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Abstract

The shifted-contour auxiliary field Monte Carlo method applied within a plane waves and pseudopotential framework is
shown capable of computing accurate molecular deformation barriers. The inversion barrier of water is used as a test case. A
method of correlated sampling is extremely useful for deriving highly accurate barriers. The inversion barrier height is
determined to be 1.37 eV with a statistical error bar of "0.01 eV. Recent high-level ab initio results are within the error
bars. Several theoretical and methodological issues are discussed. q 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The shifted contour auxiliary field Monte Carlo
w x1–3 implemented within a plane waves framework

Ž .is a new Quantum Monte Carlo QMC method for
high-accuracy electronic structure computations. In

w xtwo papers published recently 4,5 , we have shown
that the method can yield chemically accurate results
for molecular structure, vibrational spectroscopy and
thermo-chemistry. The work described here further
explores the capabilities of this approach, testing its
adequacy for predicting molecular deformation barri-
ers. We use the inversion barrier of the water
molecule, recently studied in detail from first princi-

w xples by Tarczay et al. 6 , as a testing ground of the
method.

) Fax: q972-2-6513742; e-mail: roib@fh.huji.acj.il

Some QMC results for potential barriers appear in
the literature. The most popular test case is the
reaction barrier of the Hydrogen exchange reaction

w xHqH ™H qH, studied by Ceperley et al. 7 and2 2
w xlater by Diedrich et al. 8,9 . Impressive QMC reac-

tion barrier computations for larger systems were
w xrecently published by Grossman et al. 10 , who

w xshow that diffusion Monte Carlo methods 11–13
w xcombined with pseudopotentials 14–17 lead to ac-

curate reaction barriers, with an error of around 0.05
eV.

While, the main goal of the work described here
is to test the ability of auxiliary field Monte Carlo to
describe barriers, we also discuss at some length
several issues in the theory and methodology of the
method. We address the problem of converging the
results to basis set limit. The usual methods of
quantum chemistry, which employ a Gaussian basis,
are inadequate because in our method the electronic
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orbitals are represented on a grid of equally spaced
Ž .points with grid spacing d x , sampling the volume

of a cube of length L. Thus, the computed properties
Ž .e.g. energy are a function of two parameters, con-
vergence formally achieved in the limits L™` and
d x™0. An additional problem is to overcome the
large statistical fluctuations in the two energies being
subtracted. Here, we use the method of correlated

w xsampling which was used in a previous work 5 to
compute spectroscopic constants of N .2

2. Theory

2.1. StratonoÕich–Hubbard transformation

The goal of the Auxiliary field electronic structure
method is to allow the computation of quantum
mechanical expectation values of physical observ-
ables in a system of interacting electrons:

1T TĤsK rq r Vr , 1Ž .2

where

r r s c † r c rŽ . Ž . Ž .ˆ Ý s s
ss≠x

is the electron density operator in 2nd quantization
Ž X. < X <y1form; V r, r s ryr is the positive Coulomb

repulsion; and K a one-body term, including kinetic
energy, external potential, and other and one-body

w xinteraction terms. See Ref. 2 for further details.
The ground state energy of the electronic system

can be written as a low temperature limit involving
ˆŽ .the Boltzmann operator exp ybH :

ˆ ˆ² < < :F H exp ybH FŽ .
E s lim . 2Ž .gs ˆ² < < :b™` F exp ybH FŽ .
This expression is valid for any many-electron anti-
symmetric wave function F not strictly orthogonal

ˆto the H ground state, C . Typically, we choose Fgs

as the Hartree–Fock determinant.
The problem of computing the ratio of expecta-

Ž .tion values in Eq. 2 is extremely demanding be-
ˆcause of the two-body part of the Hamiltonian H.

The method for doing that within the auxiliary field

approach is as follows. The Fourier transform of a
Gaussian is again a Gaussian:

`
1 1 y1exp y xPVPx A exp y kPV PkŽ . Ž .H2 2

y`

`
1exp yikPk dkA exp y sPVPsŽ . Ž .H 2

y`

= exp yisPVPk ds , 3Ž . Ž .
where V is a positive number. Generalizing this
relation, replace xPVPx by an inner product of a

Ž T .vector of operators: r Vr Db. Now V is a positive
definite matrix and Db is a small positive number.
The analogous relation then becomes:

1 1T Texp y r Vr Db A exp y s Vs Dbˆ ˆ Ž .Ž . H2 2
all s ’s

= exp yis T Vr Db ds .ˆŽ .
4Ž .

w x w xStratonovich 18 and later Hubbard 19 used these
identities to transform the Boltzmann operator

ˆŽ . Ž .exp ybH of a two-body Hamiltonian 1 into a
functional integral involving Boltzmann operators of
one-body Hamiltonians:

1 Tˆexp yH Db A exp y s Vs DbŽ . Ž .H 2
all s ’s

=
Texp y Kq iVs r Db ds .Ž . ˆŽ .

5Ž .

Ž .Here s r, t is a time-dependent density, giving rise
to a time-dependent imaginary field iVs . The one-
body auxiliary field interactions perfectly mimic the
effects of the two-electron interaction in the Boltz-
mann operator. The Stratonovich–Hubbard formal-
ism then replaces a two-body interaction by a one-

Žbody interaction with a fictitious electron density of
.any number of electrons, not necessarily an integer

and there is an integral over all possible fictitious
densities.

2.2. Monte Carlo scheme

w xSugiyama et al. 20 molded the Stratonovich–
Hubbard formalism into a numerical scheme by us-
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ing Monte-Carlo integration for estimating the func-
tional integral. Thus, the matrix elements of the
Boltzmann operator become statistical estimates
based on a random Metropolis process. In our
method, we do not use a Metropolis walk. Instead,
we directly sample fields from a Gaussian distribu-

w xtion 21 . Our sampling method for N time steps,
Ž Ø .bsNDb the limit Db ™0, N™` is implied ,

the functional integral is given as a weighted aver-
age:

ˆ ˆ² < < :F exp y bH H FŽ .
ˆ² < < :F exp y bH FŽ .
N

Tˆ Ž .F H exp yDb K qiVs r r FŽ .w xˆŁ n¦¦ ;;
� 4ns1 W ss ,N

TŽ .F exp yDb K qiVs r r FŽ .w xˆŁ n¦¦ ;;
� 4ns1 W s

6Ž .

where, the fictitious densities sampled from a posi-
tive definite Gaussian weight:

N
1 TW s r sexp y s Vs Db . 7� 4Ž . Ž .Ýn n n2

ns1

While highly attractive, the application of the origi-
Ž .nal formalism, as well as the direct sampling Eq. 6 ,

for electronic structure of atoms and molecules was
unsuccessful and severe statistical noise dominated

w xthe computation 21,22 .
In order to better understand the source of the

large statistical noise, let us expand the short time
Boltzmann operator expression in powers of Db :

T< <F exp yDb Kq iVs r FŽ . ˆ¦¦ ;; � 4W s

T² : ² < < :s1yDb= Kq iV s F r FŽ . ˆW

1 2q Db = PPP 8Ž .2

Now, since s ’s are sampled from a zero average
G aussian distribution, the term D b =
² T: ² < < :i s V F r F contributes 0 to the sum. Hence,ˆ

this term generates pure noise in the computation.
Since, s T VsfDby1, one can infer that the noise
amplitude is proportional to Db 1r2. For small Db

the noise dominates all other terms in the expansion.
Thus, the fluctuations of the Monte Carlo procedure
are formally infinite.

2.3. The contour shift and why it works

The breakthrough solution to this problem came
w xwhen Rom, Charutz and Neuhauser 1 suggested to

Ž .shift the fictitious densities s r, t by a time-inde-
Ž .pendent amount yi a r into the imaginary plane,
Ž .choosing the density a r equal to the Hartree–Fock

w xdensity. Baer, Head–Gordon and Neuhauser 2 later
proved that a shift by the amount of the exact
electron density makes the Monte-Carlo integrand
stationary with respect to the fictitious fields. This
brings the Boltzmann matrix element to the follow-
ing form:

T1
F exp yb Kq Vr r Fˆ ˆŽ . ;2¦

N
TA F exp yia Vs DbŁ n¦¦

ns1

T
= exp yDb Kq iVs r r F .Ž .Ž . ˆ ;;n � 4W s

9Ž .
In our formalism, it is easy to see why the contour

shift reduces the statistical noise and what should be
the optimal choice. Expanding the right hand side of

Ž .Eq. 9 in powers Db , we obtain:
T<F exp yis Va Db²²

=
T <exp yDb Kq iV sq ia r FŽ .Ž . ˆ ;; � 4W s

T T² :s1yDb= KyVa rq i s V ryaŽ . Ž .
1 2q Db = PPP 10Ž .2

Ž . Ž . ² < Ž . < :Now, by choosing a r sr r s F r r F , theˆ
noisy term is fully annihilated. When the single Db

step we have focused on is part of a large number of
steps, F is on the average close to the ground state
of the system and thus, the optimal a should be
chosen as the ground state density. A more general

w xresult and treatment can be found in Ref. 2 .

2.4. Correlated sampling

The resulting Quantum Monte Carlo method is
the Shifted Contour Auxiliary Field Monte Carlo. It
is a method comparable to released node quantum
Monte Carlo, in that it includes no ‘fixed node

w xapproximations’ 23,24 .



( )R. BaerrChemical Physics Letters 324 2000 101–107104

One of the most attractive features of the method
is that the sampling of the fictitious densities s is
according to a universal weight, unrelated to the

Ž .positions of the nuclei, given in Eq. 7 . Thus, the
computation of energy differences, due to the motion
of the nuclei can be made using correlated sampling
of the same fictitious densities for different nuclear
configurations. This fact was recently used for com-
puting the force exerted on the nuclei of the N2

w xmolecule 5 , demonstrating that the force has a finite
variance.

3. Results

In this Letter, we exercise the correlated sampling
technique for computing the deformation barrier for
inversion of water. The theoretical method is imple-
mented using a grid representation for the electron
orbitals and the Kosloff method for time propagation
w x w x25 . More details were described earlier in Ref. 4 .
All computations are done with Troulier–Martins
w x26 pseudopotentials for oxygen and hydrogen, gen-
erated by the FHIPP98 computer program of Fuchs

w xand Scheffler 27 . The pseudopotentials are pro-
duced from solutions of the atomic Dirac–Kohn–
Sham equation, within the local density approxima-

Ž .tion LDA . The exchange-correlation functional used
in the atomic computation is the Perdew–Wang pa-

w xrameterization 28 of Ceperley and Alder’s homoge-
w x Žneous electron gas data 29 . Within the grid plane

.waves code the pseudopotentials is applied using a
w xKleinman–Bylander form 30

The two geometries of a water molecule being
w xcompared are those used by Csaszar et al. 31 as

w xalso did Tarczay et al. 6 :

˚R s0.95885 0.93411 A,Ž .OH

/ H–O–H s104.343 180 8.Ž . Ž .

3.1. The Hartree–Fock inÕersion barrier

We first discuss the Hartree–Fock limit. Just as
with a Gaussian basis sets, it is important to con-
verge to the basis limit. In plane waves, in principle,
one has to take two limits: reduce the grid spacing
d x, and increase the cubic cell length L until the
results converge to the desired accuracy.

Let us first discuss the convergence with respect
to the grid spacing d x. An electron confined within
the screened potential experiences an uncertainty
dks2k in its momentum, wheremax

2(k s 2m DVr"max e

and DVsV yV is the difference between themax min

smallest and largest eigenvalues of the screened po-
tential. By Heisenberg’s principle, the minimal un-

Ž .certainty in the position is then: d x s 2prdk .c

Thus, d x is the essential grid spacing, for correctlyc

representing electronic orbitals. In Fig. 1, the conver-
gence of the water inversion barrier height with the
ratio d x rd x is studied. It is seen that the barrierc

height is not converged when d x rd x)1. In fact,c

only when d x rd x)2 does rapid exponential con-c

vergence set in. This is because the screened poten-
tial itself depends on the density matrix. The density
matrix is more sensitive to grid spacing than the
orbitals, because it is determined by the multiplica-
tion of two orbitals. Thus, the density matrix is
exponentially converging only after d x rd x)2.c

While the energy and other observables usually
Žconverge rapidly with grid spacing d x once

.d x rd x)2 , this is not the situation with the cubicc

box length L. Here, an extrapolation procedure is
needed. The situation is clearly depicted in Fig. 2,
where the Ls` limit is determined from a polyno-
mial fit to the computed values. Having 6 data

Fig. 1. Hartree–Fock inversion barrier heights vs. the grid spacing
quality ratio, for several cell sizes. When the ratio is above 1 the
orbitals are well represented, but the density is not. When the ratio
exceeds 2.0 rapid convergence of the barrier height is achieved.
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Fig. 2. Hartree–Fock inversion barrier height as a function of
cubic cell length L. The calculations are with d xs0.33 au
Ž .d x r d xf2 . The dotted line is a polynomial fit to the dotc

Ž .values discussed in text .

points, we have made a least squares fit to the
Ž . HF Ž 3. Ž 5.functional form B L s B q arL q brL

where this form is chosen because of dipole–dipole
and quadrupole interactions are present. Trying to
use any form with even powers of 1rL resulted in a
grossly unreasonable non-monotonic extrapolation

Ž . HF Ž . Ž 3.curve. The form B L s B q arL q brL
gave almost identical BHF values. The converged
Hartree–Fock limit of the barrier height within the
pseudopotential approximation, is thus:

BHF s1.372"0.002 eV 11Ž .
The error bar here reflects a sensitivity of the barrier
height to the extrapolation procedure. This value
should be compared to the all-electron Hartree–Fock

w xlimit of Tarczay et al. 6 which is 1.394 eV. We
attribute the difference between the two values to the
use of a DFT based pseudopotential, which partitions
differently the barrier energy into SCF and correla-
tion parts, in particular.

3.2. InÕersion barrier correlation energy

Next, the contribution of correlation energy to the
barrier height is determined. Here a grid spacing
value of d xs0.4 au was used and we tested two
cell sizes, Ls8 au and Ls12 au. The results are
shown in Fig. 3. The computations use a time step of

Dbs0.1 au. To test the convergence with respect to
this parameter, we also ran some computations with
a time step of Dbs0.05 au. The results for Ls8
au are also shown in Fig. 3, where it can be seen that
any significant difference, if it exists, is not larger
than the relevant statistical errors.

To estimate the large b limit, we exploit the
asymptotically exponential form of the barrier as a
function of the inverse temperature. For QMC com-
puted barriers B for which n)N , where N isn 0 0

such that b 00.5 au, parameters B0, B`, b aren 0

found, such that the function

B b sB0 expybrb qB` 1yexpybrbŽ . Ž .0 0

12Ž .

minimizes the RMS error,

Ny1
21

s s B b yB .Ž .Ýfit n nNy N) 0

nsN0

The parameter B` is then considered the least squares
estimate of the fully correlated barrier with an error,
of statistical origins, S.E.s2s . The estimated pa-fit

rameters are shown in Table 1. An important quan-
tity is the barrier correlation energy, which is defined

Fig. 3. Barrier correlation energy vs. inverse temperature. QMC
Žresults of Ls8 and 12 au respectively, open squares, 170 K

.iterations; solid circles, 100 K iterations with Db s0.1 au. Best
w xfit functions and MP2rMP5 energy of Ref. 6 are also plotted.

Diamonds in the figure are QMC results for Ls8 au and Db s
0.05 au.
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Table 1
Ž .The parameters of the fit of the QMC barrier heights to Eq. 12

0 ` HF corrŽ . Ž .L au B B b au s B B0 fit

8 1.52 1.57 0.90 0.009 1.59 y0.021
12 1.32 1.39 0.71 0.004 1.39 0.003

The HF barrier BHF and the barrier correlation energy, Bcorr,
are also shown. Units are eV, except where noted.

as the difference between the fully correlated barrier
and the Hartree–Fock barrier:

B corr sB` yBHF 13Ž .
is shown in Table 1.

In Fig. 3, we see that at small b values there is a
significant lowering of the barrier due to some elec-
tron correlation. However, at higher b values the
correlation energy is seen to have only a minute

w xcontribution. The calculations of Tarczay et al. 6
show a similar behavior when taking higher orders
of perturbation theory into account: using a 2nd-order

Ž .Møller–Plesset MP perturbation theory, a relatively
large negative correlation energy is obtained, which
is subsequently diminished when higher MP orders

Ž .are further taken into account see Fig. 3 .
Our final value of the barrier correlation energy is

0.00 eV"0.01. This is somewhat higher than the
corresponding value of y0.011 eV calculated by

w xTarczay et al. 6 using coupled cluster and high-order
Moller–Plesset methods, extrapolated to the full ba-¨
sis set limit. As noted above, the discrepancy is not
surprising because of the DFT based pseudopoten-
tial.

4. Summary

The shifted contour auxiliary field Monte Carlo
method, applied within a plane waves pseudopoten-
tial framework is shown able of yielding reasonably
accurate deformation barriers via the correlated sam-
pling technique. The method was applied to comput-
ing the barrier to linearity of water, and we find a
correlation energy of 0.00"0.01 eV and this, added
to our HF barrier yields the final estimate of the
barrier energy:

E s1.37"0.01 eV 14Ž .b

with the error bar representing statistical errors. Non
Born–Oppenheimer corrections were estimated by

w xTarczay et al. 6 and found smaller than the statisti-
cal error. We should note that relativistic effects and
some core correlation are actually already built into
the pseudopotential. Our value for the barrier energy
compares favorably with the recently published, em-
pirically based estimations of the water barrier to

w x Ž .linearity by Polyanski et al. 32 1.36 eV and Kain
w x Ž .et al. 33 1.38 eV and the ab initio estimations of

w x Ž .Tarczay et al. 6 1.38 eV .
Possible source of discrepancy between the esti-

mates may be attributed to a pseudopotential intrans-
ferability. This is in fact the only source of uncon-
trolled approximation made in this computation. Here
we found that an LDA based norm conserving pseu-
dopotential leads to good results for the water bar-
rier. In a recently submitted work on the nitrogen

w xbond, a similar conclusion was drawn 5 . However,
more experience, and perhaps careful comparisons
between different pseudopotentials, needs to be
gained before any definite conclusion can be made
on the adequacy of norm conserving pseudopoten-
tials for this type of high-accuracy molecular compu-
tations. Because of limited computational resources,
we did not compute the correlation energy in a cell
larger than Ls12 au or with a grid-spacing smaller
than d xs0.4 au, thus correlation energy may still
be slightly larger than what we have found.

The computations presented here were all per-
formed on the CUBIOT 1 Pentium cluster, which
runs the MOSIX for Linux cluster optimization soft-

w xware 34 . The CPU time on this system for reaching
the 0.01 eV error bars was about 2 weeks. More
modest error bars, around 0.04 eV take about a day
of CPU time for the large cell size and several hours
for the small cell size.

This work takes an additional step establishing the
reliability and accuracy of the auxiliary field Monte
Carlo method. The application of the method to
larger systems is an important future project, since
theoretical arguments as well as practical experience
indicate that Quantum Monte Carlo methods scale

1 Ž .CUBIOT cluster consists of 84 Pentium III 500 MHz pro-
cessors, each with 128 MB memory, connected by fast Ethernet
Ž .100 Mbps .
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with system size somewhat better than deterministic
w xhigh-correlation methods 35 .
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