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The auxiliary field Monte CarldAFMC) technique has advantages over otabrinitio quantum

Monte Carlo methods for fermions, as it does not seem to require approximations for alleviating the
sign problem and is directly applicable to excited states. Yet, the method is severely limited by a
numerical instability, a numerical sign problem, prohibiting application to realistic electronic
structure systems. Recently, thkifted contour auxiliary field metha@C-AFMC) was proposed

for overcoming this instability. Here we develop a theory for the AFMC stabilization, explaining the
success of SC-AFMC. We show that the auxiliary fields can be shifted into the complex plane in a
manner that considerably stabilizes the Monte Carlo integration using the exact one-electron
density. Practical stabilization can be achieved when an approximate Hartree—Fock density is used,
proposing that an overwhelming part of the sign problem is removed by taking proper account of the
Fermion mean-field contribution. The theory is demonstrated by application,to€H1998
American Institute of Physic§S0021-9608)00539-X]

I. INTRODUCTION accuracy'® The fixed node approximation fails in this aspect
because the error bar can be decreased only by generating a
Quantum Monte CarlgQMC) methods offer a nonper- petter node structure, which, at present, is an exponentially
turbative means for systematically improving the quality ofhard computing problert?. Furthermore, DMC methods are
electronic structure calculations, taking into account manyespecially useful only for energy calculations. Other observ-
body correlations, while scaling gently with number of elec-ables are biased by the importance functidhast, despite
trons. QMC methods for electronic structure calculations argome progress made in developing methods for excited
the variationalVMC),'~® Green’s functionfGFMC),*”" dif-  state€%'" these have not yet showed convincing generality,
fusion (DMC),%® path integralPIMC),**** Auxiliary Fields  precision, and robustness for realistic chemical sysféms.
(AFMC)** and Constrained PatiCPMC).**~** Although  Thus, there is a real need for additional QMC approaches
these approaches differ in representation of the wave funghat may cope better with the sign problem and allow for
tions and projection operators, a universal feature is the oGsfficient calculation of a variety of observables.
currence of a “fermion sign problem,” limiting the accuracy In this paper we address what seems a likely candidate
or stability of the methods for electronic structure. In PIMC, for the task: the Auxiliary Fields Monte Carl6AFMC)
for example, it is necessary to change the sign of all odgnethod. AFMC is especially attractive because the sign
permutations, and when the temperature is lowered to thgroplem seems to be “analytically taken care of,” without
Fermionic temperature a catastrophic loss of accuracy oGincontrolled approximations such as trial wave functions.
curs. In DMC, GFMC, and CPMC the sign problem is asso-ryrthermore, the formalism deals with imaginary as well as
ciated with the need to represent a sign change of the exagi,| time evolution, so excited states and other dynamical
electronic ground state when random walkers cross the wavghservables are exactly obtainable. The method uses Monte
function nodes. In this context, the fixed node mefhbas  cario(Mc) techniques for evaluating the functional integrals
been a very successful approximation, occasionally providappearing in the Hubbard—StratonoAt representation of
ing tight upper bounds to the full correlation energy. A spe-the evolution operator. AFMC is applicable to fermidasd
cial version of the fixed node approximation, the restrictedbosom in an external potential, interacting among them-
path MC, has allowed a stabilization of the PIMC. selves via two body forces.

VMC, DMC, and GFMC are by now well-established  For fermions, the AFMC method has been used exten-
methods and have demonstrated their power in manyely to study electron correlation in the Hubbard
applications®~**There is, however, more to be desired. Onepmodel?3-28 |t was found that some types of electron—
of the goals of Monte Carlo methods is to overcome theg|ectron interactions on Hubbard lattices yield semi positive-
exponential scaling of full CI methods with respect to gefinite integrands and were amenable to calculation via the
AFMC method®>?® However, when applied to atoms and
dElectronic mail: dxn@chem.ucla.edu molecules, with a realistic electron—electron Coulomb repul-
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sion, it was observed that the Monte Carlo integration wasalculations is derived in Sec. Ill. Numerical issues are dis-
next to impossible, even for the helium atohtas well as cussed in Sec. IV. The application of the theory tg id
most repulsive Hubbard modgl€ven the most basic quan- studied in Sec. V. Finally, conclusions are discussed in Sec.
tum chemical application, that of calculating the bond energyVI.
of the H, ground staté® seems to have encountered great
difficulties, since no attempt to converge the correlation eny; ovERVIEW OF AFMC FORMALISM IN R SPACE
ergy with respect to lowering the temperature was attempted.
Thus, although analytically “taken care of,” the sign prob- [N AFMC, the central physical quantity for electronic
lem is not eliminated in AFMC but simply transformed. It Structure is the imaginary time evolution operator, or parti-
becomes a numerical sign problem: when an attempt t§on function operator for the electrons:
Iowgr 'the temperature in the AFMC integrand is made, the U=exg— gAY}, 2.1)
statistical fluctuations become exponentially lafge.

The sign problem in AFMC was also analyzed by Fahywhereg is an imaginary time or an inverse temperature. The
and Hamannri! where it was shown that the AFMC method full many-electron Hamiltonian is
is isomorphic to a diffusion—decay—drift process on the . -1 .
manifold of normalized Slater determinants. In this pictureH=E f\P;(x)(Z—V2+W(x))\P5(x)d3x
the origin of the sign problem is traced back to the natural S Me
inclination of a diffusing liquid to eventually assume a e? - . 1 - .
smooth nodeless form, while the Fermionic ground state con- +§Z ”\PJ(x)‘lfs/(y)m‘l'sr(yﬂ's(x)dgx oy,
tains a complicated oscillatory form due to the nodes caused s.s’
by the Pauli exclusion principle. The authors also find that (2.2

the ground state energy of the noninteracting Hamiltonianynere m, and e are, respectively, the electron mass and

plays a dominant role in the diffusion drift—decay determin-cnharge w(x) is the electrostatic potential of the nucleon—

ing potentials. This interesting approach has led to the for—electron interaction anﬁf*(x) creates an electron of spi
mulation of a brand of new AFMC methods, the positive ' s P

projection (PPMO™® and constrained path Monte Carlo atx while ¥(y) annihilates a similar electron gt Both x
(CPMO),** 5 where the AFMC instability is eliminated by a andy are coordinates of an electron in its three-dimensional

fixed-node type of approximation in the determinantal mani-PoSition space.
fold. The trace of the operator in ER.1 gives the partition

In this paper we attempt to contribute to efforts investedfunction:
in coping with the sign problem in QMC calculations. We
show how it is possible to effectively stabilize the large- Z(BF”W(B)F; (P YU(B)|Dy), 2.3
amplitude oscillations in the AFMC integrand. Unlike the
Fahy—Hamann formulation, the approach here conforms t§om which the free energyF(B8)=—d InZ/dg and the
the spirit of the original Hubbard—Stratonovi¢HS) trans- ~ ground state energy .=limg_ ... F(8), can be extracted.
formation and there is no need for a geometric constructiod he sum in Eq.(2.3) is over any complete set of linearly
of a determinantal manifold. Thus, the AFMC sign problemindependent N-particle wave functions, such as a complete
and the question of the role of the mean field is examinedet of determinants. If only the ground state energy is
from a completely different perspective yielding new resultsneeded, one can use as few as one term in(Eg).
and insights. The Hamiltonian of Eq(2.2) can be written(up to some

The SC-AFMC ideas were originally proposed in Ref. constants in the following compact form, needed for the
32 for stabilizing the AFMC integrand. Here we give a more AFMC formalism:
detailed treatment. We show in Sec. Ill that one can consid- - SRR
erably stabilize the AFMC integrand by using an exact time- '~ KTp+2p™Vp. 24
dgpender_ﬂ matrix eleme_nt of the_ complete one-electron defjygre ;(X,y)=25‘i’§(X)‘i’s(y) is an element of the one-
sity matrix. Of course, in practice, the exact one-electronyjectron density matrix describing quantum correlations of
density is not known, so an approximation is used. Dependge glectron density at pointsandy. The pair of position
ing on the approximation, this may allow a sufficiently ac-yeciors(x,y) may be viewed as a single index and the “inner

curate result to be obtained. _ . product” of a vector so indexed is compactly denoted by
The theory is applied to the Hmolecule with orbitals

represented on a grid. Using the Hartree—Fock density we ATBEJ dx d B 2
were able to extract 99% of the correlation energy describ- X dy AXy)BX.Y). @3
able by the grid representation used. A previous applicatior,q vectorK (x,y) = 8(x—y)[ — (1/2mg) V2+w(x)] in Eq

1 X .

of AFMC® did not attempt to collect the complete correla- (2.4) includes all the one-body operataisuclear attraction
tion energy. We show that such an attempt would have beefy anq the kinetic energy andV is the matrix describing
doomed to failure unless special stabilization techniquesg|ectron—electron Coulomb repulsion:

such as SC-AFMC, are used. o
Structure of this paper: the AFMC formalism is briefly Vixyix'y') =€ A(X=y)é(x"'=y")
presented in Sec. I, and the theory for stabilizing AFMC Yo XY [x—x']|

(2.6
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The form of Eq.(2.4) for the Hamiltonian can be attained for
any one-particle representatithso the stability discussion
encompasses all forms of AFMC implementations.
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~ B ~
T exp{ - fo (K+iVa,)Tp dT) Un=tn(B). (2.11

Casting of the Hamiltonian in terms of density operatorsThe fluctuating fieldsjVo(x,y) in Eg. (2.9), are respon-

enables us to use the HS transformafibf?3334

N/2

Jde(w)

e—(l/Z)ATWA:

Xf e—(l/Z)IrTWo-e—irrTWAdNO, 2.7)
whereW is a positive definite matrix. This equality is easily
proved using usual Gaussian integration, when the vektor
is composed ofN numbers. When we insert, instead of the
vectorA the vectorp of N noncommutating one-body opera-

tors, the equality can be preserved in the limit of a small

exponent:

N/2

VdetV)

e~ (W2p"™Vp At_| ==
2

XJ e—(l/Z)a'TVO'Ate—iO'TV pAtha_, (28)

whereAt is infinitesimal. Thus, a single imaginary time slice
of an evolution operator for a Hamiltonian of the two-body
interaction p"Vp is written as a sum of real time evolution

operators that involve only one-particle interactions of the

form h,=o"Vp and include an auxiliary fiel/o. The in-
tegral is over all possible values of the auxiliary densities
and is weighted by a Gaussian, exgg Vo At).

For a finite timeB we must divide into time slices and

every slice involves a separate auxiliary field integral. Tak-
ing the number of one-body operators to a continuous limit

and adding a one-body interaction, the matrix element of th

sible for building the correct electron—electron interaction
into the evolution operator matrix elements.

Numerical evaluation of the HS functional integral of
Eq. (2.9 uses Monte Carlo methods. Because quantum evo-
lution is Markovian, the auxiliary fields of different time
slices are statistically independent in the Monte Carlo ap-
proach. In each time slice—t+ A r the auxiliary fields are
sampled according to a Gaussian distributiin

Wo,]= e (V20 Vo, A7 (2.12
which is normalized through the differentidls{ o .}:
j W[ ,|D{o,}=1. (2.13

Once a field is sampled, the right-hand side determinantal
wave function|®(t)) is propagated by an additional time
step A7 [see Eq.(2.11)]. This process continues until one
reaches the determinajtb(B)). Then the overlap between
determinants is calculated é®|®(8)). This last quantity is
repeatedly summed over, statistically converging to the diag-
onal matrix element of the many-body evolution operator.
This elegant formalism has advantages over present MC
approaches in that it assumes no approximate form for the
electronic wave function or for its nodes as do VMC and
fixed node DMC. The use of determinants is exact, not an
approximation. However, these hypothetical merits are not
truly realized since the sign problem has not disappeared, it
merely changed form: now it is manifested as a numerical
instability. We address this issue and its resolution in the

following section.

full evolution operator can be represented as a multidimen-

sional functional integral over all possible time-dependenti

auxiliary fieldso (Xx,y):
(@] AT 120NV ) = f W[o1U(8)D{o}
=(U(B)w- (2.9

In most applications theN electron state is taken as a
determinant? ®| ;- -4/, of N spin orbitals,, and the

functional integral is calculated using Monte Carlo tech-

niques.
Equation (2.9 is a tremendous simplification because
the termU ‘" (B) is a matrix element of the evolution opera-

tor of a one-particle time-dependent Hamiltonian containing

the auxiliary fieldsVo,(x,y):

u21>(ﬁ)=<q>‘% exp{ - fﬁ(KﬂvaT)T,S dT} q>>
T 0
(2.10

(1’ is the time ordering operatpr Thus, when the time-
dependent evolution operator operates on a determibant

the result is again a determina®t(B) =|y1(B8)- - ¥n(B)|,
composed of the separately propagated orbitals:

II. STABILIZING THE FUNCTIONAL INTEGRANDS:
SC-AFMC

The excited states can be damped relative to the ground
state in two general ways. One way is to use real time evo-
lution to cause the excited states to oscillate rapidly and then
sum over these oscillations, canceling their effect. The other
way is to dampen high-energy terms in the wave functions
by an imaginary time evolutioflike heat transfer or diffu-
sion). The drawback of the HS transformation of E8.9) is
that it damps the high-energy components in the first way
mentioned above. Thus as seen in E.10, it changes
imaginary time evolution into a summation over a real time
evolution.

Our goal is then to modify the HS transformation in such
a way as to prevent the formation of large-amplitude oscil-
lations in the integrand. In order to achieve this goal we must
figure out a way to accurately compensate, in terms of
imaginary-time damping, a reduction of the real time oscil-
lations. This can be done by invoking the well-known com-
plex plane path invariance of line integrals. It is straightfor-
ward to prove that the functional integral of E.9 is
invariant to an imaginary contour shift (x,y), an arbitrary
real field that may also depend on time:
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(U (B)pw=eMdbervar ool @IErVer D (B) |y o 9= TP —olo|B(r)
(3.1 T (P[D(B))

A close examination of Eq3.1) shows that the contour shift When the AFMC calculation uses a highparameter, for
i, appears in three places: in the one-body evolution opergkomputation of ground state properties, a simple approxima-
tor UM, as part of an oscillating phase factor, and finally adtion to the ground-state one-electron density may be suffi-
an exponential amplification factor. Notice that within the cient for achieving practical stability in the Monte Carlo in-
evolution operator the contour shift induces damping whiletégration. In many systems the density is well approximated
in the phase factor it induces an oscillation; this allows us t®y Hartree—Fock theory. This is the idea proposed in Ref.
control the balance between oscillations and damping. Thé2, Where a ten-electron neon atom was treated using the HF
exponential amplification will be ignored in subsequent dis-density to stabilize the functional integral. In nondegenerate
cussions because in all expectation value expressions it capystems the closed-shell restricted Hartree-FGRKF) or,
cels in the numerator and denominator. when needed, the unrestricted Hartree—F@¢KF) may be
The question is now: how should the imaginary fieldsUsed to obtain good approximations to the density. It is per-
ia.(x,y) be chosen to mitigate the oscillations of the inte-haps possible also to use density functional the@¥T)
grand? In order to answer that, let us write a matrix elemenVith the local spin-density approximati¢hSD) for this pur-
of the evolution operator in the following form: pose.

(3.7)

<‘I’(0)|U(B)I<D(0)>°<f Do, W[o,Je 'SAL (3.2 V. NUMERICAL METHOD

The functional integral now is over the field of a single time In Sec. V we demonstrate_the th_eory using the hydrog_en
slice 7— 7+ At. Each time sliceAt is separately stabilized molecule as an example. In this section we discuss numerical
and the complex actio8, is defined as representation and implementation issues.

:

A. Grid representation

_ e (KiV(o+ia))Tp At _
=i In(¥(8—7)le [®(7—AY) Consider the molecule in a cubic cell of dimensidris
At Our approximations in representing the system become exact
—oVa 3.3 in the largeL limit. Several results from the plane waves
T T" . 5 . .
method® are used, which enhance numerical accuracy and
Our plan is to choose the imaginary field, so as to havs, stability even for more moderate valuesWe assume that
insensitive to first-order changes in the auxiliary fietd. the cell is surrounded with identical systems which together
The sensitivity ofS, to o, is the following functional deriva- form a superlattice. The electronic state in all cells is identi-

tive: cal (k=0 approximation In order to eliminate the diver-
gences in the electron—electron, electron—nucleon and
35S, . (P(B— 7)|;J|¢>(7)) nucleon—nucleon potentials, we zero threGyFourier com-
o, Vi a;— WB— () |’ (3.4 ponent of all these interactioi$Thus, the R-space potential

for the electron—nucleon interactidtaking into account all
and thus a sufficient condition fd, to be stationary with nucleons in the superlatticés
respect too, is

1 :
. V(1) = —=2, vqe ", (4.)
o gy = LFB= DIp(6y) () a5 NI T
m (P[D(B)) ' ' wheree'd" are standing plane waves inside the cell, and
The field shift«, is then equal to a matrix element of the 1 4e?Z, eRmd
exact one-electron density matrix normalized by the matrix ~ Vq=— \/? A q#0. (4.2

element of the evolution operator. Notice that when 7, g
and B8— 7 are very large, we have Heremindexes the nuclei of the system cell, each at location
Rq. The two-electron interaction, is also taken as

@ (% Y)=(04dp(x,y)|0g) (B, 7,B—T—®), (3.6 )

. . = —irq
where 0 i is the exact normalized ground state wave func- Vedr) Fq;o Ve T, 4.3
tion. Thus, in these limitsy, is the exact ground state one-

electron densit)(;))gs. When g is indefinitely large« . be- where
comes equal to thexactground state density at all times. 1 4me?
Note that due to the special form ¥ffor the Coulomb Vfﬁ o q#0. (4.4

interaction[see Eq.(2.6], only the diagonal elements af,

[i.e., a,(X)=a.(x,x)] affect the functional integrals. The The nuclear—nuclear interaction is calculated via an Ewald
sufficient condition of Eq(3.5) is then simplified to a con- summation excluding thg=0 component. Since we use a
dition pertaining only to the electronic density: very large cell, it is consistent to assume that the electronic
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4.0 7 use a closed shell formalism and solve for the lowest energy
35 | [reopvaz o occupied molecular orbitalgy- - -, where N is the num-
) :;IO*D;O'GZS“ x er of electrondin our caseN=1). The density matrix is
L210. DXL 25 ber of electrong N=1). The densit t
> 3.0 o L=20, DX=1 2520 x then
S 55 | L1=20. DX=0 6250 \
/5\ o
I 201 ' a() =22, [n(x)[?. 4.5
> =
~ X %
E-{ L5 8 This electron density is the stabilizing shift, and the derived
% 1.0 - o stabilizing potential is
0.5 - . a(y)
0.0 E(X)=(Va)(x)= —Ix—yl dy. (4.6)

, 05 10 15 20 25 30 35 In practice, fast Fourier transforgfFFT) is used to perform

Bond length R (au) this spatial integral, using the Fourier representation of the
FIG. 1. Restricted Hartree—Fock tot&lectronic and nuclear repulsipon two-electron pOtGIj]tI{:ll n Eq‘4-'4-1)' Using closed shell _Har—
energy above minimum of Husing a basis setc-pVQ2) and 2¢2 com- tree Fopk theorylllmlts our ability to accurately describe the
binations of cell length$L) and grid spacing4x). mean field density at large bond lengths, when the ground
state consists of two open shells. This density is not expected
to efficiently stabilize the AFMC calculation. We return to

Coulomb potential operates on localized functions within thethis point in Sec. VI.
cell and there is no need to use an Ewald sum for interactions Next, the computationally intensive part of the calcula-
involving electrons. The R-space functions are representeion begins. In this part the following expression for the
on a grid®® which naturally introduces a cutoff in the q ex- ground state energy is calculated:
pansions via the finite grid samplirgx.

The faithfulness of this representation can be studied by g S_w,
comparing its performance to that of a high-quality Gaussian ~ ~ (®[U(B)[®)

basis at the Hartree—Fock level. For the Gaussian basis c3lihare H is the full many-electron Hamiltonian and
culation we used the programcHEM®’ with the cc-pvVQZ

basis of Ref. 38. In Fig. 1 we present the Hartree—Fock en_Wl‘ﬂl il is the closed shell determinant composed
ergies of the basis set calculation and four cases of grid calf®™ the N occupied orbitals. We mention in passing that
culations. For the latter we used two values of cell sizes since the spatial part of, and ¢, are identical, only one of
and 2 values of grid spacingyx. It is seen that for a broad the orbitals actually needs to be operated on by the AFMC
range of bond lengths, the plane wave results indeed corgne-body(spin independentevolution operators.

verge to the basis set calculations as the cell size is increased The imaginary timeg is divided toM equal segments,
and grid spacing is decreased. However, the convergence 7= /M. In the first segment a random auxiliary field is
rather slow. For larger than equilibrium bond lengths thesampled from a Gaussian distribution:

convergence is slow with respect to cell size, while for T

smaller than equilibrium bond length it is slow with respect ~ Wio(X)}=Ae” (27 Vo &, 4.9

to grid spacing. The former phenomenon is typical for

« calcul | i/hereA is a normalizing factor. The sampling is efficiently
Hartree— gFOC calculations using plane waves and gri chieved by decoupling the different fields using a fast Fou-
methods®® Several refinements are possible to reduce thes

39-41 h ol din th fier transform. The sampled field is used to construct the
errors; owever, these were not implemented in the, . iiary interaction potential:
present work.

It has been established, at least for the homogeneous o(y)

electron gas, that finite size errors in fully correlated energies W(x)=(Vo)(x)= f Wdy- 4.9
are similar to those of the Hartree—Fock calculafibifhis
motivates our assumption that the correlation energy is lesotice that owing to the special diagonal form of the V ma-
sensitive to finite size errors and can therefore be studietfix in Eq. (2.6), the auxiliary field depends only on a single
qualitatively using a moderate-sized ogli=10 a.u). Thisis  continuous indeXinstead of two. This is contrary to a basis
in accordance to our goal in this paper, to focus ondtae  set AFMC and is a consequence of the special form the two
tistical convergencef the AFMC calculation. Correspond- body-interaction has in the R-space representation. This is
ingly, we shall also use the larger grid spacing valuesaf  important for a favorable scaling of numerical work with a
=1.25a.u. number of electrons.

Once the field is sampled, the resulting one-electron evo-

lution operator,

(4.7)

B. The SC-AFMC algorithm

- iv2+uex[(x)+i[W(x)—iE(x)])AT

The SC-AFMC computation starts by first calculating ex;{—
2m

the SCF Hartree—Fock density. In the present application we
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is applied, using Chebyshev propagation metH6a¥ to

Baer, Head-Gordon, and Neuhauser

-0.85
each of theN orbitals in the determinant to obtain the deter- ] p=1au
minant (multiplied by the stabilizing phase facjor ~
_ — 2 .0.90
i T
Dy, =€ WA Y (AT (A7) WN(AT) (AT B ]
(4.1 ) : B=2au
. ) . s -0.95 A W
This procedure is repeated for every one of khéime seg- g7
ments. The final resuib ; is a propagated determinant under s ] p=dau
a particular choice of auxiliary fields, multiplied by the sta- e 1.00 ] i .
bilizing phase factors. The overlep=(®|®z) and the en- S ] J =
ergy E=(®|H|® ) are then calculated, thus concluding one ] p=8au
Monte Carlo iteration. Repeating this procedure and sum- -1.05 ] , ‘ ‘
ming over all sampled contributiofisand Sfinally gives the 0 2000 4000 6000
estimated ground state energy: Tterations
E :§ (4.10) FIG. 2. SC-AFMC results of the correlation energy of & a bond length
% 3S° ) of 1.4 a.u. Only results for iterations number 250, 500, 750, etc. are shown
and the connecting lines are a guide to the eye.
V. RESULTS

It is interesting to compare the statistical covergence of
the correlation energies at the equilibrium bond length
=1.4 a.u.(results shown in Fig. 2with those of the almost
dissociated molecule when the bond lengtiRis 3.0 a.u. In
the latter case the RHF density is not a good approximation
of the true electronic density, and the integrand stabilization
should be damaged. This is indeed seen in Fig. 3, which
exhibits inferior convergence when compared with Fig. 2.

A. SC-AFMC correlation energy of H

At the equilibrium bond length oR=1.4 a.u., we have
tested several values of the time interdat and found that it
is sufficient to use a value df7=0.1 a.u. The dependence
of the calculated ground state enefg§3) can be estimated
by the following two-level model at larg8 values:

E(B)—Egs_| (W4|®)|?
AE (wol@)|

whereE is true the ground state energyE the molecular
excitation energy, andV, and ¥, are, respectively, the Contoud with 8 parameter equal to 1, 2, and 4 a.u. are
ground and first-excited wave function® is the initial  shown in Fig. 4. For thg8=1 a.u. case, the AFMC shows a
AFMC determinant, taken in these calculations as theaeasonable result, although the statistical errors are much
Hartree—Fock ground state. From E§.1) we see that the larger than those of the SC-AFMC. However, only 80% of
ground state energy is recovered at a rate determined by thke correlation energy can be retrieved bg=a 1 a.u. calcu-
excitation energyAE. Using SC-AFMC we have calculated lation (see Fig. 2 It is when one attempts to increagehat

the energyE(B) for four values of3. A least squares pro- the sign problem really becomes apparent. This is seen in
cedure allowed us to obtain the parameteys BE, andg?  Fig. 4 as an extremely rapid loss of stability with increasing
of Eq. (5.1): B. The truly superior properties of SC-AFMC are now evi-
dent by comparing Fig. 4 and Fig. 2 f@=2 a.u.; it is seen

e AEB=q2e AEB (5.

B. The sign problem
The result of an AFMC calculatiofwithout the Shifted

Egs— Epe=—0.03634) a.u=—0.992) eV,

2:
92=0.0141) a.u. 105

Numbers in parentheses are the statistical errors in the last
shown digit. For comparison purposes, the correlation energy
for the cc-pVQZ basis is-1.1 eV. Thus, the 512 point grid
can account for 90% of the full correlation energy.

The statistical and temporal convergence properties are
shown in Fig. 2. The results reach chemical accuracy at
aboutB=8 a.u. All the statistical errors are on the order of
0.02 eV or less and grow moderately with the length of the
propagation. The correlation energy @t 1 a.u. was calcu-
lated to be 0.0313 a.u. and is different from the value of
0.035 a.u. reported by Silverstrekit al>° This could be
caused by differences in implementation details of the two
calculationg(grid and operator definitions, and especially the
treatment of the boundary conditions and finite size effects
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FIG. 3. The same as Fig. 2, for a bond length of 3.0 a.u.
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FIG. 5. The sigrX, for H, as a function of3. Triangles: no contour shift;

FIG. 4. The same as Fig. 2, but using AFMC with no contour shift. Statis-fijled dots and squares: contour shift determined by close-shell restricted
tical convergence degrades rapidlymincreases. Th@=4 a.u. results are  Hartree—Fock density.

hopelessly far from convergenéshow positive correlation energy

calculating the exact density is as computationally demand-
that the AFMC statistical convergence is greatly degradeghg as the full solution of the ground state electronic struc-
while that of SC-AFMC only slightly. AtB=4a.u. the tyre problem. The Hartree—Fock density can be used as an
AFMC calculation becomes totally unstable, predicting pOSi'approximate stabilize® When this is done, a remarkable
tive correlation energy. This is in contrast to the SC-AFMCimprovement is indeed seen in the statistical convergence of
calculations that remain stableven up tog=16a.u., the  the ground state energy ohknd in the behavior of the sign

largest value we checkgd ~ 3.Infact, within the range o8 values we have testédp to
Another way to see this remarkable stabilization is bys—16 a.u.), we have not seen evidence of an exponential
examining the quantity called “the sign,” defined %s: increase of the statistical fluctuations or an exponential de-
U571>( ) ®|U ® crease of the sign.
20(B)= < D Aw = < (|1) (BI®) . The conclusion is that an overwhelming part of the
(105 (B Dw (IVs2a(Bw “sign problem” is not due to electron—electron correlations

This quantity is strictly equal to 1 for positive definite and can be efficiently dealt with by using a mean-field den-
AFMC integrands(closed-shell system of particles interact- Sity within the MC integration. This is somewhat analogous
ing via an attractive foroe For the Cou'omb_repe”ing elec- to the fact that the fixed nodes of the HF Single determinant
trons the integrand is not positive definite, and the sign is, ivave function within DMC can account for over 90% of the
general, a positive number smaller than 1. Positive definitecorTelation energy of first row atoms and dint&f’It is also
ness of the integrand is important when Metropolis impor-in accord with the good results obtained by using a HF de-
tance sampling is performed. Although we do not use a Meterminant in VMC, and with the CPME which use an un-
tropolis algorithm(we sample the auxiliary fields directly restricted Hartree-Fock trial function for imposing a
from a Gaussian distributionthe sign3, is a useful indica- determinant-manifold fixed node approximation. However,
tion of the stability of the Monte Carlo integrand. We gen- there is one important distinction that should be stressed: the
eralize the sign concept to the shifted-contour case by ~ AFMC integration is always #ormally exact procedure
. Contrarily, a fixed node procedure in DMC, GFMC, and
<e'fo“ (T)V”(T)dTUf}lia(,B)>W CPMC is an approximation. The methods for systematically
(10T (B)Dw (53 improving the fixed node approximations in DNfC*® are
usually either severely limited by the sign problem or

The sig.nE,ll is plotted as a function of 'ghe_ inverse tempera-quick|y become computationally prohibitive with system
ture B in Fig. 5. When no contour shift is employdthe ;1719

usual AFMO, the signZ, decreases exponentially fast to  gtapilizing of AFMC is rather easily implemented in an

zero. However, when a contour shift using the Hartree—FocIé”eady running AFMC code. It does not burden the calcula-

density is made, the sign decreases only weakly with increagjon with significant additional numerical workHartree—

ing B. The use of a closed-shell Hartree—Fock density afqck is anyway executed as a first step for getting the initial

large bond length results in a degraded stabilization, as abeterminar)t However, while showing great potential it is

ready pointed out in the discussion of Fig. 3. not yet clear at this point what are the practical limitations of
this new AFMC method. Clearly more work is required.

2(B)=

VI. CONCLUSIONS AND DISCUSSION

We have shown that a considerable stabilization of theACK'\IOWLEDGMENTS
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