated stochastically, is rather small, leading to a reduced
variance in the relevant observables (forces, DOS, total energy
per electron, etc.) compared to the direct stochastic approach
of Eq. (6). An equivalent viewpoint is that the fragmentation
is a device for reducing the variance in the stochastic evalua-
tion of the density. This is evident by rewriting Eq. (10) in the
following form:

n (r) = nI (r) +
F∑

f=1

(
nf (r) − nI

f (r)
)

, (11)

and the implementation of this form is described in
Appendix A.

To assess the accuracy of the embedded saturated frag-
mented sDFT (efsDFT), we calculated the standard deviations
(STDs) and mean absolute deviations (MADs) with respect the
deterministic DFT of the atomic forces in an Si35H36 NC using
hydrogen passivated Si5 fragments. The results are shown in
Fig. 1.33,43–45 The STDs and MADs decrease as 1/

√
I , indi-

cating that the bias in the force estimation is negligible. The
standard deviations in the sDFT forces are larger by a factor of
≈3 compared to those of efsDFT. This implies that the required
number of stochastic orbitals in efsDFT is nearly an order of
magnitude smaller than in sDFT for similar STDs. The STDs
can be further reduced by using larger fragments as discussed
below (cf. Fig. 7).

C. Langevin dynamics based on efsDFT

The standard approach to generate canonically distributed
configurations using ab initio techniques is based on molecu-
lar dynamics, which requires as input accurate force estimates
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for each atomic degree of freedom. Since the forces gen-
erated by efsDFT contain a stochastic component, we use
Langevin dynamics (LD) instead of molecular dynamics to
sample configurations according to the Boltzmann distribu-
tion. A LD trajectory34–37 is a sequence of configurations
(p, q)m = (p (tm) , q (tm)) at discrete “times” tm =m∆t, where
∆t is the time step, and q≡

(
q1, . . . , qN

)
and p≡

(
p1, . . . , pN

)
are the Cartesian coordinates and conjugate momenta, respec-
tively, for the N atoms. The trajectory is a solution of the
Langevin equation (LE) of motion,38

µαq̈α = f α (q) − γαpα + ηα, (12)

where µα is the mass of the atom α, γα is its friction con-
stant, and f α = f det

α + f fluc
α is the total efsDFT force act-

ing on it, including deterministic and fluctuating parts [see
Eq. (9)]. The bias is assumed negligible, so that

〈
f α

〉
= f det

α .
In Eq. (12) ηα is an additional uncorrelated white-noise force
introduced so as to satisfy the fluctuation-dissipation (FD) rela-
tion. We require that the total random fluctuation on each atom
obeys 〈

ηα (t)
〉
=

〈
f fluc
α (t)

〉
= 0

and 〈(
ηα (t) + f fluc

α (t)
)
⊗

(
ηα′ (t

′) + f fluc
α′ (t ′)

)〉
=

〈
ηα (t) ⊗ ηα′ (t

′)
〉

+
〈
f fluc
α (t) ⊗ f fluc

α′ (t ′)
〉

= I3×3σ
2
αδαα′δ (t − t ′) ,

(13)

where α, α′ = 1, . . .N are atom indices, 〈· · · 〉 designates aver-
age over the atomic force distribution, I3×3 is the 3× 3 unit
matrix, and σα is the atomic force STD of atom α, which is
taken to satisfy the fluctuation-dissipation relation,

σ2
α = 2µαγαkBT . (14)

We use the Verlet-like algorithm39 for numerically inte-
grating the LE of motion at a fixed temperature T and a
predefined time step ∆t. The positions and momenta in time
step m + 1 depend on the positions and momenta in time
step m as well as on the forces in time step m and the
additional white noise ηm

α is sampled from a Gaussian dis-
tribution such that the discretized version of Eq. (13) holds:〈(
ηm
α + f fluc

α

)
⊗

(
ηn
α′ + f fluc

α′

)〉
∆t = Iσ2

αδαα′δmn,

qm+1
α = qm

α + bα∆tµ−1
α pm

α +
1
2

bα∆t2µ−1
α

(
f m
α + ηm+1

α

)
,

pm+1
α = aαpm

α +
1
2
∆t

(
aαf m

α + f m+1
α + 2bαη

m+1
α

)
, (15)

where aα = bα
(
1 − 1

2γα∆t
)

and b−1
α = 1 + 1

2γα∆t. The algo-
rithm allows for stable and accurate solutions of the LE with
time step comparable to that used in molecular dynamics sim-
ulations for similar systems. It treats the additional white
noise component ηα of the force differently from the force
f α = f det

α + f fluc
α that result from the efsDFT calculation con-

taining deterministic and fluctuating components that cannot
be separated.

In Fig. 2, we plot for Si35H36 the running average of the
transient temperature, Tm, calculated from the kinetic energy

FIG. 2. The Verlet-like39 temperature in Si35H36 evaluated with efsDFT
using transient kinetic energy (dotted line), running average kinetic energy for
Si (red), and the running average virial (black) using I = 30 stochastic orbitals,
a time step of ∆t = 1.2 fs, and the friction coefficients γSi =γH = 0.04 fs−1. In

the canonical distribution, the average kinetic energy T is equal to
√

3N
2 δT ,

where δT is the fluctuation in the kinetic energy.40 The standard deviation of
the transient shown as a dotted line is δT = 29 K and multiplied by

√
3N/2,

where N = 71 is the number of atoms in the system, gives 299.3 K, which is
close to the designated temperature. The average kinetic energy of Si and H
is 315 K and 285 K, respectively.

Tm
K =

2
3NkB

∑
α

(
pm
α

)2/2µα (16)

and from the virial estimator,

Tm
V = −

1
3NkB

∑
α

(
f m
α + ηm

α

)
·
(
qm
α −

〈
qα

〉)
. (17)

In the above,
〈
qα

〉
is the time average of the coordinate of

atom α. The initial positions of the Si atoms were taken from
the bulk values. All surface Si atoms with more than two dan-
gling bonds were removed, and the remaining surface Si atoms
were passivated using one or two H atoms placed in a tetrahe-
dral geometry at the Si–H distance of 1.47 Å. The momenta
were sampled from a Boltzmann distribution at T = 300 K.
This non-equilibrium initial configuration relaxes towards
equilibrium.

The agreement in Fig. 2 between the two temperature esti-
mators is consistent with a proper sampling of the canonical
distribution of both positions and velocities. The small dis-
crepancies at the longest averaging time are due to the large
fluctuations of the transient temperature, particularly when
using the virial estimator. We have also calculated the fluc-
tuations in the kinetic energy and found good agreement with
the corresponding analytical value (see caption of the figure).
The two atomic species have a slightly ±5% deviations in the
temperatures. These deviations are slightly inconsistent with
equipartition theorem and may result from several factors, such
as the finite time step of the Langevin propagator,39 incom-
plete SCF convergence,40 and insufficiently accurate estimate
of the amount of white noise ηm

α in Eq. (13) required to fulfill
the fluctuation-dissipation relation.

D. Determining the optimal friction

The effect of γSi on the configurational relaxation and on
the velocity autocorrelation decay is illustrated in Fig. 3 for
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FIG. 3. The normalized velocity autocorrelation function (top panel) and the
mean nearest-neighbor Si–Si distance (bottom panel) in Si35H36 as a function
of time for a LD trajectory at T = 300 K with time step ∆t = 1.2 fs calcu-
lated using a dDFT based LD for different values of γ =γSi =γH. The dashed
curve corresponds to efsDFT based LD calculation with γ = 0.04 fs−1 and
I = 30 stochastic orbitals. The simulation started intentionally from an inflated
configuration in order to measure the relaxation time.

Si36H35. In order to decrease the number of unknown parame-
ters, we set the values of γα andσα to be identical for all atoms
of the same type (i.e., Si or H in the systems studied here). To
achieve such a uniform value of σ, we introduced white noise

ηi
α =

√(
σi
α

)2
−

〈(
f i,fluc
α

)2
〉

for each degree of freedom [see

Eq. (13)], where
〈(

f i,fluc
α

)2
〉

is estimated by a separate set of

runs on the initial NC configuration using several indepen-
dent sets of stochastic orbitals. Note that we have tested that

TABLE I. Value of various parameters for the LD based on efsDFT calcu-
lations: The friction coefficients γ, number of stochastic orbitals I, time-step
∆t, and the wall time per single SCF iteration titer.

γ
(
fs−1

)
NC T(K) H Si I ∆t

(
fs−1

)
titer (min)

Si35H36 30 0.12 0.04 120 1.2 1
300 0.04 0.04 30 1.2 1

Si147H100 30 0.12 0.04 120 1.2 2
300 0.12 0.04 30 1.2 2

Si705H300 30 0.12 0.04 120 1.2 10
300 0.12 0.04 92 1.2 10

FIG. 4. The Si–Si pair distribution function g (r) for Si35H36 calculated using
dDFT (dotted lines) and efsDFT based LD (solid lines, see Table I for parame-
ters) at T = 30 K (blue curves) and 300 K (red curves). Inset: Details of the first
(nearest neighbor) peak. The dotted lines are for different friction coefficients
γ =γSi =γH in the range 0.02–0.5 fs−1.

the magnitude of the sDFT force fluctuation
〈(

f fluc
)2

〉
is not

sensitive to the particular configuration used.
As expected, the configurational relaxation time increases

with increasing values of γSi with the opposite trend for the
decay time of the velocity autocorrelation function. Based on
the results of Si36H35 presented in Fig. 3, we conclude that a
friction coefficient of 0.04 fs−1 is sufficiently small for this sys-
tem, with respect to minimizing both velocity and pair distance
autocorrelation times. Although lower values of the friction
coefficients could decrease the correlation time further, they
would require reducing the statistical noise, which would be
expensive to achieve using sDFT. Thus we chose the friction
constants, γSi = 0.04 fs−1 for Silicon and γH = 0.12 fs−1 for the
lighter H atoms. These values were used for the larger systems
described in Sec. III (see Table I). Note that the results shown
in Fig. 3, which were generated using LD under dDFT, could
have been equally well generated under efsDFT. This is shown
explicitly for γSi = 0.04 fs−1 (dotted red line) proving that the

FIG. 5. The Si–Si pair distribution function g (r) for Si147H100 (left) and
Si705H300 (right) calculated using efsDFT based LD. Upper panels: g (r) for
T = 30 K (blue curves) and T = 300 K (red curves). Lower panels: The first
peak of g (r) at 30 K shown for several times. The calculation parameters are
given in Table I.
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FIG. 6. Si–Si nearest neighbor distance
averaged over atoms in shells A-E (see
Table II for definition), at 30 K for
Si147H100 (left) and Si705H300 (right)
as a function of time. The calculation
parameters are given in Table I.

relaxation times are similar to those of the dDFT based LD
calculation with the same value of γSi.

E. Validation of LD within efsDFT

Validation of the structure obtained using efsDFT based
LD is demonstrated using the pair distribution function g (r).34

For finite size NCs, the average number of neighbors at a dis-
tance r is expected to be smaller than the bulk value due to
surface atoms with a smaller number of neighbors. Figure 4
shows a close agreement between the dDFT and efsDFT based
LD estimates of g (r) of the Si35H36 NC at two temperatures.
The inset focuses on the first peak in g (r), comparing the
efsDFT to dDFT at T = 30 and 300 K.

III. RESULTS

In Secs. I and II, we presented the methods and assessed
the accuracy and validity of the efsDFT based LD. Here we
apply the method to study the structural properties of larger
NCs exceeding Ne = 3000 electrons. The Si–Si pair distribu-
tion functions g (r) at two temperatures T (30 and 300 K)
are displayed in the upper panel of Fig. 5 for Si147H100 and
Si705H300. Temperature broadens the peaks by a factor of 2–3
without significantly changing the peak position.

In the lower panel of Fig. 5, we plot the transient and
relaxed g (r) at 30 K for the two systems, focusing on the first,
nearest neighbor peak. As described also for Si35H36, the initial
positions of the Si atoms for both systems were taken from the
experimental bulk values, and all surface Si atoms with more
than two dangling bonds were removed. The remaining surface
Si atoms was then passivated using one or two H atoms placed
in a tetrahedral position at the Si–H distance of 1.47 Å. The
initially sharp peak broadens and shifts to longer Si–Si bond
lengths as the system relaxes towards thermal equilibrium. For

TABLE II. The shells of the silicon NCs used for analyzing the bond length
relaxation in Fig. 6: Their inner and outer radii (in Å), the number of Si atoms
NSi, and the number of nearest neighbor (NN) Si–Si pairs NNN.

Shell Rin Rout NSi NNN

A 0 5.5 35 52
B 5.5 8.5 113 158
C 9.0 11.6 153 163
D 11.6 13.6 200 189
E 13.6 15.1 205 168

30 K, the relaxation times are 180 and 650 fs for Si147H100 and
Si705H300, respectively. For 300 K, they are 180 and 250 fs,
respectively.

The relaxation transient is studied in greater detail in
Fig. 6, where the average nearest-neighbor bond lengths are
shown for Si147H100 (spherical shells A-B) and Si705H300

(shells A-E); see Table II for the definition and properties
of the shells. In Si705H300 the deep layer shells (A-D) relax
slower than those near the surface showing that relaxation
progresses from the surface inwards. The difference between
the relaxation times of the two systems is correlated with the
smaller frequency, ω, of the breathing mode of the larger
NC. In the limit of an overdamped motion (as is the case
here since γ2�ω2), the relaxation is dominated by two time
scales proportional to γ−1 and (ω2/γ)

−1
. The former leads to

a fast relaxation, while the latter is slower and depends on
the value of ω−2. The ratio of the breathing mode frequency

for the two particles is
ω2

L

ω2
S
≈ 2.8 (L/S for large/small) assum-

ing that the breathing mode frequency scales linearly with
the NC diameter.41 This is similar to the ratio of the relax-
ation times (650/180 = 3.6) for the lower temperature. At the
higher temperature, one needs to consider anharmonic effects
which are more pronounced in the large NC with lower acous-
tic phonons. Another noticeable feature in Fig. 6 is that the
Si–Si bonds seem slightly shorter in Si147H100 than in
Si705H300. This results from the difference in the bond dis-
tance of atoms in the outer shell, while the inner shell atoms
have similar bond distances.

IV. CONCLUSIONS

In this paper, we developed an ab initio Langevin dynam-
ics approach based on a new embedded saturated fragment
stochastic DFT method. We showed how the noisy forces
resulting from the efsDFT calculation are used to generate
a set of configurations that are distributed canonically at cryo-
genic and room temperatures. Choosing the friction coeffi-
cients and the number of stochastic orbitals according to the
criteria presented in Sec. II D, thermalization is reached within
≈100 time steps for these materials, since the method is triv-
ially parallelizable, larger computer resources would allow to
easily reduce the friction coefficients thus greatly improving
the sampling efficiency. While the methods presented here
have already allowed impressive achievements, such as deter-
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mining the structural properties of silicon NCs of 3 nm diam-
eter containing more than 3000 electrons, larger systems still,
of unprecedented size, are now coming within our grasp due
to the linear-scaling highly parallelizable features of sDFT.
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APPENDIX A: THE EMBEDDED SATURATED
FRAGMENTS APPROACH

Here, we provide the technical details for the embedded
fragment method described in Sec. II. The method corrects the

stochastic estimate 〈Â〉
I

for the expectation value 〈Â〉 of a one-
body operator Â, using calculations performed on F separate
fragments [see Eq. (11)],

〈Â〉 = 〈Â〉
I

+
F∑

f=1

∆AI
f , (A1)

where the stochastic correction due to fragment f is

∆AI
f = 〈Âf 〉 − 〈Âf 〉

I
, (A2)

and the deterministic and the stochastic estimates, 〈Âf 〉 and

〈Âf 〉
I
, are calculated directly on the fragment itself.

Previous implementations of embedded fragment sDFT
were applied to systems of many weakly interacting molecules
where the selection of fragments or clusters of such molecules
was natural.17 We now describe a new method for defining
and carrying calculations with fragments which can break up
covalently bonded systems, such as silicon NCs. The large
system is divided into F small fragments composed of one
or more bonded atoms each. The surface dangling bonds of
the fragment are passivated using an H atom placed in 1.46 Å
from the Si atom, in the direction of the neighboring atom
which is not included in the fragment. This forms a satu-
rated fragment. For a saturated fragment f, the deterministic
KS-DFT method is applied to determine the KS eigenvalues
ε

f
n and eigenfunctions ψ

f
n (r). Further, occupation numbers(

pf
n

)2
= 1

2 erfc
(
β

(
ε

f
n − µf

))
are introduced for determining

the saturated fragment density nsf (r) =
∑

n

(
pf

n

)2
ψ

f
n(r)2. The

fragment density nf (r) = cf (r)2nsf (r) is “carved out” of nsf (r)
using a carving function cf (r)2. Thus

nf (r) = cf (r)2
∑

n

(
pf

n

)2
ψ

f
n(r)2, (A3)

where, inspired by Hirshfeld partitioning,42 the carving func-
tion is defined as

cf (r) =

√√√ ∑
a∈f n(0)

a (r)∑
a∈sf n(0)

a (r)
,

where n(0)
a (r) is the spherical density of neutral atom a. The

temperature parameter β in the definition of the population pf
n

is chosen to be the same value as that of the sDFT calculation,
while the chemical potential µf of each fragment is determined
by the condition of neutrality of the fragment,∫

nf (r) dr =
∫ ∑

a∈f

n(0)
a (r) dr. (A4)

Defining non-orthogonal functions ψ̃f
n (r) = cf (r) pf

nψ
f
n (r), the

fragment density of Eq. (A3) becomes nf (r) = 2
∑

n ψ̃
f
n(r)2, so

the chemical potential is determined from the condition

2
∑

n

〈
ψ̃

f
n

���ψ̃
f
n

〉
=

∫ ∑
a∈f

n(0)
a (r) dr. (A5)

After determining µf and in order to construct the reduced

density matrix (RDM), we orthogonalize the functions ψ̃f
n (r)

by diagonalizing the overlap matrix Sf
nn′ =

〈
ψ̃

f
n

���ψ̃
f
n′

〉
, obtain-

ing the unitary matrix U f of eigenvectors and the eigenval-

ues sf
n > 0 (so that UT

f Sf Uf = diag
[
sf

1, sf
2 . . .

]
). The orthogonal

wavefunctions are φ
f
m (r) =

∑
n ψ̃

f
n (r) U f

nm and the norm is〈
φ

f
m

���φ
f
m

〉
= sf

m. Using the new wave functions, the unsaturated
fragment density is given by

nf (r) = 2
∑

m

φ
f
m(r)2

and the RDM by

θ̂f = 2
∑

m

���φ
f
m

〉 〈
φ

f
m

��� .

Using the RDM, we express the unsaturated fragment expec-
tation value appearing in Eq. (A2) as〈

Âf

〉
≡ tr

[
θ̂f Â

]
= tr

[√
θ̂f Â

√
θ̂f

]
,

where √
θ̂f =

√
2
∑

m

(
sf

m

)−1/2 ���φ
f
m

〉 〈
φ

f
m

��� . (A6)

By choosing the fragment grid-points to be a subset of the full
system grid, each stochastic orbital χi (i= 1, . . . , I) of the full
system appears as a stochastic orbital on the fragment grid and
can be used to perform the stochastic estimate appearing in
Eq. (A2) as 〈

Âf

〉I
=

1
I

∑
i

〈
χi

�����

√
θ̂f Â

√
θ̂f

�����
χi

〉
f
,

where the subscript f on the left denotes integration over the

fragment grid. The difference ∆AI
f =

〈
Âf

〉
−

〈
Âf

〉I
in Eq. (A2)

can now be written in a unified form as

∆AI
f = 2

∑
mm′
∆

f I
mm′

〈
φ

f
m

���Â
��� φ

f
m′

〉
f
, (A7)
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FIG. 7. Efficacy of fragments on the
inherent sDFT STD σ1 (fx) of the x-
component of the force on each atom
of Si35H36 (left) and Si705H300 (right)
NCs. The inherent STD σ1 is the actual
STD σ times

√
I . Si atoms are shown

first followed by H atoms, where atoms
are ordered by distance from the NC
center. Calculations are done on the con-
figuration cut out from the bulk sili-
con, where H atoms were placed near
the surface for saturating the dangling
bonds.

where

∆
f I
mm′ ≡ δmm′ −

1
I

∑
i

〈
χi

���φ
f
m

〉
f

〈
φ

f
m′

��� χi

〉
f√

sf
msf

m′

. (A8)

Hence, by calculating the matrix ∆f I
mm′ all types of expectation

value corrections can be obtained from Eq. (A7).
The efficacy of embedded fragments in sDFT force cal-

culations is achieved through a reduction of the STD σ (fx) of
a force component. The STD σ (fx) is proportional to 1/

√
I ,

where I is the number of stochastic orbitals and the propor-
tionality constant, denoted by σ1 (fx) =

√
Iσ (fx), is called the

inherent STD. This quantity depends on the NC characteristics
but not on the number of stochastic orbitals. In Fig. 7 we plot
the inherent STD on each atom for Si35H36 and Si705H300 as
a function of fragment size. Even the use of the smallest frag-
ments reduces the inherent force STD by a significant factor,
1.6 (for Si705H300) to 2.3 (for Si35H36). Using larger fragments
reduces the STD by an additional factor of ≈1.5, with increas-
ing effect for larger systems since the electron density in the
larger fragments is similar to that of the full system. It is inter-
esting to see that for the forces there is no noticeable sublinear
scaling: the inherent STD for both systems is similar, with the
larger system having slightly higher (≈5%) STD.

In summary, the embedded fragment sDFT method serves
as a way to expedite the sDFT calculation by a judicious choice
of fragment size and composition. As the fragment size grows,
the numerical effort invested in sDFT decreases (due to reduc-
tion of STD) while in dDFT it increases. For example, consider
Fig. 7 where we showed that increasing the fragment size
by a factor of 10–20 reduces the STD by a factor of 2 and
therefore the sDFT CPU time by a factor of ≈22 = 4. On the
other hand since the fragments are ten-fold larger, the amount
of dDFT work on them increases (cubically) by a factor of
more than ∼103. Clearly then, the optimal fragment size is
system dependent. Embedded fragments have the additional
benefit of providing an initial density for the SCF calculation,
significantly reducing the number of SCF cycles.

APPENDIX B: STOCHASTIC ESTIMATES
OF THE FORCES AND ENERGY PERTURBATIONS

In the stochastic method, the electronic density is [see
Eq. (6)]:

n (r) = 2
〈
χ

���P̂δ (r − r̂) P̂��� χ
〉

, (B1)

where P̂ =
√
θµ is the Chebyshev expansion of the projection

operator, depending on β and µ, on the occupied space of ĥKS ,
and the energy is

E = 2
〈
χ

���P̂T̂ P̂��� χ
〉

+
∫
veN (r; R) n (r) dr + EHXC [n] ,

= 2
〈
χ

���P̂
[
T̂ + veN (r; R)

]
P̂��� χ

〉
+ EHXC [n] , (B2)

where EHXC [n] is the Hartree-exchange-correlation energy
functional, depending only on the electronic density n (r).
Under variation in position of nuclei R,

δE = 2
〈
χ

���P̂
[
T̂ + v (r̂, R)

]
δP̂��� χ

〉
+ 2

〈
χ

���δP̂
[
T̂ + v (r̂, R)

]
P̂��� χ

〉
+

〈
χ

���P̂δv (r̂, R) P̂��� χ
〉

+
∫
vHXC (r) δn (r) dr, (B3)

which using

δn (r) = 2
〈
χ

���δP̂δ (r − r̂) P̂��� χ
〉

+ 2
〈
χ

���P̂δ (r − r̂) δP̂��� χ
〉

(B4)

can be written as

δE = 2
〈
χ

���ĥKSP̂δP̂ + δP̂P̂ĥKS
��� χ

〉
+

〈
χ

���P̂δv (r̂, R) P̂��� χ
〉

,

= 2
〈
χ

���ĥKSP̂δP̂ + δP̂P̂ĥKS
��� χ

〉
+
∫

n (r) δv (r; R) d3r (B5)

The average of the second term on the right leads to the
Hellmann-Feynman force Eq. (8), while the first term can be
shown to vanish when a full sampling is made on χ and when
β → ∞, owing to the fact that within these limits PδPP = 0.
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