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Electronic structure of large systems: Coping with small gaps using
the energy renormalization group method
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Department of Chemistry, University of California, Berkeley and Chemical Sciences Division,
Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460

(Received 17 July 1998; accepted 4 September 1998

A newly developed energy renormalization-group method for electronic structure of large systems
with small Fermi gaps within a tight-binding framework is presented in detail. A telescopic series
of nested Hilbert spaces is constructed, having exponentially decreasing dimensions and electrons,
for which the Hamiltonian matrices have exponentially converging energy ranges focusing to the
Fermi level and in which the contribution to the density matrix is a sparse contribution. The
computational effort scales near linearly with system size even when the density matrix is highly
nonlocal. This is illustrated by calculations on a model metal, a small radius carbon-nanotube and
a two-dimensional puckered sheet polysilane semiconductor.19€8 American Institute of
Physics[S0021-960808)31046-§

I. INTRODUCTION or the exponential decay of density mat(XM) correlations
_ . _ in real spac®**(loosely referred to as DM sparsjtyThere
The Kohn—Shaﬁn version of the density-functional 4re jnteresting systems such as metals, where the DM is not
theory’ (KS-DFT) in electronic structure theory has revolu- sparse because two point DM correlations decay only
f’;\(ljgebraicall)/fz'44 Even for nonmetals, such as semiconduc-

; ) I L ?ors, when the band gap is small, and the DM has long-range
not only as a rigorous basis fab initio approximations but lati i which v f I ‘
also as a theoretical motivation for various semiempiricalgOrre ation ranges in w IIIC ;:]ase only for very ?rgefsyshems
approaches. One, the tight-binding semiempirical method, oes DM sparsity actually show up. Linear scaling for these

rests on the rigorous fact that there exists a one-electrofyStems, although possible in principle, is unachievable in
Hamiltonian with a local potential ifR-space having well ~Practice.

defined physical properties from which certain exact elec- Certain systems can have a vanishing energy gap be-
tronic observablegsuch as force on nuclecan in principle  tween the highest occupied orbitdiOMO) and the lowest

be calculated. unoccupied orbitalLUMO) with finite DM range. This is

Once a tight-bindingTB) model Hamiltonian is defined, seen in Anderson-disordered systétand when noninter-
the primary computational task is to calculate the correacting parts of a system have “accidental degeneracy.” Such
sponding one-electron density matfM). A highly desir-  a situation also happens because of symmetry induced de-
able property for DM calculation algorithms of large systemsgeneracy, as for Si vacancies which exhibiDay Jahn—
is that the computational load scales only linearly with sys-Te|ler distortion*®*’ In these situations, although the DM is
tem size, the so-called “linear scaling” property. Linear in principle sparse the need to resolve the degeneracy at the
scaling approachesi(acan be categorized |7r_11£our classes: T mj level leads to numerical difficulti®s.However, it is
divide and conquér® orbital minimization’~*® Chebyshev the former case, where in addition to a small gap the DM

expans[onl, and density-matrix m|n|m|zgt|o?r°’. The correlation range is large that poses the greater difficulty.
reader is referred to a recent comprehensive re¥ider a ; o T 9T )
When the DM is nonsparse it is in principle impossible to

comparison of the methods and additional references. Theseerform controlled linear scaling calculations
methods are not limited to TB models, and are equally usef . 9 - ) -
in more exact forms of self-consistent figllCPH DFT, such The DM !s the zero tempgrature limit of the Fgrml ‘?'”ac
as local density and generalized gradient approximation£€nsity matrix(FD-DM). This is a common view in solid-
Within SCF theory the methods need be supplemented witfitate Physics. The finite, high-temperature FD-DM has
linear-scaling Hamiltonian-buildup techniquds3 The lin-  cOrrelation-lengths approximately proportional to a small
ear scaling methods, although very new have already mad@ower (typically between 0.5 and )lof the inverse
significant impact in many physical and chemical temperaturé®~*Thus the FD-DM correlation range is con-
problems®-%7 trolled by selecting a large enough finite temperature. If the
There is, however, a basic limitation of these methodsHOMO-LUMO gap is large, the FD-DM approximates the
because they all exploit the “near sightedness principle” DM excellently even at these high temperatures. However,
when the gap is very small, the temperature of the FD-DM
dpermanent address: Dept. of Physical Chemistry, the Hebrew Universit)},T‘uSt be, respectively, redl_"ced and its range becomes large.
Jerusalem 91904, Israel. It was proposed by Nicholsoat al*® that a zero tem-

large condensed matter and biological systems. It has serv
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perature limit can be reached by extrapolation within thenormal basis function&i(r)=3,(S™*?),,b(r) with which

recursion method of Haydo¢R However, in a linear scaling the HamiltonianH is represented by the sparse matrix TB
implementation of this approach by Wareg al>° a local HamiltonianH ;= (&|A[B).

interaction zone was used. When the DM range grows as the  Thg functional approach describes the central quantity of
temperature is loweretas happens n metals and SEMICON-the electronic structure problem, the one electron density op-
ductors the system is not anymore “near-sighted” and SOgrator as afunction of the Hamiltonianin the electronic

far away features can affect the energy. Thus an extrapolgj ound state the electron density operator is defined using the

tion from high to low temperature based on calculations in §4¢aviside functiord(e) (equal to 1 where>0 and 0 other-
local zone is not reliable as it assumes a homogeneity n%ise) by

necessarily present in the system. .

This paper attempts to contribute to the effort of over- p=60(u—H). D
coming these limitations: We try to enhance the capability__ . . A
and scope of linear scaling to the difficult cases of nonsparsghIS operator Is rgpresent_ed by the_DMb=(a|_p|b). The
DMs. This also gives effective tools to deal with the relatedvalu? _Of the Fermi levek in _Eq. (1) is determined by th_e
problem of other gapless or small gapped systems. We dé)_OﬂdIthﬂtI’pZNe where N, is the number of electrons in
velop an alternative approach to the “Iow-temperaturethe system. The ground-state energy is
limit” of the DM. Instead of taking the limit we relate the E=tr{Hp}. 2

DM to atelescopic sum of termBy construction, each term In the functional approach, it is convenient to define also the

focuses on an increasingly smaller energy interval around th . : )
Fermi level. We demonstrate that each term is sparse if deE-erml dirac(FD) density operator at inverse temperatyre

scribed in a space spanned by coarse grained basis functions. . N
We give the prescription to create these coarse grained Fp=Fp(H)=
spaces and sparse matrices.

The method is based on a renormalization-gréB@®)  The ground-state density is the zero-temperature limit of the
point of view, where DM correlations are described in vary-FD density
ing length and energy scalgsindeed, we demonstrate that LA .
in a metallic band the range of the DM is an invariant of the “inw Fp=p @
RG transformation, a property attributed by RG theory to
infinite correlation length&°2 The numerical RG approach Equation(4) is the conventional view: The ground-state den-
presented here, called the energy renormalization grougity of metals is the zero-temperature limit of the FD density.
(ERG), is different from conventional real-space RG in
which a super block is constructed from a given number o8, The Chebyshev expansion
blocks in real spac® In ERG, it is the energy which is
rescaled by a constant factor at each step. This overcom?gr
the problems of block boundary conditions noted by White
et al>* We use Chebyshev expansion methddsr calculat-

1+eBH-n" ®)

The functional approach, where various quantities are
mulated as functions of the Hamiltonian, is useful because
an extremely economical and flexible way to calculate these
ing the Fermi-Dirac(FD) matrix’~*° and our method for functions is available in terms of a Chebyshev eXp‘?‘”g%”-
performing a renormalization step is inspired by Notice that, ynlllfep, which is a nonanalytical funcﬂon of
filter-diagonalizatior?®5’ the HamiltonianF ;5 can be represented by a uniformly con-

8
In Secs. Il and Ill we discuss the theory of the ERG Vergent Chebyshev serfés of lengthP.
approach as applied to a tight-binding model of the system N their matrix representations we write

Hamiltonian. We use a simple model for a metal to show P-1
many characteristics The theory can also be formulated for F4(H)~ > an(Biw) Ta(Hy), 5)
SCF/DFT applications and work in these directions is cur- n=0

rently under way. In Sec. IV we present two examples ofwhere T, (cos#)=cosnd are Chebyshev polynomials of the
ERG at work: A simple model of a metal and a two- variablex=cos# and

dimensional small gap semiconducting puckered sheet pol-

ysilane. Hy=(H—E)/AE,
AE=(Emax— Emin)/2, E=(Enaxt Emin)/2. (6)
Il BACKGROUND Here,E i, andE,,, are the smallest and largest eigenvalues

of the Hamiltonian matrix. The expansion coefficieatsare
A. A functional approach given by

The electronic structure problem is the calculation of 2 w
ground-state expectation values within a tight-binding model ~ &= 775~ fo f(f)cosnede, @)
(TBM). The TBM is usually defined without reference to ’ .
basis functions, however, for convenience of formalism, supwhere f(6)=F z(AE cos6+E). Numerical evaluation of
pose that these exist and are localized functiafrg. Using this integral is efficiently and accurately performed using fast
the sparse overlap matri®,,=(a|b) we can define ortho- Fourier transform(FFT) methods.
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The operation of-; on a wave function represented by may be in the intermediate region with correlation lengths
the column¥ is carried out using the Chebyshev recursiondecaying faster than T/but slower than %2
relation The conclusion is that for small gapped systems, semi-

B _ conductors and metals, the DM correlations may either be

Toea(HY) W=V =2HWW =Wy (®) very large or may grow indefinitely as the temperature is
Note that only three vectors need be stored at once during tHewered. This severely limits the ability of purig-space
calculation®® The entire FD-DM can be calculated column Pased methods to effectively treat these systems. The ERG
by column by successively expanding on all unit vectors inmethod presented now attempts to treat this problematic
the representation spateThe fact that the matrix can be POIntin linear scaling methods.
calculated column by column means that the computation is
inherently parallelizable and that the entire FD-DM need

lll. THE ERG METHOD

never be fully stored. In order to use the Chebyshev methods™
efficiently, the representation of matrices and vectors shoulé. Principles of the method

be such as to enable full exploitation of their sparsity. The  the pM is the zero-temperature limit of the FD-DM

ERG calculations we show here are based on a binary trqgee Eq.(4)] and for metals, as the temperature in the
representatio’ which facilitates the locality of the various FD-DM is lowered, the range of FD matrix correlations in-

matrices and vectors. Other sparse methods may also l&‘?eases{Eq. (11)] and the matrix becomes nonsparse. This
used. 5 _ o nonsparsity tells us that the way we think and represent the
For precision 107, the Chebyshev expansion length’is  py js actually problematic. An alternative view of the rela-

P=%D-1)8-AE. 9) tion between the. FD-DMs apd the DMs is needegl.

More useful is to associate the DM as a sermsn of

If the treated system is not a metal, so that a HOMO—-LUMOterms instead of a limit. The series we consider is telescopic
gap de exists, we approximate the DM to precision foby  with temperature decreasing in each term by a fagtetl
a FD distribution with a finite3 given by*® . . . . .
p=Fp,+(Fp —Fp)+(Fg,—Fpg)+--
B- 8€/2=D -log(10), (10 A o
One can see qualitatively what happens as thedgapimin- 0

ishes(and the system gradually becomes a mefBhe in-  What is the meaning of this equation? We view the DM as
verse temperature parameter must grow for @@) to hold.  composed of a high-temperatusmall 8,) FD-DM plus ad-

But by Eq.(9) this will cause an increasingly larger Cheby- ditional termsA, n=1,2... gradually correcting for lower
shev expansion. Suppose now that the Hamiltonian is repréemperatures. Each term corrects for a temperature scale
sented by a matrixly in which the matrix elements are zero lower by the factoig from that of the previous term, so that
beyond a cutoff radius, . ThenH,'fl must have no nonzero B,=q"8.

elements beyond a radi#y .. Thus the range of the DM in Let us now study the properties of the operators in the
this case is rigorously bounded by series of Eq(12). We do this in two spaces: IR-space and
) in energy space. To demonstrates our arguments, we con-
R(F)<P-r;~3BAE(D-1)r,. (1) sider a one-dimensionallD) system of N sites with a

This result shows in a very general way that the DM of anynearest-nmghbor one-electron Hamiltonian

system at positive temperaturés always sparseand the

range is bounded by a term which grows linearly with in- szzi arai_?% a'a;. (13
verse temperature. This bound may grossly overestimate the ] ' ] o )

DM range in many cases, especially wHeis not too large. I—!erel =1---N indexes the sites andis a nearest neighbor
This is because the Hamiltonian is not only banded but exS'te- . . . _
hibits an overall decay as the cutoff radius is approached. An N the R-space localized basis the matrix representing
approximate way to take this into account is given in Ref. 41F(Bo) is strongly localized becaug®, is chosen smallsee
leading to an estimate of the DM range B§F)<ABY2 Eq.(11)]. This is seen in Fig. 1 for our model system, where
This estimate agrees, as it should, with the high-temperatur@ typical column of the FD matrix is plotted. According to
behavior given by a classical correlation range. A strikingEd. (12), the long-range DM correlations quenchedgyare
example of the overestimation of E€l1) is observed for introduced step by step while gradually cooling the system
gapless disordered systems at the localization regime. ThRyccessively by the renormalization factprThis gives DM
does not, however, exclude the existence of systems exhiktorrections&n (n=1,2,...), which are increasingly delocal-
iting a DM range proportional to T/even asT—0. Indeed, ized in R-space(see Fig. 2

it was recently found by Goedeck&f* and independently Next, consider energy space. The operators of (E8).

by Ismail—Beigiet al* that a simple metal exactly exhibits are all functions of the Hamiltonian, so they are simulta-
this decay behavior at low temperatuf@hen 8=¢g). Fur-  neously diagonalized in the energy eigenstate basis. The ei-
thermore, it was provéd** that the DM range decays only genvalues of the operators as a function of the energy of the
algebraically atT=0 (proportional tor “2). Based on the eigenstategfor convenience, we scaled the energy to the
work of these authors it can be deduced that semiconductoisterval [0,1]) are shown in Fig. 3. We show the FD distri-
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Eigenvalue
(=4

0.
0.0
f f -0.2 } t t t
0 20 40 0 02 04 06 0.8 1
I-r, E
FIG. 1'. A column of the FD-DM forg=15 for the model defined in Bq.  pig, 3, The eigenvalues of the first three terms in 8@ contributing to
(13), with u=2.0. the DM when 8,=15 andq=2. The sum of these terms gives a low-

temperature- g, (eigenvalues shown as thin line

bution at a high temperaturggg=15) and then twa\ con-
tributions each withB increasing by the factoq=2. The
higher 8 becomes, the smaller the supporting energy intervaf

(where eigenvalue_s are non-negligiblEach of th_e terms in E=tr{A ﬁﬁ}+tr{ﬂﬁl}+tr{ﬂ32}+... ] (14)
the sum of Eq(12) is thus supported by successively smaller

dimensional Hilbert subspace. ; X )
tronic expectation valyeHere, the trace operations are per-

To summarize: InR-space, theA,, represents increas- . .
: I formed separately for each term in the corresponding coarse
ingly larger length scales, while in energy space they are

supported by successively smaller dimensional H”bengramed space. The full DM is thus never explicitly needed.
spaces. These Hilbert spaces can therefor be spanned By
longer rangedRr-space basis functions, that is bycaarse- ‘
grained basis

What we now need is a general method to create the We now turn to the issue of constructing the coarse-
coarse-grained basis and the representation of the Hamigwained Hilbert spaces. The ERG is recursive so what we
tonian and other operators in the coarse grained Hilberieed is a matrix representation of the Hamiltonfand any
space. But before we turn to this crucial issue, let us make agther operator whose expectation value we wish to calculate
additional remark as to the way we actually use B) in in an orthogonal basis of the ¢~ 1)th coarse-grained Hilbert
computations. While it is appealing to think in terms of Eq. space. These matrices are to be calculated from the corre-
(12), and indeed we shall do so in the rest of this section, isponding “known” matrices of theth space.

expectation value expressions, for example, the ground-state
nergy of Eq.(2) becomes

(note, that we can write an analogous equation for any elec-

The ERG coarse graining step: A functional
approach

should be kept in mind that we never explicityeate the We define the following function of the Hamiltonian,
matrix corresponding tg since it is nonsparse and, there- loosely called the Fermi level density of statd30S) (n
fore, computationally prohibitive. Instead, we use Ek®) in =01,..)
- . J . eBn(ﬁfﬂ)
GWH)=—F; =8, ——m—. 15
0.008 (0= G o= (1+efnlHr)2 49
The action of the operatcﬁé(”) on a given vector, is made
0.004 - apparent by examining its eigenvalues in Fig. 4. WGER
operates on any vector in tnh space, it zeros components
A of energy outside the intervi,—M B, L, u+MB, 1] (M is
g 0.000 - a number of order 20 ThusG™ is a pseudo-projector onto
v, the (n+1)th space. We do not have enough experience to
formulate accurate guidelines on the desired forneoSev-
-0.004 7 eral forms for this pseudo-projector were tried. For example,
a properly chosen Gaussian for@=A exp(—a(H—w)?)
-0.008 ; ; can also be used. However, to o@s yet limited experi-

ence, the best results are achieved with the form given by Eq.
(15).
The matrixG{) = (a™|G("|[b(™) [where theN‘™ basis

FIG. 2. A typical column of the matrid, (in a series with3,=15 andg  functions of thenth space aré(_“)(r):<r|’é(“)>] can be cal-
=3) for the model defined in Eq13), with x=2.0. culated column by column using a lengthChebyshev ex-

-200 -100 0 100 200
-r

r-r,
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FIG. 4. The eigenvalues of the FD-DM and the filterfor =40 andu
=0.6.

R. Baer and M. Head-Gordon 10163

0.20
0.15 -
0.10 -
0.05 -

Ir>

9 0.00

<r,

-0.05 -

-0.10 -

-0.15 -

-0.20 \ ‘ ‘

-100 -50 50 100

r-r,

FIG. 5. A column of the matrixG defined in Eq(15), with x=2.0 andB
=15. This column is much less localized aroundr,=0 than the Hamil-
tonian. The range is determined By Columns such as these form the basis
functions for the coarse grained space.

pansion in the same way the FD-DM columns are computed,

(but with different expansion coefficient$G(™ is highly sin-

gular, and its rank is the dimension of the coarse grainetvith k=0,1,..., By=(aS"*Y-1),

(n+1)th space,N"*Y. The DOS at the Fermi level,
tr{GM, serves to estimat®l"*V) as Mg, "tr{GM}. A
precise method for determining™* 1) will be given below.

Note an important difference between the ERG method and
traditional lattice RG: The dimension of the coarse-grained

space is not imposedt, is determinedby the DOS of the
system.

SinceG™ is obtained by a finite number of Hamiltonian
operations, every column Gg‘,’) represents a localized func-
tion =,GIMb™M(r). To create a basis for theng-1)th Hil-
bert space, we seledt"" ) columns ongrfk)), as described
in subsection 0, and arrange them in a rectangl&Y
X N 1) matrix, designate(") . On the average, one col-
umn is selected out of evety("/N("*1) columns represent-
ing spatially close functiongaccording to an algorithm we
describe in subsection.0The (n+ 1)th space is spanned by
the functionga™* ) =3, |b(M@(? , and the coarse grained
Hamiltonian matrix is formally given by

H(n+ 1) (S(n+l))71/2>< [G(n)]TX H(n)X @(n)

X (S(n+ 1))—1/2, (16)

where S"TD=[gM]T&M is the coarse-grained overlap
matrix. Equations analogous to E{.6) can be used to de-

Ap=a[GM]THM
x[@(“)], and a‘_lz_N(””) max ;[S"*Y],;| converge qua-
dratically to the limits:

Bk—>0,
Ak*)H(n-%—l)’

within order 10 iterations depending on the condition num-
ber of S"*1). Equation(17) converges to a matrix represent-

ing the Hamiltonian in a orthonormal basis of the coarse
grained Hilbert space. This is done without explicitly or-

thogonalizing the coarse grained basis functions.

Once a new Hamiltonian matrix is constructed, its eigen-
value range should be accurately determined by calculating
its largest and smaller eigenvalugsing a Lanczos method,
for examplg. The resulting energy interval may not be ex-
actly a factorq smaller than the parent interval, however, in
all examples we have examined, the deviations were small
and did not significantly affect the overall performance of the
method.

In R-space a column ofs is shown in Fig. 5. Such a
column is a basis function of the nested coarse grained Hil-
bert space.

In subsection 0 we discuss a general algorithm for se-
lecting the basis functions. But before we turn to that general
case let us consider a simple decimation algorithm here. We

(18

fine the matrix representation of any other one electron opPerformed two ERG steps, starting wiiy=15 we calcu-

erator we may be interested in.
Theoretically, it is possible to use E(L6) directly in

lated the matrixG and constructe@® by 1:3 decimatiorithat
is, keeping every third column @). Other decimation ratios

calculation. However, we have found that the intermediaté’® also possible in principle in correspondence to the in-
matrix (S™* 1) ~2js much less sparse than the final resultVerse temperatur@, and to the density of states near the

H(M+1 |t is, therefore, of considerable value to calculateFermi level[through Eq.(15)]. In Fig. 6 we consider the

HO* D directly from H(™M and ™. In the Appendix we
show that the following series:

Bys+1=(B—3)BZ/4,

17
Ak+1:Ak_ (AkBk+ BkAk)/2+ BkAkBk/4l

R-space behavior of a column of the DM in three energy and
length scales. The column corresponding to a high tempera-
ture (8=15) FD-DM is shown in(i). After an ERG step a
new Hilbert space is constructed where the energy scale has
been renormalized by a factor of 3. Because of the 1:3 deci-
mation, the length scale in this space has also changed by a



10164  J. Chem. Phys., Vol. 109, No. 23, 15 December 1998 R. Baer and M. Head-Gordon

1. For allk (k=1---N™) calculate thekth column of
G™ denotedy, . If k=1 (the first column add it toG™, if
k>1 perform steps 2—6 to updaté™.

2. |dentify all the columns which are currently ™
and that have nonzero overlap with. AssumelL —1 such
(i) columns existL is independent of system size, related only
to the range of the basis functions

3. Arrange the columns ang| in a matrix C of dimen-
sionsN(Wx L and calculate thé X L matrix S=C'C.

4. Determine the singular value decompositi&VvD) of
(&) S S=Uwr" wherev andU are orthogonal matrices and the
A w is diagonal with elementsv;=w,=---=w,=0. Locate
} . the largest integer (the rank with w, /w,<10P.

5. Zero the last. —r rows of the matrixv", yielding a
new matrixy’ and perform a QR factorization with pivoting:
o v'II=QR, wherell is a permutation of columns.

FIG. 6. A column of the FD-DM at three consecutive ERG steps for the 6. Replace thé. —1 columns of:(" from which C was
model of Eq.(13) with «=2.0. (i) Initial: B,=15. (i) After first ERG step  built by the firstr columns ofCII.

(with g=3). (iii) After second ERG step. Note: In each iteration length The dimensiorN("tY) of the coarse grained space is the
scales by a factor of 3 since we use 1:3 decimation. final number of columns ifs(". The number of electrons in
this space is

<rolplr>

| I
T T

30 20 -10 0 10 20 30
r-r

factor of 3. In(ii)) we show theR-space behavior of the Ng‘”):Ng”)—tr{f:an}, (19
column of the FD-DM. This FD-DM which corresponds to a

lower temperature £=45) looks almost the same as the N(en) may be nonintegral ifx is inaccurately known.

previous column. In the next ERG step the energy scale has Wwith each iteration the dimension of the matrices de-
once again been reduced by an additional factor of 8iiiln  creases and the energy range collapses to the Fermievel
the column of the FD-DM corresponding to very low tem- For a finite system the computation terminates aftiéera-
perature 8= 135) and still looks similar to the columns of tjons, when the dimensioN(") is small enough so the ei-
the previous ERG steps. We conclude from this figure thagenvaluese") of H{\) can be efficiently determined by nu-
the decay length of the FD-DM is an invariant of the ERG merical diagonalization. The series of E@4) is terminated

transformation. This is typical in RG theory for infinite cor- after f steps, where the last term is defined (ogher terms
relation lengths since they have no definite length scale. were defined aboye

NAR
C. Selecting basis of the nested Hilbert space tr{HA}= 2> {Fpa(e)—Fg (")}, (20
i=1 ' -

We now describe a general algorithm designed to enable

th((?])construction Oﬂ@ from G(“).n)\/ie\(/\r(i)n'g G as a set of In this expressionu is the initial guess for the Fermi level
N(™ columns, spanning a spa®é”, G(" is a subset of size hich was used throughout the calculation. The quaftity

(n+1) i (n) i . . ~
N which spans\{(n) as C'%‘SEIV as possible under the 5 ¢ rected Fermi level adjusted, together witiso the fol-
constraint thaCond(G()~10P’? (the condition number of lowing relation is maintained

(M) where 10° is the precision. This constraint ensures

Cond(S"")~10P, which is needed to represent the  y(f) N
nested space to precision 10 == (6_<f ))=N” )4 F (E(f ) (22)
If it were not for linear scaling, we could easily use the ;1 ot € ;1 Prowot =t 7

well known singular value decompositia8VD) to form a

satisfying solution for this problem. However, like diagonal- B is taken much larger than the inverse HOMO—-LUMO gap
ization, the SVD method will create nonlocal columns and(known after the diagonalizatipribut otherwise arbitrary.

thus will not scale linearly wittN™. Thus, what is needed Since the range of the FD-DM is roughly proportional to
here is an algorithm whickioes not destroy the sparsity of 82, the numerical work in the ERG method is proportional
the columns of GThe most straightforward way to achieve to P92™1 (see Ref. 38whered is the number of extended
this is by a selection process: We do not change any columrspatial dimensions of the nuclear lattiéeshould be chosen
we only determine which column is kept and which is small, yet it must be large enough to achieve a significant
“thrown away.” A heuristic algorithm for this problem has reduction in the number of Hilbert-space dimensions at each
been developed in Ref. 580 our knowledge there is no iteration. The method is most effective when high DOS
full-proof algorithm available, however, it is our experience peaks are situated away from the Fermi level. The numerical
that this algorithm is satisfactoryBecause it does not com- work as a function of system siZ¢ scales near linearly as
bine or compare columns which are nonoverlapping, it is ofN log N, the factor logN reflects the increase in number of
numerical complexityO(N™). The algorithm is: iterations.
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TABLE |. Renormalized parameters at the different iterations for a 16 000 site 1D metal.

Iteration n 0 1 2 Diag.
Space dimensions N(m 16 000 1692 298 89
No. of electrons N{ 16 000 1660.6 265.5 -36.3
Energy range AE, 2.00 0.31 0.06 0.01
Inv. temperature Bn 15 94 531 &0’
Hamiltonian range R,(H) 3 73 55 89
FD-DM range R, (F) 132 165 120 89
Energy contribution 5884.48 -32.75 -1.23 —36.42

tr{H(”)A(”)}
IV. THE ERG METHOD AT WORK the N(©=16 000 columns oG® only N®"=1692 columns

The ERG method is a recursive method where the elec§ur\.”ved selection and are kgpt ™. Thus the coarse
rained space has a dimension of almost a factor of 10

tronic structure problem is reformulated at each iteration, and ler than that of th iinal Si th tem i
a relevant contribution to the calculated observables is exc o o' thaf that of the origina’ space. since the system 1S
one-dimensional, this is also the approximate relation be-

tracted at every scale. ween the length scales: We know that the 1692 basis fun
In this section we describe in detail the steps of ERG a%. een the fength scales. 0 at the SIS Tunc
ions cover the same amount &fspace that the original

applied to the model of Eq13). We start with an enormous . ) .
_ . ; : - 16 000 basis functions did. On the average, the length has,
system ofN=16 000 sites. With present computing capabili @erefore, been renormalized by a factor of about 10. For

ties it is mandatory to treat such a large system with spars o . )
matrix methods. Here, however, the DM is nonsparse: Thgystems with dlmensmnahty larger than one, the length scale
matrix is too huge to even fit in computer memory. IS h«’E\eri(re]r toEde(fllr17()a.W nstruct the representation of th

The ERG method enjoys several advantages that allow milf n? ng.(l) i the co f ucr ine dep ese I?iof ond iﬁ
not only to compute ground-state expectation values for thi$a onia € coarse grained space. 1S fou

system, but also do it in a way which scales almost linearly ?blfét::r?‘t therﬁ”ﬁr?){hra:i]ﬁ of :ihlisn l—:amnlltroma:nnls a factor
with system size. First, ERG never computes the DM. This is’ qﬁow w:Sv;sha tﬁ de?ermiieo tr?e arlar? © E%l)a c?fe{he
because we never actually perform the summation shown i g )

Eqg. (12). Instead we sum over the results of trace operationé%adn;#r?géaggthé Idnis?z:(?éatlutar;/ir::nv%i(c;)tr?; ?nr;tzrj'lit:)((erément
Eq. (14 h tr rformed in an ropriatel r . . - .
[Bq. (14)], each trace performed in an appropriately coars f H between any two points is negligible. A precise state-

grained space. Next, computationally intense parts of thment s
ERG computation can be parallelized. We will discuss this
issue in the next section.

A. The ERG steps R(H)=min{|r—r'|>R=[(r[H\|r")| <107},
R

We start with the full system Hamiltonian matrix, which
is incredibly sparse: Only the main diagonal and the two _ _ _ _ S
sub-diagonals, one above and one below it are nonzero. W#here Hy is defined in Eq.(6) and D is the precision in
Compute the columns of the matrl;(ﬁ assumingM:2_01 terms Of number Of dIgItS We see in Table | that the I’ange Of
0

(we do not assume an exact knowledge of the value of thifamiltonian R(H®) is 72 renormalized length units. Re-

. o . )— _
Fermi energy, which is 2.000A Chebyshev series length of Member that the I(elr)1gth ((f)f the systemN§)=1692 renor-
P=80 is imposed throughout the calculation. We aim at analized units SOR™ <N and the Hamiltonian matrix is

precision of five digits, thu® =5. The initial energy range very sparse. The range of the FD-DM calculated in the Oth

; (0)y —
of the Hamiltonian isAE=2 and using Eq(9) we see that SPac®€ IsR(F) = _132' )
Bo=15. The renormalized values of the parameter for the third

ERG step can also be found in Table I. Finally we arrive at a
nonsparse Hamiltonian which is fully diagonalized at the last
(1) step. Two “strange” looking numbers are apparent in the
N—N=tr{F 4 j—the number of electrons already ac- (gpje. These are: The negative number of electrons and the
counted for. This is also true for a SCF-DFT method wherglarge energy correction: The first results from the incorrect
only the short-ranged part of the DM is needed to computgtoo large guess we used for the Fermi level and the second
the electronic densityor forces on ions etg. from correcting for this using Eq21).

The two functionsF 5 andG® are calculated using the Performance of the ERG method as a function of system
Chebyshev method, where the computationally intensive pasize is shown in Fig. 7. CPU time scales quasi linearly,
is the repeated application of the Hamiltonian to a vector~N(log N)? (the additional factor of log\ is due to the tree-
This part is identical in the two calculations and so a speedupode implementatioh. Crossover is atN~4000 for this
factor of close to 2 is gained when both are calculated simulsingle processor Cray C90 calculation. 60% of CPU time
taneously. The values of parameters in the coarse-grainatlas consumed by the first iteration, sufficient to converge
spaces during the ERG are shown in Table I. We see that afisulators with a ga@pe=1 [Eq. (10) with B=15].

We do not need to store the columnsl-‘ogo: They are
used only to compute the tra¢e{F H} in Eqg. (14) and
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FIG. 9. CPU time for calculating a ground-state observable for 2D semi-
FIG. 7. ERG D=5, doty and standard diagonalizatiditriangles CPU conductor (puckered-sheet polysilyheDashed line: Time of calculation
time for an energy calculation vs number of sites in the TB model of Eg.based on diagonalization. Triangles: Time of fbe=4 Chebyshev expan-
(13). Line depicts ideal asymptotid(log N)? scaling. sion method with 270 terms; Circles: Time of the one-si2p4 ERG
method. Lines are a guide to the eye. All calculations are on a single pro-
cessor of Cray T3E.

B. 1D example: A metallic carbon nanotube

The ERG method was applied ¢8,0) carbon nanotubes using naively the conventional Chebyshev schéfifé Be-
of varying lengths, predicted to be metalsusing a TB  cause the DM is highly nonlocal in these metallic systems,
Hamiltonian of Ref. 60, without the Hubbard-type correctionsimilar difficulties are also expected in the direct minimiza-
for electron correlation. Nuclear position was not optimizedtion methods>24
(C—C distance was set to 1.49 A prior to rolling the tube
along its axi$. The Chebyshev expansion lengths used werec. 2D Semiconductor: Puckered-sheet polysilyne
P=280. Performance times are shown in Fig. 8 @6 (SiH),
accuracy. The ERG method becomes more efficient than di-

N . An additional example of the power of the ERG method
agonalization based calculation at around 200 carbon atoms o . .

. IS shown in Fig. 9 where the CPU times for calculating an
for a single processor on a Cray T3E.

observable, such as the electronic energy of the ground state,

The Chebyshev expansion length within the ERGis shown. The system is a puckered sheet of silicon atoms

method, ofP=80 terms, should be compared to an expanin hydrogen atoms above and below the sheet for stabiliz-

sion length of thousands, growing with system size, thatmg silicon dangling bonds. Additional hydrogen is intro-

would have been needed to resolve the HOMO-LUMO 98Rjuced on the boundary of the sheet where silicon has two
dangling bonds. This system is a semiconductor with a

calculated® indirect gap of 2.48 eV.

10000 + _ . -
g The calculations are based on a tight-binding model of
i . Goodwinet al®? and Kim et al® The full set of parameters
- we used are given in Table Il. The reader is referred to Ref.
1000 + 63 for definition of the symbols in the table.
—_ F
[3) L
qm) L a
\; - TABLE Il. The tight binding parameters for polysilyri&efs. 62—64
'g 100 = H-H Si-H Si-Si
o] N
B . . Vo (€V) -7.59 —3.5535 -1.82
o Vepo (V) 5.088 1.96
10 + Vppo (€V) 3.06
F Vppr (€V) -0.87
i . ro () 0.742 1.48 2.35
L re () 1.6 2.186 3.67
1 I | [ ] n 218 19877 2
1 ‘ Ne 14.0 13.269 6.48
10 100 1000 m 4,215 2.255 4.54
No. of C atoms Me 3.50 3.01 6.48
U (ev) 3.15 5.795 3.5481
FIG. 8. CPU time for an energy calculation vs number of atoms in a me- E; (Si) (eV) —13.08
tallic (3,0) carbon nanotube. Triangles: Energy calculation based on diago- E, (S (eV) —4.785
nalization. Filled circles: High accuracyp=6) ERG calculation. Line is a Es (H) (eV) —8.34

N(log N)? line.
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This TB model underestimates the gap, yielding aboufwhereS is the positive definitdN X N overlap matrix con-
1.6 eV depending on system size. The energy range of theerge quadratically to
TB Hamiltonian isAE=0.45 a.u. The small gap is mani- Wo=_S12 y —_gli
fested in long-range DM correlations. A Chebyshev expan- * ' * '
sion calculation tuned tB =4 accuracy uses an inverse tem- For best linear scaling results, it is important that the matri-
perature of 3=310 and an expansion length =270 cesW andY remain as sparse as possible. However, it is
terms. As seen in Fig. 9, this leads to a formidable calculawell-known thatS™*? is much less sparse thaitself, es-
tion that reaches a full linear scaling regime only for verypecially if Shas a large condition number. On the other hand,
large number of atoms. This is a typical problem in smallthe matrixS"2 is not really needed. We only need to calcu-
band gap semiconductors. late the matrixH=S"?RS Y2 whereR=GTH™G is con-

An effective solution is to use a one-step version of thesiderably sparse. It is, therefore, beneficial to calculdte
ERG method. If the system was much largend, therefore, directly and avoid at least part of the nonsparsitySof?.
sparsey, a two step or higher number of ERG recursion stepsTowards this end, define the sequence of symmetric matrices
would be advantageous of course, but because of the tw¢k=0,1,2...)
dimensional nature this would require too much memory Ac=WHW,, Be=Y W1,
than presently available on our systems. Here, for example,
we usedB=40 andP=46. The computational gain of one it is straightforward to show that

Step ERG seen in Flg 9is very Significant. Ak+1:Ak_(AkBk+ BkAk)/2+ BkAkBk/4l

V. SUMMARY Bys1=(Bx—3)BZ/4.

A novel approach to electronic structure of large systemd hus quadratically converging to
has been presented. Three themes characterize the proposed A =S5 12Hg 12 B —
ERG method. The electronic structure problem is cast in ” e
terms of functions of the Hamiltonian. This functional ap- Numerical test of this procedure shows that the number of
proach is useful since Chebyshev expansions allow to impldterations is on the order of 10 and depends on the condition
ment the required functions. A second theme is the energgumber of S Furthermore, the matriceB, start out from
scaling transformations achieved using energy-functional filvery sparse matrices and end as the zero matrix but in the
ters. The third is the use of coarse grained Hilbert space tthterim iterations they become considerably less sparse. Yet,
achieve a length scale renormalization, so that the DM caie have found that this scheme still leads to matrices more
be decomposed into a sum of terms, each describing a disparse matrices than the direct computatiosof”.
ferent energy and length regime of the problem, and each is
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