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Electronic structure of large systems: Coping with small gaps using
the energy renormalization group method
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A newly developed energy renormalization-group method for electronic structure of large systems
with small Fermi gaps within a tight-binding framework is presented in detail. A telescopic series
of nested Hilbert spaces is constructed, having exponentially decreasing dimensions and electrons,
for which the Hamiltonian matrices have exponentially converging energy ranges focusing to the
Fermi level and in which the contribution to the density matrix is a sparse contribution. The
computational effort scales near linearly with system size even when the density matrix is highly
nonlocal. This is illustrated by calculations on a model metal, a small radius carbon-nanotube and
a two-dimensional puckered sheet polysilane semiconductor. ©1998 American Institute of
Physics.@S0021-9606~98!31046-6#

I. INTRODUCTION

The Kohn–Sham1 version of the density-functional
theory2 ~KS-DFT! in electronic structure theory has revolu-
tionized our ability to simulate and understand processes in
large condensed matter and biological systems. It has served
not only as a rigorous basis forab initio approximations but
also as a theoretical motivation for various semiempirical
approaches. One, the tight-binding semiempirical method,3

rests on the rigorous fact that there exists a one-electron
Hamiltonian with a local potential inR-space having well
defined physical properties from which certain exact elec-
tronic observables~such as force on nuclei! can in principle
be calculated.

Once a tight-binding~TB! model Hamiltonian is defined,
the primary computational task is to calculate the corre-
sponding one-electron density matrix~DM!. A highly desir-
able property for DM calculation algorithms of large systems
is that the computational load scales only linearly with sys-
tem size, the so-called ‘‘linear scaling’’ property. Linear
scaling approaches can be categorized in four classes: The
divide and conquer4–6 orbital minimization,7–16 Chebyshev
expansion,17–22 and density-matrix minimization.23–27 The
reader is referred to a recent comprehensive review28 for a
comparison of the methods and additional references. These
methods are not limited to TB models, and are equally useful
in more exact forms of self-consistent field~SCF! DFT, such
as local density and generalized gradient approximations.
Within SCF theory the methods need be supplemented with
linear-scaling Hamiltonian-buildup techniques.29–32 The lin-
ear scaling methods, although very new have already made
significant impact in many physical and chemical
problems.33–37

There is, however, a basic limitation of these methods,
because they all exploit the ‘‘near sightedness principle’’27

or the exponential decay of density matrix~DM! correlations
in real space38–44~loosely referred to as DM sparsity!. There
are interesting systems such as metals, where the DM is not
sparse because two point DM correlations decay only
algebraically.42,44 Even for nonmetals, such as semiconduc-
tors, when the band gap is small, and the DM has long-range
correlation ranges in which case only for very large systems
does DM sparsity actually show up. Linear scaling for these
systems, although possible in principle, is unachievable in
practice.

Certain systems can have a vanishing energy gap be-
tween the highest occupied orbital~HOMO! and the lowest
unoccupied orbital~LUMO! with finite DM range. This is
seen in Anderson-disordered systems45 and when noninter-
acting parts of a system have ‘‘accidental degeneracy.’’ Such
a situation also happens because of symmetry induced de-
generacy, as for Si vacancies which exhibit aD2d Jahn–
Teller distortion.46,47 In these situations, although the DM is
in principle sparse the need to resolve the degeneracy at the
Fermi level leads to numerical difficulties.21 However, it is
the former case, where in addition to a small gap the DM
correlation range is large that poses the greater difficulty.
When the DM is nonsparse it is in principle impossible to
perform controlled linear scaling calculations.

The DM is the zero temperature limit of the Fermi dirac
density matrix~FD-DM!. This is a common view in solid-
state physics. The finite, high-temperature FD-DM has
correlation-lengths approximately proportional to a small
power ~typically between 0.5 and 1! of the inverse
temperature.38–44 Thus the FD-DM correlation range is con-
trolled by selecting a large enough finite temperature. If the
HOMO–LUMO gap is large, the FD-DM approximates the
DM excellently even at these high temperatures. However,
when the gap is very small, the temperature of the FD-DM
must be, respectively, reduced and its range becomes large.

It was proposed by Nicholsonet al.48 that a zero tem-
a!Permanent address: Dept. of Physical Chemistry, the Hebrew University,
Jerusalem 91904, Israel.
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perature limit can be reached by extrapolation within the
recursion method of Haydock.49 However, in a linear scaling
implementation of this approach by Wanget al.50 a local
interaction zone was used. When the DM range grows as the
temperature is lowered~as happens in metals and semicon-
ductors! the system is not anymore ‘‘near-sighted’’ and so
far away features can affect the energy. Thus an extrapola-
tion from high to low temperature based on calculations in a
local zone is not reliable as it assumes a homogeneity not
necessarily present in the system.

This paper attempts to contribute to the effort of over-
coming these limitations: We try to enhance the capability
and scope of linear scaling to the difficult cases of nonsparse
DMs. This also gives effective tools to deal with the related
problem of other gapless or small gapped systems. We de-
velop an alternative approach to the ‘‘low-temperature
limit’’ of the DM. Instead of taking the limit we relate the
DM to a telescopic sum of terms. By construction, each term
focuses on an increasingly smaller energy interval around the
Fermi level. We demonstrate that each term is sparse if de-
scribed in a space spanned by coarse grained basis functions.
We give the prescription to create these coarse grained
spaces and sparse matrices.

The method is based on a renormalization-group~RG!
point of view, where DM correlations are described in vary-
ing length and energy scales.51 Indeed, we demonstrate that
in a metallic band the range of the DM is an invariant of the
RG transformation, a property attributed by RG theory to
infinite correlation lengths.51,52 The numerical RG approach
presented here, called the energy renormalization group
~ERG!, is different from conventional real-space RG in
which a super block is constructed from a given number of
blocks in real space.53 In ERG, it is the energy which is
rescaled by a constant factor at each step. This overcomes
the problems of block boundary conditions noted by White
et al.54 We use Chebyshev expansion methods55 for calculat-
ing the Fermi-Dirac~FD! matrix17–19 and our method for
performing a renormalization step is inspired by
filter-diagonalization.56,57

In Secs. II and III we discuss the theory of the ERG
approach as applied to a tight-binding model of the system
Hamiltonian. We use a simple model for a metal to show
many characteristics The theory can also be formulated for
SCF/DFT applications and work in these directions is cur-
rently under way. In Sec. IV we present two examples of
ERG at work: A simple model of a metal and a two-
dimensional small gap semiconducting puckered sheet pol-
ysilane.

II. BACKGROUND

A. A functional approach

The electronic structure problem is the calculation of
ground-state expectation values within a tight-binding model
~TBM!. The TBM is usually defined without reference to
basis functions, however, for convenience of formalism, sup-
pose that these exist and are localized functionsa(r ). Using
the sparse overlap matrixSab5^aub& we can define ortho-

normal basis functionsã(r )5Sb(S21/2)abb(r ) with which
the HamiltonianĤ is represented by the sparse matrix TB
HamiltonianHab5^ãuĤub̃&.

The functional approach describes the central quantity of
the electronic structure problem, the one electron density op-
erator as afunction of the Hamiltonian. In the electronic
ground state the electron density operator is defined using the
Heaviside functionu~e! ~equal to 1 whene.0 and 0 other-
wise! by

r̂5u~m2Ĥ !. ~1!

This operator is represented by the DMrab5^ãur̂ub̃&. The
value of the Fermi levelm in Eq. ~1! is determined by the
condition trr5Ne where 2Ne is the number of electrons in
the system. The ground-state energy is

E5tr $Hr%. ~2!

In the functional approach, it is convenient to define also the
Fermi-dirac~FD! density operator at inverse temperatureb

F̂b5Fb~Ĥ !5
1

11eb~Ĥ2m!
. ~3!

The ground-state density is the zero-temperature limit of the
FD density

lim
b←`

F̂b5 r̂ ~4!

Equation~4! is the conventional view: The ground-state den-
sity of metals is the zero-temperature limit of the FD density.

B. The Chebyshev expansion

The functional approach, where various quantities are
formulated as functions of the Hamiltonian, is useful because
an extremely economical and flexible way to calculate these
functions is available in terms of a Chebyshev expansion.55

Notice that, unliker̂, which is a nonanalytical function of
the Hamiltonian,F̂b can be represented by a uniformly con-
vergent Chebyshev series17,18 of lengthP.

In their matrix representations we write

Fb~H !' (
n50

P21

an~b,m!Tn~HN!, ~5!

whereTn(cosu)5cosnu are Chebyshev polynomials of the
variablex5cosu and

HN5~H2Ē!/DE,

DE5~Emax2Emin!/2, Ē5~Emax1Emin!/2. ~6!

Here,Emin andEmax are the smallest and largest eigenvalues
of the Hamiltonian matrix. The expansion coefficientsan are
given by

an5
2

p~11dn,0!
E

0

p

f ~u!cosnudu, ~7!

where f (u)5Fb(DE cosu1Ē). Numerical evaluation of
this integral is efficiently and accurately performed using fast
Fourier transform~FFT! methods.
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The operation ofFb on a wave function represented by
the columnC is carried out using the Chebyshev recursion
relation

Tn11~HN!C[Cn1152HNCn2Cn21 . ~8!

Note that only three vectors need be stored at once during the
calculation.55 The entire FD-DM can be calculated column
by column by successively expanding on all unit vectors in
the representation space.17 The fact that the matrix can be
calculated column by column means that the computation is
inherently parallelizable and that the entire FD-DM need
never be fully stored. In order to use the Chebyshev methods
efficiently, the representation of matrices and vectors should
be such as to enable full exploitation of their sparsity. The
ERG calculations we show here are based on a binary tree
representation,19 which facilitates the locality of the various
matrices and vectors. Other sparse methods may also be
used.
For precision 102D, the Chebyshev expansion length is19

P5 2
3~D21!b•DE. ~9!

If the treated system is not a metal, so that a HOMO–LUMO
gapde exists, we approximate the DM to precision 102D by
a FD distribution with a finiteb given by19

b•de/2>D• log~10!, ~10!

One can see qualitatively what happens as the gapde dimin-
ishes~and the system gradually becomes a metal!. The in-
verse temperature parameter must grow for Eq.~10! to hold.
But by Eq.~9! this will cause an increasingly larger Cheby-
shev expansion. Suppose now that the Hamiltonian is repre-
sented by a matrixHN in which the matrix elements are zero
beyond a cutoff radiusr c . ThenHN

P must have no nonzero
elements beyond a radiusPrc . Thus the range of the DM in
this case is rigorously bounded by

R~ F̂ !,P•r c'
2
3bDE~D21!r c . ~11!

This result shows in a very general way that the DM of any
system at positive temperaturesis always sparseand the
range is bounded by a term which grows linearly with in-
verse temperature. This bound may grossly overestimate the
DM range in many cases, especially whenP is not too large.
This is because the Hamiltonian is not only banded but ex-
hibits an overall decay as the cutoff radius is approached. An
approximate way to take this into account is given in Ref. 41
leading to an estimate of the DM range asR(F),Ab1/2.
This estimate agrees, as it should, with the high-temperature
behavior given by a classical correlation range. A striking
example of the overestimation of Eq.~11! is observed for
gapless disordered systems at the localization regime. This
does not, however, exclude the existence of systems exhib-
iting a DM range proportional to 1/T even asT→0. Indeed,
it was recently found by Goedecker28,44 and independently
by Ismail–Beigiet al.43 that a simple metal exactly exhibits
this decay behavior at low temperatures~whenb>eF!. Fur-
thermore, it was proved43,44 that the DM range decays only
algebraically atT50 ~proportional tor 22!. Based on the
work of these authors it can be deduced that semiconductors

may be in the intermediate region with correlation lengths
decaying faster than 1/T but slower than 1/T1/2.

The conclusion is that for small gapped systems, semi-
conductors and metals, the DM correlations may either be
very large or may grow indefinitely as the temperature is
lowered. This severely limits the ability of pureR-space
based methods to effectively treat these systems. The ERG
method presented now attempts to treat this problematic
point in linear scaling methods.

III. THE ERG METHOD

A. Principles of the method

The DM is the zero-temperature limit of the FD-DM
@see Eq. ~4!# and for metals, as the temperature in the
FD-DM is lowered, the range of FD matrix correlations in-
creases@Eq. ~11!# and the matrix becomes nonsparse. This
nonsparsity tells us that the way we think and represent the
DM is actually problematic. An alternative view of the rela-
tion between the FD-DMs and the DMs is needed.

More useful is to associate the DM as a series,sum of
terms, instead of a limit. The series we consider is telescopic
with temperature decreasing in each term by a factorq.1

r̂5F̂b0
1~ F̂b1

2F̂b0
!1~ F̂b2

2F̂b1
!1¯

5F̂b0
1D̂11D̂21¯ . ~12!

What is the meaning of this equation? We view the DM as
composed of a high-temperature~smallb0! FD-DM plus ad-
ditional termsDn n51,2... gradually correcting for lower
temperatures. Each term corrects for a temperature scale
lower by the factorq from that of the previous term, so that
bn5qnb0 .

Let us now study the properties of the operators in the
series of Eq.~12!. We do this in two spaces: InR-space and
in energy space. To demonstrates our arguments, we con-
sider a one-dimensional~ID! system of N sites with a
nearest-neighbor one-electron Hamiltonian

H52(
i

ai
1ai2(

^ i , j &
ai

1aj . ~13!

Here i 51¯N indexes the sites andj is a nearest neighbor
site.

In the R-space localized basis the matrix representing
F̂(b0) is strongly localized becauseb0 is chosen small@see
Eq. ~11!#. This is seen in Fig. 1 for our model system, where
a typical column of the FD matrix is plotted. According to
Eq. ~12!, the long-range DM correlations quenched byb0 are
introduced step by step while gradually cooling the system
successively by the renormalization factorq. This gives DM
correctionsD̂n (n51,2,...), which are increasingly delocal-
ized in R-space~see Fig. 2!.

Next, consider energy space. The operators of Eq.~12!
are all functions of the Hamiltonian, so they are simulta-
neously diagonalized in the energy eigenstate basis. The ei-
genvalues of the operators as a function of the energy of the
eigenstates~for convenience, we scaled the energy to the
interval @0,1#! are shown in Fig. 3. We show the FD distri-
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bution at a high temperature (b0515) and then twoD con-
tributions each withb increasing by the factorq52. The
higherb becomes, the smaller the supporting energy interval
~where eigenvalues are non-negligible!. Each of the terms in
the sum of Eq.~12! is thus supported by successively smaller
dimensional Hilbert subspace.

To summarize: InR-space, theD̂n represents increas-
ingly larger length scales, while in energy space they are
supported by successively smaller dimensional Hilbert
spaces. These Hilbert spaces can therefor be spanned by
longer rangedR-space basis functions, that is by acoarse-
grained basis.

What we now need is a general method to create the
coarse-grained basis and the representation of the Hamil-
tonian and other operators in the coarse grained Hilbert
space. But before we turn to this crucial issue, let us make an
additional remark as to the way we actually use Eq.~12! in
computations. While it is appealing to think in terms of Eq.
~12!, and indeed we shall do so in the rest of this section, it
should be kept in mind that we never explicitlycreate the
matrix corresponding tor̂ since it is nonsparse and, there-
fore, computationally prohibitive. Instead, we use Eq.~12! in

expectation value expressions, for example, the ground-state
energy of Eq.~2! becomes

E5tr $ĤF̂b%1tr $ĤD̂1%1tr $ĤD̂2%1¯ . ~14!

~note, that we can write an analogous equation for any elec-
tronic expectation value!. Here, the trace operations are per-
formed separately for each term in the corresponding coarse
grained space. The full DM is thus never explicitly needed.

B. The ERG coarse graining step: A functional
approach

We now turn to the issue of constructing the coarse-
grained Hilbert spaces. The ERG is recursive so what we
need is a matrix representation of the Hamiltonian~and any
other operator whose expectation value we wish to calculate!
in an orthogonal basis of the (n11)th coarse-grained Hilbert
space. These matrices are to be calculated from the corre-
sponding ‘‘known’’ matrices of thenth space.

We define the following function of the Hamiltonian,
loosely called the Fermi level density of states~DOS! (n
50,1,...)

G~n!~Ĥ !5
]

]m
F̂bn

5bn

ebn~Ĥ2m!

~11ebn~Ĥ2m!!2
. ~15!

The action of the operatorĜ(n) on a given vector, is made
apparent by examining its eigenvalues in Fig. 4. WhenĜ(n)

operates on any vector in thenth space, it zeros components
of energy outside the interval@m2Mbn

21,m1Mbn
21# ~M is

a number of order 10!. ThusĜ(n) is a pseudo-projector onto
the (n11)th space. We do not have enough experience to
formulate accurate guidelines on the desired form ofG. Sev-
eral forms for this pseudo-projector were tried. For example,
a properly chosen Gaussian formG5A exp(2a(H2m)2)
can also be used. However, to our~as yet limited! experi-
ence, the best results are achieved with the form given by Eq.
~15!.

The matrixGa,b
(n) 5^ã(n)uĜ(n)ub̃(n)& @where theN(n) basis

functions of thenth space areã(n)(r )5^r uã(n)&# can be cal-
culated column by column using a lengthP Chebyshev ex-

FIG. 2. A typical column of the matrixD1 ~in a series withb0515 andq
53! for the model defined in Eq.~13!, with m52.0.

FIG. 3. The eigenvalues of the first three terms in Eq.~12! contributing to
the DM when b0515 and q52. The sum of these terms gives a low-
temperatureF60 ~eigenvalues shown as thin line!.

FIG. 1. A column of the FD-DM forb515 for the model defined in Eq.
~13!, with m52.0.

10162 J. Chem. Phys., Vol. 109, No. 23, 15 December 1998 R. Baer and M. Head-Gordon



pansion in the same way the FD-DM columns are computed,
~but with different expansion coefficients!. G(n) is highly sin-
gular, and its rank is the dimension of the coarse grained
(n11)th space,N(n11). The DOS at the Fermi level,
tr $G(n)%, serves to estimateN(n11) as Mbn

21tr $G(n)%. A
precise method for determiningN(n11) will be given below.
Note an important difference between the ERG method and
traditional lattice RG: The dimension of the coarse-grained
space is not imposed,it is determinedby the DOS of the
system.

SinceĜ(n) is obtained by a finite number of Hamiltonian
operations, every column ofGa,b

(n) represents a localized func-
tion (bGa,b

(n) b̃(n)(r ). To create a basis for the (n11)th Hil-
bert space, we selectN(n11) columns ofGa,b

(n) , as described
in subsection 0, and arrange them in a rectangularN(n)

3N(n11) matrix, designatedG” ba
(n) . On the average, one col-

umn is selected out of everyN(n)/N(n11) columns represent-
ing spatially close functions~according to an algorithm we
describe in subsection 0!. The (n11)th space is spanned by
the functionsua(n11)&5(bub̃(n)&G” ba

(n) , and the coarse grained
Hamiltonian matrix is formally given by

H ~n11!5~S~n11!!21/23@G” ~n!#T3H ~n!3G” ~n!

3~S~n11!!21/2, ~16!

where S(n11)5@G” (n)#TG” (n) is the coarse-grained overlap
matrix. Equations analogous to Eq.~16! can be used to de-
fine the matrix representation of any other one electron op-
erator we may be interested in.

Theoretically, it is possible to use Eq.~16! directly in
calculation. However, we have found that the intermediate
matrix (S(n11))21/2 is much less sparse than the final result
H (n11). It is, therefore, of considerable value to calculate
H (n11) directly from H (n) and G” (n). In the Appendix we
show that the following series:

Bk115~Bk23!Bk
2/4,

~17!
Ak115Ak2~AkBk1BkAk!/21BkAkBk/4,

with k50,1,..., B05(aS(n11)21), A05a@G” (n)#TH (n)

3@G” (n)#, and a215N(n11) maxi,ju@S(n11)#i,ju converge qua-
dratically to the limits:

Bk→0,
~18!

Ak→H ~n11!,

within order 10 iterations depending on the condition num-
ber ofS(n11). Equation~17! converges to a matrix represent-
ing the Hamiltonian in a orthonormal basis of the coarse
grained Hilbert space. This is done without explicitly or-
thogonalizing the coarse grained basis functions.

Once a new Hamiltonian matrix is constructed, its eigen-
value range should be accurately determined by calculating
its largest and smaller eigenvalues~using a Lanczos method,
for example!. The resulting energy interval may not be ex-
actly a factorq smaller than the parent interval, however, in
all examples we have examined, the deviations were small
and did not significantly affect the overall performance of the
method.

In R-space a column ofG is shown in Fig. 5. Such a
column is a basis function of the nested coarse grained Hil-
bert space.

In subsection 0 we discuss a general algorithm for se-
lecting the basis functions. But before we turn to that general
case let us consider a simple decimation algorithm here. We
performed two ERG steps, starting withb0515 we calcu-
lated the matrixG and constructedG” by 1:3 decimation~that
is, keeping every third column ofG!. Other decimation ratios
are also possible in principle in correspondence to the in-
verse temperatureb0 and to the density of states near the
Fermi level @through Eq.~15!#. In Fig. 6 we consider the
R-space behavior of a column of the DM in three energy and
length scales. The column corresponding to a high tempera-
ture (b515) FD-DM is shown in~i!. After an ERG step a
new Hilbert space is constructed where the energy scale has
been renormalized by a factor of 3. Because of the 1:3 deci-
mation, the length scale in this space has also changed by a

FIG. 4. The eigenvalues of the FD-DM and the filterG for b540 andm
50.6. FIG. 5. A column of the matrixG defined in Eq.~15!, with m52.0 andb

515. This column is much less localized aroundr2r050 than the Hamil-
tonian. The range is determined byb. Columns such as these form the basis
functions for the coarse grained space.
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factor of 3. In ~ii ! we show theR-space behavior of the
column of the FD-DM. This FD-DM which corresponds to a
lower temperature (b545) looks almost the same as the
previous column. In the next ERG step the energy scale has
once again been reduced by an additional factor of 3. In~iii !
the column of the FD-DM corresponding to very low tem-
perature (b5135) and still looks similar to the columns of
the previous ERG steps. We conclude from this figure that
the decay length of the FD-DM is an invariant of the ERG
transformation. This is typical in RG theory for infinite cor-
relation lengths since they have no definite length scale.

C. Selecting basis of the nested Hilbert space

We now describe a general algorithm designed to enable
the construction ofG(n) from G(n). Viewing G(n) as a set of
N(n) columns, spanning a spaceV(n), G(n) is a subset of size
N(n11) which spansV(n) as closely as possible under the
constraint thatCond(G(n))'10D/2 ~the condition number of
G(n)! where 102D is the precision. This constraint ensures
Cond(S(n11))'10D, which is needed to represent the
nested space to precision 102D.

If it were not for linear scaling, we could easily use the
well known singular value decomposition~SVD! to form a
satisfying solution for this problem. However, like diagonal-
ization, the SVD method will create nonlocal columns and
thus will not scale linearly withN(n). Thus, what is needed
here is an algorithm whichdoes not destroy the sparsity of
the columns of G. The most straightforward way to achieve
this is by a selection process: We do not change any column,
we only determine which column is kept and which is
‘‘thrown away.’’ A heuristic algorithm for this problem has
been developed in Ref. 58~to our knowledge there is no
full-proof algorithm available, however, it is our experience
that this algorithm is satisfactory!. Because it does not com-
bine or compare columns which are nonoverlapping, it is of
numerical complexityO(N(n)). The algorithm is:

1. For all k (k51¯N(n)) calculate thekth column of
G(n) denotednk . If k51 ~the first column! add it toG(n), if
k.1 perform steps 2–6 to updateG(n).

2. Identify all the columns which are currently inG(n)

and that have nonzero overlap withnk . AssumeL21 such
columns exist~L is independent of system size, related only
to the range of the basis functions!.

3. Arrange the columns andnk in a matrixC of dimen-
sionsN(n)3L and calculate theL3L matrix S5CTC.

4. Determine the singular value decomposition~SVD! of
S: S5UwnT wheren andU are orthogonal matrices and the
w is diagonal with elementsw1>w2>¯>wL>0. Locate
the largest integerr ~the rank! with w1 /wr,10D.

5. Zero the lastL2r rows of the matrixnT, yielding a
new matrixn8 and perform a QR factorization with pivoting:
n8P5QR, whereP is a permutation of columns.

6. Replace theL21 columns ofG(n) from which C was
built by the firstr columns ofCP.

The dimensionN(n11) of the coarse grained space is the
final number of columns inG(n). The number of electrons in
this space is

Ne
~n11!5Ne

~n!2tr $F̂qnb%, ~19!

Ne
(n) may be nonintegral ifm is inaccurately known.

With each iteration the dimension of the matrices de-
creases and the energy range collapses to the Fermi levelm.
For a finite system the computation terminates afterf itera-
tions, when the dimensionN( f ) is small enough so the ei-
genvaluese i

( f ) of Hab
( f ) can be efficiently determined by nu-

merical diagonalization. The series of Eq.~14! is terminated
after f steps, where the last term is defined by~other terms
were defined above!

tr $ĤD̂ f%5 (
i 51

N~ f !

$F b̃,m̃~e i
~ f !!2Fb f 21 ,m~e i

~ f !!%e i
~ f ! . ~20!

In this expressionm is the initial guess for the Fermi level
which was used throughout the calculation. The quantitym̃ is
a corrected Fermi level adjusted, together withb̃ so the fol-
lowing relation is maintained

(
i 51

N~ f !

F b̃,m~e i
~ f !!5Ne

~ f !1 (
i 51

N~ f !

Fb f ,m0
~e i

~ f !!, ~21!

b̃ is taken much larger than the inverse HOMO–LUMO gap
~known after the diagonalization! but otherwise arbitrary.

Since the range of the FD-DM is roughly proportional to
b1/2, the numerical work in the ERG method is proportional
to Pd/211 ~see Ref. 38! whered is the number of extended
spatial dimensions of the nuclear lattice.P should be chosen
small, yet it must be large enough to achieve a significant
reduction in the number of Hilbert-space dimensions at each
iteration. The method is most effective when high DOS
peaks are situated away from the Fermi level. The numerical
work as a function of system sizeN scales near linearly as
N log N, the factor logN reflects the increase in number of
iterations.

FIG. 6. A column of the FD-DM at three consecutive ERG steps for the
model of Eq.~13! with m52.0. ~i! Initial: b0515. ~ii ! After first ERG step
~with q53!. ~iii ! After second ERG step. Note: In each iteration length
scales by a factor of 3 since we use 1:3 decimation.
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IV. THE ERG METHOD AT WORK

The ERG method is a recursive method where the elec-
tronic structure problem is reformulated at each iteration, and
a relevant contribution to the calculated observables is ex-
tracted at every scale.

In this section we describe in detail the steps of ERG as
applied to the model of Eq.~13!. We start with an enormous
system ofN516 000 sites. With present computing capabili-
ties it is mandatory to treat such a large system with sparse
matrix methods. Here, however, the DM is nonsparse: The
matrix is too huge to even fit in computer memory.

The ERG method enjoys several advantages that allow
not only to compute ground-state expectation values for this
system, but also do it in a way which scales almost linearly
with system size. First, ERG never computes the DM. This is
because we never actually perform the summation shown in
Eq. ~12!. Instead we sum over the results of trace operations
@Eq. ~14!#, each trace performed in an appropriately coarse
grained space. Next, computationally intense parts of the
ERG computation can be parallelized. We will discuss this
issue in the next section.

A. The ERG steps

We start with the full system Hamiltonian matrix, which
is incredibly sparse: Only the main diagonal and the two
sub-diagonals, one above and one below it are nonzero. We
compute the columns of the matrixFb0

assumingm52.01
~we do not assume an exact knowledge of the value of the
Fermi energy, which is 2.000!. A Chebyshev series length of
P580 is imposed throughout the calculation. We aim at a
precision of five digits, thusD55. The initial energy range
of the Hamiltonian isDE52 and using Eq.~9! we see that
b0515.

We do not need to store the columns ofFb0
: They are

used only to compute the tracetr $Fb0
H% in Eq. ~14! and

N2N(1)5tr $Fb0
%—the number of electrons already ac-

counted for. This is also true for a SCF-DFT method where
only the short-ranged part of the DM is needed to compute
the electronic density~or forces on ions etc.!.

The two functionsFb0
andG(0) are calculated using the

Chebyshev method, where the computationally intensive part
is the repeated application of the Hamiltonian to a vector.
This part is identical in the two calculations and so a speedup
factor of close to 2 is gained when both are calculated simul-
taneously. The values of parameters in the coarse-grained
spaces during the ERG are shown in Table I. We see that of

the N(0)516 000 columns ofG(0) only N(1)51692 columns
survived selection and are kept inG(0). Thus the coarse
grained space has a dimension of almost a factor of 10
smaller than that of the original space. Since the system is
one-dimensional, this is also the approximate relation be-
tween the length scales: We know that the 1692 basis func-
tions cover the same amount ofR-space that the original
16 000 basis functions did. On the average, the length has,
therefore, been renormalized by a factor of about 10. For
systems with dimensionality larger than one, the length scale
is harder to define.

Using Eq. ~17! we construct the representation of the
HamiltonianH (1) in the coarse grained space. It is found in
Table I that the energy range of this Hamiltonian is a factor
of q56 times smaller than the original energy range.

Now we wish to determine the rangeR(H (1)) of the
HamiltonianH (1). In general the rangeR(H) of a matrixH
is defined as the distance beyond which the matrix element
of H between any two points is negligible. A precise state-
ment is

R~H !5min
R

$ur2r 8u.R⇒u^r uHNur 8&u,102D%,

where HN is defined in Eq.~6! and D is the precision in
terms of number of digits. We see in Table I that the range of
Hamiltonian R(H (1)) is 72 renormalized length units. Re-
member that the length of the system isN(1)51692 renor-
malized units so,R(1)!N(1) and the Hamiltonian matrix is
very sparse. The range of the FD-DM calculated in the 0th
space isR(F (0))5132.

The renormalized values of the parameter for the third
ERG step can also be found in Table I. Finally we arrive at a
nonsparse Hamiltonian which is fully diagonalized at the last
step. Two ‘‘strange’’ looking numbers are apparent in the
table. These are: The negative number of electrons and the
large energy correction: The first results from the incorrect
~too large! guess we used for the Fermi level and the second
from correcting for this using Eq.~21!.

Performance of the ERG method as a function of system
size is shown in Fig. 7. CPU time scales quasi linearly,
;N(log N)2 ~the additional factor of logN is due to the tree-
code implementation9!. Crossover is atN'4000 for this
single processor Cray C90 calculation. 60% of CPU time
was consumed by the first iteration, sufficient to converge
insulators with a gapde51 @Eq. ~10! with b515#.

TABLE I. Renormalized parameters at the different iterations for a 16 000 site 1D metal.

Iteration n 0 1 2 Diag.

Space dimensions N(n) 16 000 1692 298 89
No. of electrons Ne

(n) 16 000 1660.6 265.5 236.3
Energy range DEn 2.00 0.31 0.06 0.01
Inv. temperature bn 15 94 531 ‘̀ ’
Hamiltonian range Rn(H) 3 73 55 89
FD-DM range Rn(F) 132 165 120 89
Energy contribution 5884.48 232.75 21.23 236.42

tr$H (n)D (n)%
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B. 1D example: A metallic carbon nanotube

The ERG method was applied to~3,0! carbon nanotubes
of varying lengths, predicted to be metals,59 using a TB
Hamiltonian of Ref. 60, without the Hubbard-type correction
for electron correlation. Nuclear position was not optimized
~C–C distance was set to 1.49 Å prior to rolling the tube
along its axis!. The Chebyshev expansion lengths used were
P580. Performance times are shown in Fig. 8 forD56
accuracy. The ERG method becomes more efficient than di-
agonalization based calculation at around 200 carbon atoms
for a single processor on a Cray T3E.

The Chebyshev expansion length within the ERG
method, ofP580 terms, should be compared to an expan-
sion length of thousands, growing with system size, that
would have been needed to resolve the HOMO–LUMO gap

using naively the conventional Chebyshev scheme.17,19 Be-
cause the DM is highly nonlocal in these metallic systems,
similar difficulties are also expected in the direct minimiza-
tion methods.23,24

C. 2D Semiconductor: Puckered-sheet polysilyne
„SiH…n

An additional example of the power of the ERG method
is shown in Fig. 9 where the CPU times for calculating an
observable, such as the electronic energy of the ground state,
is shown. The system is a puckered sheet of silicon atoms
with hydrogen atoms above and below the sheet for stabiliz-
ing silicon dangling bonds. Additional hydrogen is intro-
duced on the boundary of the sheet where silicon has two
dangling bonds. This system is a semiconductor with a
calculated61 indirect gap of 2.48 eV.

The calculations are based on a tight-binding model of
Goodwinet al.62 and Kim et al.63 The full set of parameters
we used are given in Table II. The reader is referred to Ref.
63 for definition of the symbols in the table.

FIG. 7. ERG (D55, dots! and standard diagonalization~triangles! CPU
time for an energy calculation vs number of sites in the TB model of Eq.
~13!. Line depicts ideal asymptoticN(log N)2 scaling.

FIG. 8. CPU time for an energy calculation vs number of atoms in a me-
tallic ~3,0! carbon nanotube. Triangles: Energy calculation based on diago-
nalization. Filled circles: High accuracy (D56) ERG calculation. Line is a
N(log N)2 line.

FIG. 9. CPU time for calculating a ground-state observable for 2D semi-
conductor ~puckered-sheet polysilyne!. Dashed line: Time of calculation
based on diagonalization. Triangles: Time of theD54 Chebyshev expan-
sion method with 270 terms; Circles: Time of the one-stepD54 ERG
method. Lines are a guide to the eye. All calculations are on a single pro-
cessor of Cray T3E.

TABLE II. The tight binding parameters for polysilyne~Refs. 62–64!.

H–H Si–H Si–Si

Vsss ~eV! 27.59 23.5535 21.82
Vsps ~eV! 5.088 1.96

Vpps ~eV! 3.06
Vppp ~eV! 20.87
r 0 ~ ! 0.742 1.48 2.35
r c ~ ! 1.6 2.186 3.67
n 2.18 1.9877 2
nc 14.0 13.269 6.48
m 4.215 2.255 4.54
mc 3.50 3.01 6.48
U ~eV! 3.15 5.795 3.5481
Es ~Si! ~eV! 213.08
Ep ~Si! ~eV! 24.785
Es ~H! ~eV! 28.34
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This TB model underestimates the gap, yielding about
1.6 eV depending on system size. The energy range of the
TB Hamiltonian isDE50.45 a.u. The small gap is mani-
fested in long-range DM correlations. A Chebyshev expan-
sion calculation tuned toD54 accuracy uses an inverse tem-
perature ofb5310 and an expansion length ofP5270
terms. As seen in Fig. 9, this leads to a formidable calcula-
tion that reaches a full linear scaling regime only for very
large number of atoms. This is a typical problem in small
band gap semiconductors.

An effective solution is to use a one-step version of the
ERG method. If the system was much larger~and, therefore,
sparser!, a two step or higher number of ERG recursion steps
would be advantageous of course, but because of the two-
dimensional nature this would require too much memory
than presently available on our systems. Here, for example,
we usedb540 andP546. The computational gain of one
step ERG seen in Fig. 9 is very significant.

V. SUMMARY

A novel approach to electronic structure of large systems
has been presented. Three themes characterize the proposed
ERG method. The electronic structure problem is cast in
terms of functions of the Hamiltonian. This functional ap-
proach is useful since Chebyshev expansions allow to imple-
ment the required functions. A second theme is the energy
scaling transformations achieved using energy-functional fil-
ters. The third is the use of coarse grained Hilbert space to
achieve a length scale renormalization, so that the DM can
be decomposed into a sum of terms, each describing a dif-
ferent energy and length regime of the problem, and each is
represented by a sparse matrix.

As is usual with RG approaches, infinite length scales
are manifested as scaling transformation invariants while fi-
nite length scales decay to zero with increasing scaling trans-
formations. This invariance of the scaled correlation length
in metals allows to represent the DM as a series of sparse
matrices in nested Hilbert spaces.

The ERG method is also useful for many related prob-
lems: Whenever the DM range is large~even if it is finite!;
allows to significantly shorten the Chebyshev expansion
length needed for resolving a small HOMO–LUMO gaps or
for reaching high accuracy calculations.
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APPENDIX

In this Appendix we discuss the origin of Eq.~17!. It can
be shown65 that the following iterations (k50,1,2,...):

Wk115 1
2~3Wk2WkYkWk!, Yk115 1

2~3Yk2YkWkYk!,

W052AaI , Y052AaS, a215N max
i , j

uSi j u,

~whereS is the positive definiteN3N overlap matrix! con-
verge quadratically to

W`52S21/2, Y`52S1/2.

For best linear scaling results, it is important that the matri-
ces W and Y remain as sparse as possible. However, it is
well-known thatS21/2 is much less sparse thanS itself, es-
pecially if Shas a large condition number. On the other hand,
the matrixS1/2 is not really needed. We only need to calcu-
late the matrixH5S21/2RS21/2 whereR5GTH (n)G is con-
siderably sparse. It is, therefore, beneficial to calculateH
directly and avoid at least part of the nonsparsity ofS21/2.
Towards this end, define the sequence of symmetric matrices
(k50,1,2...)

Ak5WkHWk , Bk5YkWk21,

it is straightforward to show that

Ak115Ak2~AkBk1BkAk!/21BkAkBk/4,

Bk115~Bk23!Bk
2/4.

Thus quadratically converging to

A`5S21/2HS21/2, B`50.

Numerical test of this procedure shows that the number of
iterations is on the order of 10 and depends on the condition
number ofS. Furthermore, the matricesBk start out from
very sparse matrices and end as the zero matrix but in the
interim iterations they become considerably less sparse. Yet,
we have found that this scheme still leads to matrices more
sparse matrices than the direct computation ofS21/2.
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