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The auxiliary field Monte Carlo~AFMC! technique has advantages over otherab initio quantum
Monte Carlo methods for fermions, as it does not seem to require approximations for alleviating the
sign problem and is directly applicable to excited states. Yet, the method is severely limited by a
numerical instability, a numerical sign problem, prohibiting application to realistic electronic
structure systems. Recently, theshifted contour auxiliary field method~SC-AFMC! was proposed
for overcoming this instability. Here we develop a theory for the AFMC stabilization, explaining the
success of SC-AFMC. We show that the auxiliary fields can be shifted into the complex plane in a
manner that considerably stabilizes the Monte Carlo integration using the exact one-electron
density. Practical stabilization can be achieved when an approximate Hartree–Fock density is used,
proposing that an overwhelming part of the sign problem is removed by taking proper account of the
Fermion mean-field contribution. The theory is demonstrated by application to H2 . © 1998
American Institute of Physics.@S0021-9606~98!00539-X#

I. INTRODUCTION

Quantum Monte Carlo~QMC! methods offer a nonper-
turbative means for systematically improving the quality of
electronic structure calculations, taking into account many-
body correlations, while scaling gently with number of elec-
trons. QMC methods for electronic structure calculations are
the variational~VMC!,1–3 Green’s function~GFMC!,4–7 dif-
fusion ~DMC!,8,9 path integral~PIMC!,10,11 Auxiliary Fields
~AFMC!12 and Constrained Path~CPMC!.13–15 Although
these approaches differ in representation of the wave func-
tions and projection operators, a universal feature is the oc-
currence of a ‘‘fermion sign problem,’’ limiting the accuracy
or stability of the methods for electronic structure. In PIMC,
for example, it is necessary to change the sign of all odd
permutations, and when the temperature is lowered to the
Fermionic temperature a catastrophic loss of accuracy oc-
curs. In DMC, GFMC, and CPMC the sign problem is asso-
ciated with the need to represent a sign change of the exact
electronic ground state when random walkers cross the wave
function nodes. In this context, the fixed node method8 has
been a very successful approximation, occasionally provid-
ing tight upper bounds to the full correlation energy. A spe-
cial version of the fixed node approximation, the restricted
path MC, has allowed a stabilization of the PIMC.10

VMC, DMC, and GFMC are by now well-established
methods and have demonstrated their power in many
applications.16–19There is, however, more to be desired. One
of the goals of Monte Carlo methods is to overcome the
exponential scaling of full CI methods with respect to

accuracy.19 The fixed node approximation fails in this aspect
because the error bar can be decreased only by generating a
better node structure, which, at present, is an exponentially
hard computing problem.19 Furthermore, DMC methods are
especially useful only for energy calculations. Other observ-
ables are biased by the importance function.19 Last, despite
some progress made in developing methods for excited
states,20,17 these have not yet showed convincing generality,
precision, and robustness for realistic chemical systems.19

Thus, there is a real need for additional QMC approaches
that may cope better with the sign problem and allow for
efficient calculation of a variety of observables.

In this paper we address what seems a likely candidate
for the task: the Auxiliary Fields Monte Carlo~AFMC!
method. AFMC is especially attractive because the sign
problem seems to be ‘‘analytically taken care of,’’ without
uncontrolled approximations such as trial wave functions.
Furthermore, the formalism deals with imaginary as well as
real time evolution, so excited states and other dynamical
observables are exactly obtainable. The method uses Monte
Carlo~MC! techniques for evaluating the functional integrals
appearing in the Hubbard–Stratonovich21,22representation of
the evolution operator. AFMC is applicable to fermions~and
bosons! in an external potential, interacting among them-
selves via two body forces.

For fermions, the AFMC method has been used exten-
sively to study electron correlation in the Hubbard
model.23–28 It was found that some types of electron–
electron interactions on Hubbard lattices yield semi positive-
definite integrands and were amenable to calculation via the
AFMC method.25,28 However, when applied to atoms and
molecules, with a realistic electron–electron Coulomb repul-a!Electronic mail: dxn@chem.ucla.edu
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sion, it was observed that the Monte Carlo integration was
next to impossible, even for the helium atom29 ~as well as
most repulsive Hubbard models!. Even the most basic quan-
tum chemical application, that of calculating the bond energy
of the H2 ground state,30 seems to have encountered great
difficulties, since no attempt to converge the correlation en-
ergy with respect to lowering the temperature was attempted.
Thus, although analytically ‘‘taken care of,’’ the sign prob-
lem is not eliminated in AFMC but simply transformed. It
becomes a numerical sign problem: when an attempt to
lower the temperature in the AFMC integrand is made, the
statistical fluctuations become exponentially large.28

The sign problem in AFMC was also analyzed by Fahy
and Hamann,31 where it was shown that the AFMC method
is isomorphic to a diffusion–decay–drift process on the
manifold of normalized Slater determinants. In this picture
the origin of the sign problem is traced back to the natural
inclination of a diffusing liquid to eventually assume a
smooth nodeless form, while the Fermionic ground state con-
tains a complicated oscillatory form due to the nodes caused
by the Pauli exclusion principle. The authors also find that
the ground state energy of the noninteracting Hamiltonian
plays a dominant role in the diffusion drift–decay determin-
ing potentials. This interesting approach has led to the for-
mulation of a brand of new AFMC methods, the positive
projection ~PPMC!13 and constrained path Monte Carlo
~CPMC!,14,15 where the AFMC instability is eliminated by a
fixed-node type of approximation in the determinantal mani-
fold.

In this paper we attempt to contribute to efforts invested
in coping with the sign problem in QMC calculations. We
show how it is possible to effectively stabilize the large-
amplitude oscillations in the AFMC integrand. Unlike the
Fahy–Hamann formulation, the approach here conforms to
the spirit of the original Hubbard–Stratonovich~HS! trans-
formation and there is no need for a geometric construction
of a determinantal manifold. Thus, the AFMC sign problem
and the question of the role of the mean field is examined
from a completely different perspective yielding new results
and insights.

The SC-AFMC ideas were originally proposed in Ref.
32 for stabilizing the AFMC integrand. Here we give a more
detailed treatment. We show in Sec. III that one can consid-
erably stabilize the AFMC integrand by using an exact time-
dependent matrix element of the complete one-electron den-
sity matrix. Of course, in practice, the exact one-electron
density is not known, so an approximation is used. Depend-
ing on the approximation, this may allow a sufficiently ac-
curate result to be obtained.

The theory is applied to the H2 molecule with orbitals
represented on a grid. Using the Hartree–Fock density we
were able to extract 99% of the correlation energy describ-
able by the grid representation used. A previous application
of AFMC30 did not attempt to collect the complete correla-
tion energy. We show that such an attempt would have been
doomed to failure unless special stabilization techniques,
such as SC-AFMC, are used.

Structure of this paper: the AFMC formalism is briefly
presented in Sec. II, and the theory for stabilizing AFMC

calculations is derived in Sec. III. Numerical issues are dis-
cussed in Sec. IV. The application of the theory to H2 is
studied in Sec. V. Finally, conclusions are discussed in Sec.
VI.

II. OVERVIEW OF AFMC FORMALISM IN R SPACE

In AFMC, the central physical quantity for electronic
structure is the imaginary time evolution operator, or parti-
tion function operator for the electrons:

U5exp$2bĤ%, ~2.1!

whereb is an imaginary time or an inverse temperature. The
full many-electron Hamiltonian is

Ĥ5(
s
E Ĉs

1~x!S 21

2me
¹21w~x! D Ĉs~x!d3x

1
e2

2 (
s,s8

EEĈs
1~x!Ĉs8

1
~y!

1

ux2yu
Ĉs8~y!Ĉs~x!d3x d3y,

~2.2!

where me and e are, respectively, the electron mass and
charge,w(x) is the electrostatic potential of the nucleon–

electron interaction, andĈs
1(x) creates an electron of spins

at x while Ĉs(y) annihilates a similar electron aty. Both x
andy are coordinates of an electron in its three-dimensional
position space.

The trace of the operator in Eq.~2.1! gives the partition
function:

Z~b!5tr $U~b!%5(
k

^FkuU~b!uFk&, ~2.3!

from which the free energy,F(b)52] ln Z/]b and the
ground state energy,Egs5 limb→` F(b), can be extracted.
The sum in Eq.~2.3! is over any complete set of linearly
independent N-particle wave functions, such as a complete
set of determinants. If only the ground state energy is
needed, one can use as few as one term in Eq.~2.3!.

The Hamiltonian of Eq.~2.2! can be written~up to some
constants! in the following compact form, needed for the
AFMC formalism:

Ĥ5KTr̂1 1
2r̂

TVr̂. ~2.4!

Here r̂(x,y)5(sĈs
1(x)Ĉs(y) is an element of the one-

electron density matrix describing quantum correlations of
the electron density at pointsx and y. The pair of position
vectors~x,y! may be viewed as a single index and the ‘‘inner
product’’ of a vector so indexed is compactly denoted by

ATB[E dx dy A~x,y!B~x,y!. ~2.5!

The vectorK(x,y)5d(x2y)@2(1/2me)¹x
21w(x)# in Eq.

~2.4! includes all the one-body operators~nuclear attraction
w and the kinetic energy!, and V is the matrix describing
electron–electron Coulomb repulsion:

V~x,y;x8,y8!5e2
d~x2y!d~x82y8!

ux2x8u
. ~2.6!
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The form of Eq.~2.4! for the Hamiltonian can be attained for
any one-particle representation,12 so the stability discussion
encompasses all forms of AFMC implementations.

Casting of the Hamiltonian in terms of density operators
enables us to use the HS transformation:21,22,33,34

e2~1/2!ATWA5F 1

2p GN/2

Adet~W!

3E e2~1/2!sTWse2 isTWAdNs, ~2.7!

whereW is a positive definite matrix. This equality is easily
proved using usual Gaussian integration, when the vectorA
is composed ofN numbers. When we insert, instead of the
vectorA the vectorr of N noncommutating one-body opera-
tors, the equality can be preserved in the limit of a small
exponent:

e2~1/2!rTVr Dt5F Dt

2p GN/2

Adet~V!

3E e2~1/2!sTVs Dte2 isTV rDtdNs, ~2.8!

whereDt is infinitesimal. Thus, a single imaginary time slice
of an evolution operator for a Hamiltonian of the two-body
interaction1

2 rTVr is written as a sum of real time evolution
operators that involve only one-particle interactions of the
form hs5sTVr and include an auxiliary fieldVs. The in-
tegral is over all possible values of the auxiliary densitiess
and is weighted by a Gaussian, exp(21

2s
TVs Dt).

For a finite timeb we must divide into time slices and
every slice involves a separate auxiliary field integral. Tak-
ing the number of one-body operators to a continuous limit,
and adding a one-body interaction, the matrix element of the
full evolution operator can be represented as a multidimen-
sional functional integral over all possible time-dependent
auxiliary fieldsst(x,y):

^Fue2b~KTr1~1/2!rTVr!uF&5E W@st#Ust

~1!~b!D$st%

[^Ust

~1!~b!&W . ~2.9!

In most applications theN electron state is taken as a
determinant,12 Fuc1¯cNu, of N spin orbitalscn , and the
functional integral is calculated using Monte Carlo tech-
niques.

Equation ~2.9! is a tremendous simplification because
the termUst

(1)(b) is a matrix element of the evolution opera-

tor of a one-particle time-dependent Hamiltonian containing
the auxiliary fieldsVst(x,y):

Ust

~1!~b!5K FUT̂ expH 2E
0

b

~K1 iVst!
Tr̂ dtJ UFL

~2.10!

~T̂ is the time ordering operator!. Thus, when the time-
dependent evolution operator operates on a determinantF,
the result is again a determinantF(b)5uc1(b)¯cN(b)u,
composed of the separately propagated orbitals:

T̂ expH 2E
0

b

~K1 iVst!
Tr̂ dtJ cn5cn~b!. ~2.11!

The fluctuating fields,iVst(x,y) in Eq. ~2.9!, are respon-
sible for building the correct electron–electron interaction
into the evolution operator matrix elements.

Numerical evaluation of the HS functional integral of
Eq. ~2.9! uses Monte Carlo methods. Because quantum evo-
lution is Markovian, the auxiliary fields of different time
slices are statistically independent in the Monte Carlo ap-
proach. In each time slicet→t1Dt the auxiliary fields are
sampled according to a Gaussian distributionW:

W@st#5e2~1/2!st
TVst Dt, ~2.12!

which is normalized through the differentialsD$st%:

E W@st#D$st%51. ~2.13!

Once a field is sampled, the right-hand side determinantal
wave functionuF(t)& is propagated by an additional time
step Dt @see Eq.~2.11!#. This process continues until one
reaches the determinantuF(b)&. Then the overlap between
determinants is calculated as^FuF(b)&. This last quantity is
repeatedly summed over, statistically converging to the diag-
onal matrix element of the many-body evolution operator.

This elegant formalism has advantages over present MC
approaches in that it assumes no approximate form for the
electronic wave function or for its nodes as do VMC and
fixed node DMC. The use of determinants is exact, not an
approximation. However, these hypothetical merits are not
truly realized since the sign problem has not disappeared, it
merely changed form: now it is manifested as a numerical
instability. We address this issue and its resolution in the
following section.

III. STABILIZING THE FUNCTIONAL INTEGRANDS:
SC-AFMC

The excited states can be damped relative to the ground
state in two general ways. One way is to use real time evo-
lution to cause the excited states to oscillate rapidly and then
sum over these oscillations, canceling their effect. The other
way is to dampen high-energy terms in the wave functions
by an imaginary time evolution~like heat transfer or diffu-
sion!. The drawback of the HS transformation of Eq.~2.9! is
that it damps the high-energy components in the first way
mentioned above. Thus as seen in Eq.~2.10!, it changes
imaginary time evolution into a summation over a real time
evolution.

Our goal is then to modify the HS transformation in such
a way as to prevent the formation of large-amplitude oscil-
lations in the integrand. In order to achieve this goal we must
figure out a way to accurately compensate, in terms of
imaginary-time damping, a reduction of the real time oscil-
lations. This can be done by invoking the well-known com-
plex plane path invariance of line integrals. It is straightfor-
ward to prove that the functional integral of Eq.~2.9! is
invariant to an imaginary contour shiftiat(x,y), an arbitrary
real field that may also depend on time:
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^Ust

~1!~b!&W5e1/2*0
bat

TVat dtKei *0
bst

TVat dtUst2 ia
~1! ~b! L W .

~3.1!

A close examination of Eq.~3.1! shows that the contour shift
iat appears in three places: in the one-body evolution opera-
tor U (1), as part of an oscillating phase factor, and finally as
an exponential amplification factor. Notice that within the
evolution operator the contour shift induces damping while
in the phase factor it induces an oscillation; this allows us to
control the balance between oscillations and damping. The
exponential amplification will be ignored in subsequent dis-
cussions because in all expectation value expressions it can-
cels in the numerator and denominator.

The question is now: how should the imaginary fields
iat(x,y) be chosen to mitigate the oscillations of the inte-
grand? In order to answer that, let us write a matrix element
of the evolution operator in the following form:

^C~0!uU~b!uF~0!&}E Dst W@st#e
2 iSt Dt. ~3.2!

The functional integral now is over the field of a single time
slice t→t1Dt. Each time sliceDt is separately stabilized
and the complex actionSt is defined as

St5 i
ln^C~b2t!ue2~K1 iV~st1 iat!!Tr̂ DtuF~t2Dt !&

Dt

2st
TVat . ~3.3!

Our plan is to choose the imaginary fieldiat so as to haveSt

insensitive to first-order changes in the auxiliary fieldst .
The sensitivity ofSt to st is the following functional deriva-
tive:

dSt

dst
5 iVS at2

^C~b2t!ur̂uF~t!&

^C~b2t!uF~t!&
D , ~3.4!

and thus a sufficient condition forSt to be stationary with
respect tost is

at~x,y!5
^C~b2t!ur̂~x,y!uF~t!&

^CuF~b!&
. ~3.5!

The field shiftat is then equal to a matrix element of the
exact one-electron density matrix normalized by the matrix
element of the evolution operator. Notice that whenb, t,
andb2t are very large, we have

at~x,y!5^Qgsur̂~x,y!uQgs& ~b,t,b2t→`!, ~3.6!

whereQgs is the exact normalized ground state wave func-
tion. Thus, in these limitsat is the exact ground state one-

electron densitŷ r̂&gs. Whenb is indefinitely large,at be-
comes equal to theexactground state density at all times.

Note that due to the special form ofV for the Coulomb
interaction@see Eq.~2.6#, only the diagonal elements ofat

@i.e., at(x)5at(x,x)] affect the functional integrals. The
sufficient condition of Eq.~3.5! is then simplified to a con-
dition pertaining only to the electronic density:

at~x!5
^C~b2t!ur̂~x!uF~t!&

^CuF~b!&
. ~3.7!

When the AFMC calculation uses a high-b parameter, for
computation of ground state properties, a simple approxima-
tion to the ground-state one-electron density may be suffi-
cient for achieving practical stability in the Monte Carlo in-
tegration. In many systems the density is well approximated
by Hartree–Fock theory. This is the idea proposed in Ref.
32, where a ten-electron neon atom was treated using the HF
density to stabilize the functional integral. In nondegenerate
systems the closed-shell restricted Hartree-Fock~RHF! or,
when needed, the unrestricted Hartree–Fock~UHF! may be
used to obtain good approximations to the density. It is per-
haps possible also to use density functional theory~DFT!
with the local spin-density approximation~LSD! for this pur-
pose.

IV. NUMERICAL METHOD

In Sec. V we demonstrate the theory using the hydrogen
molecule as an example. In this section we discuss numerical
representation and implementation issues.

A. Grid representation

Consider the molecule in a cubic cell of dimensionsL3.
Our approximations in representing the system become exact
in the largeL limit. Several results from the plane waves
method35 are used, which enhance numerical accuracy and
stability even for more moderate valuesL. We assume that
the cell is surrounded with identical systems which together
form a superlattice. The electronic state in all cells is identi-
cal ~k50 approximation!. In order to eliminate the diver-
gences in the electron–electron, electron–nucleon and
nucleon–nucleon potentials, we zero the q50 Fourier com-
ponent of all these interactions.35 Thus, the R-space potential
for the electron–nucleon interaction~taking into account all
nucleons in the superlattice! is

vext~r !5
1

AL3(qÞ0
vqe2 irq , ~4.1!

whereeiqr are standing plane waves inside the cell, and

vq52
1

AL3(m
4pe2ZmeiRmq

q2 , qÞ0. ~4.2!

Herem indexes the nuclei of the system cell, each at location
Rm . The two-electron interaction, is also taken as

Vee~r !5
1

AL3(qÞ0
Vqe2 irq , ~4.3!

where

Vq5
1

AL3

4pe2

q2 , qÞ0. ~4.4!

The nuclear–nuclear interaction is calculated via an Ewald
summation excluding theq50 component. Since we use a
very large cell, it is consistent to assume that the electronic
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Coulomb potential operates on localized functions within the
cell and there is no need to use an Ewald sum for interactions
involving electrons. The R-space functions are represented
on a grid,36 which naturally introduces a cutoff in the q ex-
pansions via the finite grid samplingDx.

The faithfulness of this representation can be studied by
comparing its performance to that of a high-quality Gaussian
basis at the Hartree–Fock level. For the Gaussian basis cal-
culation we used the programQ-CHEM37 with the cc-pVQZ
basis of Ref. 38. In Fig. 1 we present the Hartree–Fock en-
ergies of the basis set calculation and four cases of grid cal-
culations. For the latter we used two values of cell sizesL
and 2 values of grid spacingDx. It is seen that for a broad
range of bond lengths, the plane wave results indeed con-
verge to the basis set calculations as the cell size is increased
and grid spacing is decreased. However, the convergence is
rather slow. For larger than equilibrium bond lengths the
convergence is slow with respect to cell size, while for
smaller than equilibrium bond length it is slow with respect
to grid spacing. The former phenomenon is typical for
Hartree–Fock calculations using plane waves and grid
methods.39 Several refinements are possible to reduce these
errors,39–41 however, these were not implemented in the
present work.

It has been established, at least for the homogeneous
electron gas, that finite size errors in fully correlated energies
are similar to those of the Hartree–Fock calculation.40 This
motivates our assumption that the correlation energy is less
sensitive to finite size errors and can therefore be studied
qualitatively using a moderate-sized cell~L510 a.u.!. This is
in accordance to our goal in this paper, to focus on thesta-
tistical convergenceof the AFMC calculation. Correspond-
ingly, we shall also use the larger grid spacing value ofDx
51.25 a.u.

B. The SC-AFMC algorithm

The SC-AFMC computation starts by first calculating
the SCF Hartree–Fock density. In the present application we

use a closed shell formalism and solve for the lowest energy
occupied molecular orbitalsc1¯cN , where 2N is the num-
ber of electrons~in our caseN51!. The density matrix is
then

a~x!52(
n51

N

ucn~x!u2. ~4.5!

This electron density is the stabilizing shift, and the derived
stabilizing potential is

J~x!5~Va!~x!5E a~y!

ux2yu
dy. ~4.6!

In practice, fast Fourier transform~FFT! is used to perform
this spatial integral, using the Fourier representation of the
two-electron potential in Eq.~4.4!. Using closed shell Har-
tree Fock theory limits our ability to accurately describe the
mean field density at large bond lengths, when the ground
state consists of two open shells. This density is not expected
to efficiently stabilize the AFMC calculation. We return to
this point in Sec. VI.

Next, the computationally intensive part of the calcula-
tion begins. In this part the following expression for the
ground state energy is calculated:

Egs5
^FuHU~b!uF&

^FuU~b!uF&
, ~4.7!

where H is the full many-electron Hamiltonian andF

5uc1c̄1¯cNc̄Nu is the closed shell determinant composed
from the N occupied orbitals. We mention in passing that

since the spatial part ofcn andc̄n are identical, only one of
the orbitals actually needs to be operated on by the AFMC
one-body~spin independent! evolution operators.

The imaginary timeb is divided toM equal segments,
Dt5b/M . In the first segment a random auxiliary field is
sampled from a Gaussian distribution:

W$s~x!%5Ae2~1/2!sTVs Dt, ~4.8!

whereA is a normalizing factor. The sampling is efficiently
achieved by decoupling the different fields using a fast Fou-
rier transform. The sampled fields is used to construct the
auxiliary interaction potential:

W~x!5~Vs!~x!5E s~y!

ux2yu
dy. ~4.9!

Notice that owing to the special diagonal form of the V ma-
trix in Eq. ~2.6!, the auxiliary field depends only on a single
continuous index~instead of two!. This is contrary to a basis
set AFMC and is a consequence of the special form the two
body-interaction has in the R-space representation. This is
important for a favorable scaling of numerical work with a
number of electrons.

Once the field is sampled, the resulting one-electron evo-
lution operator,

expF2S 2
1

2me
¹21vext~x!1 i @W~x!2 iJ~x!# DDt G ,

FIG. 1. Restricted Hartree–Fock total~electronic and nuclear repulsion!
energy above minimum of H2 using a basis set~cc-pVQZ! and 232 com-
binations of cell lengths~L! and grid spacing (Dx).
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is applied, using Chebyshev propagation methods,42–44 to
each of theN orbitals in the determinant to obtain the deter-
minant ~multiplied by the stabilizing phase factor!:

FDt5eisTWs Dtuc1~Dt!c̄1~Dt!¯CN~Dt!c̄N~Dt!u.
~4.10!

This procedure is repeated for every one of theM time seg-
ments. The final resultFb is a propagated determinant under
a particular choice of auxiliary fields, multiplied by the sta-
bilizing phase factors. The overlapS5^FuFb& and the en-
ergyE5^FuHuFb& are then calculated, thus concluding one
Monte Carlo iteration. Repeating this procedure and sum-
ming over all sampled contributionsE andSfinally gives the
estimated ground state energy:

Egs5
(E

(S
. ~4.11!

V. RESULTS

A. SC-AFMC correlation energy of H 2

At the equilibrium bond length ofR51.4 a.u., we have
tested several values of the time intervalDt and found that it
is sufficient to use a value ofDt50.1 a.u. The dependence
of the calculated ground state energyE(b) can be estimated
by the following two-level model at largeb values:

E~b!2Egs

DE
'U ^C1uF&

^C0uF&U
2

e2DE b5q2e2DE b, ~5.1!

whereEgs is true the ground state energy,DE the molecular
excitation energy, andC0 and C1 are, respectively, the
ground and first-excited wave functions.F is the initial
AFMC determinant, taken in these calculations as the
Hartree–Fock ground state. From Eq.~5.1! we see that the
ground state energy is recovered at a rate determined by the
excitation energyDE. Using SC-AFMC we have calculated
the energyE(b) for four values ofb. A least squares pro-
cedure allowed us to obtain the parameters Egs, DE, andq2

of Eq. ~5.1!:

Egs2EHF520.0365~4! a.u.520.99~2! eV,

DE50.913 a.u., ~5.2!

q250.014~1! a.u.

Numbers in parentheses are the statistical errors in the last
shown digit. For comparison purposes, the correlation energy
for the cc-pVQZ basis is21.1 eV. Thus, the 512 point grid
can account for 90% of the full correlation energy.

The statistical and temporal convergence properties are
shown in Fig. 2. The results reach chemical accuracy at
aboutb58 a.u. All the statistical errors are on the order of
0.02 eV or less and grow moderately with the length of the
propagation. The correlation energy atb51 a.u. was calcu-
lated to be 0.0313 a.u. and is different from the value of
0.035 a.u. reported by Silverstrelliet al.30 This could be
caused by differences in implementation details of the two
calculations~grid and operator definitions, and especially the
treatment of the boundary conditions and finite size effects!.

It is interesting to compare the statistical covergence of
the correlation energies at the equilibrium bond lengthR
51.4 a.u.~results shown in Fig. 2! with those of the almost
dissociated molecule when the bond length isR53.0 a.u. In
the latter case the RHF density is not a good approximation
of the true electronic density, and the integrand stabilization
should be damaged. This is indeed seen in Fig. 3, which
exhibits inferior convergence when compared with Fig. 2.

B. The sign problem

The result of an AFMC calculation~without the Shifted
Contour! with b parameter equal to 1, 2, and 4 a.u. are
shown in Fig. 4. For theb51 a.u. case, the AFMC shows a
reasonable result, although the statistical errors are much
larger than those of the SC-AFMC. However, only 80% of
the correlation energy can be retrieved by ab51 a.u. calcu-
lation ~see Fig. 2!. It is when one attempts to increaseb that
the sign problem really becomes apparent. This is seen in
Fig. 4 as an extremely rapid loss of stability with increasing
b. The truly superior properties of SC-AFMC are now evi-
dent by comparing Fig. 4 and Fig. 2 forb52 a.u.; it is seen

FIG. 2. SC-AFMC results of the correlation energy of H2 at a bond length
of 1.4 a.u. Only results for iterations number 250, 500, 750, etc. are shown
and the connecting lines are a guide to the eye.

FIG. 3. The same as Fig. 2, for a bond length of 3.0 a.u.
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that the AFMC statistical convergence is greatly degraded
while that of SC-AFMC only slightly. Atb54 a.u. the
AFMC calculation becomes totally unstable, predicting posi-
tive correlation energy. This is in contrast to the SC-AFMC
calculations that remain stable~even up tob516 a.u., the
largest value we checked!.

Another way to see this remarkable stabilization is by
examining the quantity called ‘‘the sign,’’ defined as:28

S0~b!5
^Us

~1!~b!&W

^uUs
~1!~b!u&W

5
^FuU~b!uF&

^uUs2 ia
~1! ~b!u&W

.

This quantity is strictly equal to 1 for positive definite
AFMC integrands~closed-shell system of particles interact-
ing via an attractive force!. For the Coulomb-repelling elec-
trons the integrand is not positive definite, and the sign is, in
general, a positive number smaller than 1. Positive definite-
ness of the integrand is important when Metropolis impor-
tance sampling is performed. Although we do not use a Me-
tropolis algorithm~we sample the auxiliary fields directly
from a Gaussian distribution!, the signS0 is a useful indica-
tion of the stability of the Monte Carlo integrand. We gen-
eralize the sign concept to the shifted-contour case by

Sa~b!5
^ei *0

baT~t!Vs~t!dtUs2 ia
~1! ~b!&W

^uUs2 ia
~1! ~b!u&W

. ~5.3!

The signSa is plotted as a function of the inverse tempera-
ture b in Fig. 5. When no contour shift is employed~the
usual AFMC!, the signS0 decreases exponentially fast to
zero. However, when a contour shift using the Hartree–Fock
density is made, the sign decreases only weakly with increas-
ing b. The use of a closed-shell Hartree–Fock density at
large bond length results in a degraded stabilization, as al-
ready pointed out in the discussion of Fig. 3.

VI. CONCLUSIONS AND DISCUSSION

We have shown that a considerable stabilization of the
Monte Carlo integration can be achieved when the exact
electron density is used to shift the Hubbard–Stratonovich
line-integral contour into the complex plane. Unfortunately,

calculating the exact density is as computationally demand-
ing as the full solution of the ground state electronic struc-
ture problem. The Hartree–Fock density can be used as an
approximate stabilizer.32 When this is done, a remarkable
improvement is indeed seen in the statistical convergence of
the ground state energy of H2 and in the behavior of the sign
S. In fact, within the range ofb values we have tested~up to
b516 a.u.), we have not seen evidence of an exponential
increase of the statistical fluctuations or an exponential de-
crease of the sign.

The conclusion is that an overwhelming part of the
‘‘sign problem’’ is not due to electron–electron correlations
and can be efficiently dealt with by using a mean-field den-
sity within the MC integration. This is somewhat analogous
to the fact that the fixed nodes of the HF single determinant
wave function within DMC can account for over 90% of the
correlation energy of first row atoms and dimer.16,45It is also
in accord with the good results obtained by using a HF de-
terminant in VMC, and with the CPMC15 which use an un-
restricted Hartree-Fock trial function for imposing a
determinant-manifold fixed node approximation. However,
there is one important distinction that should be stressed: the
AFMC integration is always aformally exact procedure.
Contrarily, a fixed node procedure in DMC, GFMC, and
CPMC is an approximation. The methods for systematically
improving the fixed node approximations in DMC46–49 are
usually either severely limited by the sign problem or
quickly become computationally prohibitive with system
size.17,19

Stabilizing of AFMC is rather easily implemented in an
already running AFMC code. It does not burden the calcula-
tion with significant additional numerical work~Hartree–
Fock is anyway executed as a first step for getting the initial
determinant!. However, while showing great potential it is
not yet clear at this point what are the practical limitations of
this new AFMC method. Clearly more work is required.

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation ~NSF! Early Career Awards No. CHE-9502106 and
No. CHE97-27084, the Alfred P. Sloan Foundation~DN! and

FIG. 4. The same as Fig. 2, but using AFMC with no contour shift. Statis-
tical convergence degrades rapidly asb increases. Theb54 a.u. results are
hopelessly far from convergence~show positive correlation energy!.

FIG. 5. The signSa for H2 as a function ofb. Triangles: no contour shift;
filled dots and squares: contour shift determined by close-shell restricted
Hartree–Fock density.

6225J. Chem. Phys., Vol. 109, No. 15, 15 October 1998 Baer, Head-Gordon, and Neuhauser



Laboratory Directed Research and Development Program of
Lawrence Berkeley Laboratory—U.S. Department of Energy
~U.S. DOE! Contract No. DE-AC03-76SF00098. MHG is a
Packard Fellow. D.N. is an Alfred P. Sloan Fellow, 1996–
1998.

1W. L. McMillan, Phys. Rev. A138, 442 ~1982!.
2D. M. Ceperley, Phys. Rev. B18, 3126~1978!.
3S. B. Fahy, X. W. Wang, and S. G. Louie, Phys. Rev. Lett.61, 1631
~1980!.

4M. H. Kalos, Phys. Rev.128, 560 ~1962!.
5M. H. Kalos, D. Levesque, and L. Verlet, Phys. Rev. A9, 2178~1974!.
6D. M. Ceperley and B. J. Alder, Phys. Rev. Lett.45, 566 ~1980!.
7D. M. Ceperley and M. H. Kalos, inMonte Carlo Methods in Statistical
Physics,edited by K. Binder, 2nd ed.~Springer-Verlag, Berlin, 1986!, p.
145.

8J. B. Anderson, J. Chem. Phys.63, 1499~1975!.
9P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, Jr., J.
Chem. Phys.77, 5593~1982!.

10D. M. Ceperley, Phys. Rev. Lett.69, 331 ~1992!.
11D. M. Ceperley, Rev. Mod. Phys.67, 279 ~1995!.
12G. Sugiyama and S. E. Koonin, Ann. Phys.~N.Y.! 168, 1 ~1986!.
13S. B. Fahy and D. R. Hamann, Phys. Rev. Lett.65, 3437~1990!.
14S. Zhang, J. Carlson, and J. E. Gubernatis, Phys. Rev. Lett.74, 3652

~1995!.
15S. Zhang, J. Carlson, and J. E. Gubernatis, Phys. Rev. B55, 7464~1997!.
16K. E. Schmidt and M. H. Kalos, inApplications of the Monte Carlo

Method in Statistical Physics,edited by K. Binder, 2nd ed.~Springer-
Verlag, Berlin, 1987!, p. 125.

17B. L. Hammond, W. A. Lester, Jr., and P. J. Reynolds,Monte Carlo
Methods in Ab-Initio Quantum Chemistry~World Scientific, Singapore,
1994!.

18J. B. Anderson, Int. Rev. Phys. Chem.14, 85 ~1995!.
19D. M. Ceperley and L. Mitas, Adv. Chem. Phys.93, 1 ~1996!.
20D. M. Ceperley and B. Bernu, J. Chem. Phys.89, 6316~1988!.
21R. D. Stratonovich, Dokl. Akad. Nauk SSSR115, 1907~1957!; @transla-

tion Sov. Phys. Dokl.2, 416 ~1958!#.
22J. Hubbard, Phys. Rev. Lett.3, 77 ~1959!.
23S. Sorella, S. Baroni, R. Car, and M. Parrinello, Europhys. Lett.8, 663

~1989!.
24S. Sorella, E. Tosatii, S. Baroni, R. Car, and M. Parinello, Int. J. Mod.

Phys. B1, 993 ~1988!.

25J. E. Hirsch, Phys. Rev. B31, 4403~1985!.
26S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gubernatis, and

R. T. Scarlettar, Phys. Rev. B40, 506 ~1989!.
27D. R. Hamann and S. B. Fahy, Phys. Rev. B41, 11352~1990!.
28E. Y. Loh, Jr., J. E. Gubernatis, R. T. Scarlettar, S. R. White, D. J. Scala-

peno, and R. L. Sugar, Phys. Rev. B41, 9301~1990!.
29D. M. Charutz and D. Neuhauser, J. Chem. Phys.102, 4495~1995!.
30P. L. Silvestrelli, S. Baroni, and R. Car, Phys. Rev. Lett.71, 1148~1993!.
31S. Fahy and D. R. Hamann, Phys. Rev. B43, 765 ~1991!.
32N. Rom, D. M. Charutz, and D. Neuhauser, Chem. Phys. Lett.270, 382

~1997!.
33H. Kleinert, Phys. Lett. B69, 9 ~1977!.
34S. Levit, Phys. Rev. C21, 1594~1980!.
35M. C. Payne, M. P. Teter, D. C. Allen, T. A. Arias, and J. D. Joanopolus,

Rev. Mod. Phys.64, 1045~1992!.
36R. Kosloff, in Dynamics of Molecules and Chemical Reactions,edited by

R. E. Wyatt and J. Z. Zhang~Marcel Dekker, New York, 1996!, p. 185.
37B. G. Johnson, P. M. W. Gill, M. Head-Gordon, C. A. White, J. Baker, D.

R. Maurice, T. R. Adams, J. Kong, M. Challacombe, E. Schwegler, M.
Oumi, C. Ochsenfeld, N. Ishikawa, J. Florian, R. D. Adamson, J. P. Dom-
broski, R. L. Graham, and A. Warshel, Q-Chem, Version 1.1, Q-Chem,
Inc., Pittsburgh, PA, 1997.

38T. H. Dunning, Jr., J. Chem. Phys.90, 1007~1989!.
39A. J. Williamson, G. Rajagopal, R. J. Needs, L. M. Fraser, W. M. C.

Foulkes, Y. Wang, and M.-Y. Chou, Phys. Rev. B55, 4851~1997!.
40L. M. Fraser, W. M. C. Foulkes, G. Rajagopal, R. J. Needs, S. D. Kenny,

and A. J. Williamson, Phys. Rev. B53, 1814~1996!.
41G. Rajagopal, R. J. Needs, S. Kenny, W. M. C. Foulkes, and A. James,

Phys. Rev. Lett.73, 1959~1994!.
42R. Kosloff, J. Phys. Chem.92, 2087~1988!.
43R. Kosloff, Annu. Rev. Phys. Chem.45, 145 ~1994!.
44D. K. Hoffman, Y. Huang, W. Zhu, and D. J. Kouri, J. Chem. Phys.101,

1242 ~1994!.
45R. P. Subramaniam, M. A. Lee, K. E. Schmidt, and J. W. Moskowitz, J.

Chem. Phys.97, 2600~1992!.
46D. Ceperley and B. J. Adler, J. Chem. Phys.81, 5833~1984!.
47R. Bianchi, D. Bressanini, P. Cremaschi, and G. Morosi, J. Chem. Phys.

98, 7204~1993!.
48J. B. Anderson, C. A. Traynor, and B. M. Boghosian, J. Chem. Phys.95,

7418 ~1991!.
49S. Zhang and M. H. Kalos, Phys. Rev. Lett.67, 3074~1991!.

6226 J. Chem. Phys., Vol. 109, No. 15, 15 October 1998 Baer, Head-Gordon, and Neuhauser


