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Shifted contour auxiliary field Monte Carlo is implemented for molecular electronic structure using
a plane-waves basis and norm conserving pseudopotentials. The merits of the method are studied by
computing atomization energies of H2, BeH2, and Be2. By comparing with high correlation
methods, DFT-based norm conserving pseudopotentials are evaluated for performance in fully
correlated molecular computations. Pseudopotentials based on generalized gradient approximation
lead to consistently better atomization energies than those based on the local density approximation,
and we find there is room for designing pseudopotentials better suited for full valence correlation.
© 2000 American Institute of Physics.@S0021-9606~00!30304-X#

I. INTRODUCTION

Pseudopotentials1,2 combined with quantum Monte
Carlo ~QMC! electronic structure methods,3–5 such as
variational6 ~VMC! or diffusion7–12 ~DMC! Monte Carlo,
form a new powerful approach to quantum chemistry.13–17

For example, with this blend of techniques it is possible to
determine the stable structures of large carbon and silicon
clusters.18–20 The motivation for using pseudopotentials is
practical. It reduces the number of electrons, decreases the
span of energy scales~allowing larger time steps! and easily
incorporates relativistic effects. Furthermore, core polariza-
tion potentials~CPP!21,22can account for effects of core-core
and core-valence correlation.23

Quantum Monte Carlo methods have a definite advan-
tage over traditional counterparts of quantum chemistry ex-
plicitly dealing with electron correlation.24 Memory usage is
small, CPU time scales gently with system size20,25 and the
algorithms are usually embarrassingly trivial to parallelize.
While generally successful, present QMC approaches have
limitations in terms of accuracy and scope26–29 leaving room
for new approaches to be developed. Auxiliary field Monte
Carlo30,31 ~AFMC! is such a viable alternative. Historically,
the method was impractical for electronic structure compu-
tations because of large statistical fluctuations caused by a
numerical sign problem. Recently progress was made in this
respect and it was shown32,33 that by a specific shift of the
functional integration contour into the complex plane,
AFMC can be stabilized, making it applicable for molecular
electronic structure computation. The power of the new
method, dubbed shifted contour auxiliary field Monte Carlo
~SC-AFMC!, was demonstrated for some molecular systems
using a Gaussian basis set.34 Another method of stabilizing
SC-AFMC within a fixed node approximation was recently

developed,35,36although we are not aware of any applications
to molecular electronic structure.

This article further establishes the validity and utility of
SC-AFMC by developing a version based on plane-waves37

and norm conserving pseudopotentials.38 We apply the
method to compute the atomization energies of small mol-
ecules.

Can we efficiently use plane-waves for accurate compu-
tation of molecular electronic structure? Plane-waves are not
a natural choice for this feat. Traditionally, they were used in
conjunction with density-functional theory~DFT! and served
to study the electronic structure of periodic systems such as
crystalline solids.37 However, plane-waves are also useful for
treating nonperiodic systems such as impurities, dislocations,
surfaces, and even gas-phase molecules.39,40 Indeed, plane-
waves offer formal advantages over a localized Gaussian ba-
sis, commonly used in quantum chemistry. They are or-
thogonal, thus avoiding stability problems. They are
homogeneous, evading Pulay terms in force computations.
Unlike Gaussian basis sets, a computation using plane waves
is converged by a well-defined procedure where exactly two
limits need to be taken. The grid spacing must contract to
zero dx→0 and the cubic super-cell length must extend to
infinity L→`. In general, the Hartree–Fock self-consistent
field ~HF-SCF! energy converges more slowly with cell size
than the correlation energy. Thus, the computation of
HF-SCF energy is performed in large super cells, but the
correlation energy can be computed using SC-AFMC in
smaller cells.

Plane-waves are inefficient for describing high kinetic-
energy components in orbitals. For efficient use of the plane-
waves basis, core orbitals must be eliminated and valence
orbitals must be smoothed in the core region. This is the role
of the soft pseudopotentials.1 In conventional quantum
chemistry, effective core potentials2 are used for eliminating
the core electrons and orbitals. Soft pseudopotentials do thea!Electronic mail: roib@fh.huji.ac.il
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same but have an additional role: They are carefully con-
structed to produce valence orbitals that are smooth in the
core region. When using plane waves, even the hydrogen
atom is described by a soft pseudopotential.

Are norm-conserving pseudopotentials useful for explic-
itly correlated electron computations?41 These pseudopoten-
tials are constructed from local density approximation~LDA !
~LDA-PP! or generalized gradients approximation~GGA-
PP! treatments of the atomic core. This question is addressed
by comparing results based on pseudopotentials with other
ab initio methods and experiment. We find that the LDA
based pseudopotentials lead to larger errors than those based
on GGA and the latter too are not ideal, leading for example
to discrepancy of 0.2 eV in the atomization energy of BeH2.

For studying the above posed questions, we treat here
several small hydrogen and beryllium systems and examine
the level of accuracy that can be reached. The greatest chal-
lenge is to compute the atomization energy of the beryllium
dimer. This small molecule with only four valence electrons
has proved over the years quite a challenge for many
quantum-chemical methods, although recent attempts have
been successful.42–46 The reason for the difficulty is the
small 2s-2p difference in beryllium, which induces a strong
multireference character in the ground-state electronic wave
function.45,46

The computational resources available for this work
were 4 Alpha TL4100/EV56~600 MHz! processors, two SGI
Origin 2000 187 MhZ processors, and a 30 Pentium-Pro
MOSIX cluster.47 The quantum Monte Carlo programs were
parallelized using the parallel virtual machine~PVM! library.

In the following, we present the HF-SCF methodology
and calculation results in Sec. II. In Sec. III results for va-
lence correlation energies are presented, followed by a sum-
mary and discussion given in Sec. IV.

II. HARTREE–FOCK ENERGY

The electronic energy of the isolated molecule is com-
puted under the assumption of the molecule being fixed in a
cubic cell of lengthL, subject to periodic boundary condi-
tions ~PBC!.37,48 The one-electron orbitals are linear combi-
nations of a periodic plane-waves basis. An Ewald summa-
tion accounts for the electrostatic interactions, where theQ
50 term cancels out between the various interaction types
for neutral species.37 The maximum wave numberGmax in
each Cartesian direction~x,y,z! limits the description of ki-
netic energy. Alternatively and equivalently~under the same
boundary conditions!, the orbitals can be represented via
their R-space values on grid-points of an equally spaced
mesh in the cubic cell. The grid spacingdx in each direction
is related to the maximum wave number by:dx5p/Gmax.

Even if core electrons are discarded from the electronic
structure problem, for example, by using a frozen core ap-
proximation or effective core pseudopotentials, the valence
orbitals are still difficult to describe with plane waves be-
cause of the high kinetic-energy components near the atomic
core. This dictates the use of soft pseudopotentials, which
smooth the valence orbitals near the ionic core leaving intact
their form outside the core. It is important to emphasize the
difference between effective core potentials and soft pseudo-

potentials. The latter have the role of smoothing the valence
orbitals, in addition to eliminating core electrons. Thus, even
for the hydrogen atom, where there are no core electrons, it
is beneficial to use soft pseudopotentials.

Generalized nonlocal, norm-conserving
pseudopotentials,49 expressed in the Kleinman–Bylander
~KB! separable form,50 describe the interaction potential of a
valence electron with the ionic cores. A computer program
written by Fuchs and Scheffler51 generates the pseudopoten-
tials while eliminating the formation of ghost states.52 The
pseudopotential is essential for efficient use of the plane-
waves basis because it smoothes the valence orbitals near the
ionic cores, thus allowing for a large value ofdx. This in
turn changes the form of the valence orbitals in the region of
the ionic cores. Great care is taken in constructing the
pseudopotential to prevent this effect from affecting the form
of the valence orbitals outside a cutoff radius around each
ion. The pseudopotentials are optimized for a DFT compu-
tation, and it is an important question whether this scheme
gives accurate atomization energy when a valence correlated
electronic structure method is used.

The HF-SCF energy in this representation is required to
converge with respect to two parameters: The grid spacing
dx and the cell sizeL. It is found that the convergence with
respect to grid spacingdx is rapid once a value smaller than
a critical spacing is used. The value of the criticaldx de-
pends on the pseudopotential and we used the Troullier–
Martins ~TM! method53 to generate pseudopotentials for hy-
drogen and beryllium. The generated pseudopotentials were
of two types, depending on the level of theory used for
the atomic computation: LDA54 ~LDA-PP! and GGA54,55

~GGA-PP!.
The HF-SCF atomization energies of H2, BeH2, and Be2

based on the GGA pseudopotentials are shown in Table
I.56,57 Notice the negative values of De for Be2 indicating
that the molecule is unstable in the Hartree–Fock theory~in
fact, the Hartree–Fock potential curve is everywhere
repulsive46!.

We also performed computations using the LDA based
pseudopotential~LDA-PP!. In general, it is found that the
Hartree–Fock atomization energies differ in the three cases.
Specifically, the following inequality relating Hartree–Fock
atomization energies based on LDA and GGA pseudopoten-
tials, and accurate all-electron computations~labeled ‘‘HF/
Full’’ !, reported in literature was found:

DHF/LDA-PP.DHF/GGA-PP.DHF/Full . ~2.1!

TABLE I. HF-SCF atomization energies~eV! vs cell length L of H2

(RH–H51.4 Bohr) BeH2 ~linear, RH–Be52.5 Bohr) and Be2 (RBe–Be

54.70 Bohr). Results based on GGA-PP, using grid spacingdx50.5 a.u.
For comparison, estimates of the atomization energies of these systems
based on SCF computations not using pseudopotentials are quoted.

L~a.u.!5 16 24 32 `a SCF

De(H2) 3.88 3.81 3.78 3.74 3.64~Ref. 56!
De(BeH2) 5.66 5.76 5.79 5.80 5.45~Ref. 57!
De(Be2) 20.347 20.241 20.254 20.265 20.33 ~Ref. 46!

aEstimated by extrapolation.
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GGA/LDA based pseudo cores are not strictly expected to
yield exact HF-SCF energies. Indeed they do not as seen in
the table. A proper pseudopotential should give accurate total
atomization energy so it is anticipated that the correlation
energy will correct the discrepancy. As we shall see this is
not fully obtained.

III. SC-AFMC CORRELATION ENERGY

The SC-AFMC enables the computation of the
temperature-dependent electronic energy33

E~b!5
^F0uĤe2bĤuF0&

^F0u22bĤuF0&
, ~3.1!

where F05uf1¯fNu is the Hartree–Fock determinant of
the occupied molecular orbitalsfk . E(b) asymptotically ap-
proaches an exponential decay to the ground state asb is
raised

E~b!→W~b!5Egs1Ae2DEbDE, ~3.2!

whereEgs is the ground-state energy andDE is an excitation
energy to the closest excited state not orthogonal to the de-
terminantF0 . Thus, a least-squares fit of the computed en-
ergy E(b) to an exponential is made~see Fig. 1, for ex-
ample!. Once the parameters of the fit are determined, the
statistical error is computed by

SE~N!5A1

N (
n51

N

@E~bn!2W~bn!#2. ~3.3!

Determining the appropriate value ofb is not straightfor-
ward. Typically, one strives forbDE@1 as this condition
validates a correct fit using Eq.~3.2!. However, estimates of
DE ~based, for example on the Hartree–Fock computation!
are not always reliable, especially whenDE is small. Cru-
cially though, a small value ofDE signals the existence of
nondynamical correlation, which in turn increases the statis-
tical error at largeb. This is because when nondynamical
correlation exists, the Hartree–Fock density is no longer a
good approximation to the true density, making it an inap-
propriate stabilizing contour-shift.33 A rather unfortunate
situation transpires: A largeb computation is unachievable
exactly when it is needed. The situation can be remedied by

using a multireference method to compute the density. Until
such an attempt is made, the computational accuracy for sys-
tems with nondynamical correlation is restricted. In the com-
putations described below the Be2 system is such a problem-
atic system. By comparing the results we obtained with other
computations, we believe~but cannot prove! that we have
collected most of the correlation energy also for this system.

An additional word on time evolution and the SC-AFMC
time stepDb. Throughout the computations, a value ofDb
50.1 a.u. was used. The ensuing discretization error is unno-
ticeable relative to the reported statistical errors. The opera-
tion of the evolution operatorÛ(b,b1Db) propagating an
orbital fk from imaginary timet5b to t5b1Db is per-
formed by the Chebyshev expansion method of Kosloff and
Tal-Ezer.58 This algorithm is essentially of machine accuracy
when the evolution is holonomic. Thus the only discretiza-
tion error is due to the noncommutativity of the time-
dependent auxiliary-field Hamiltonian with itself at different
times within the small intervalDb.

The length of the Chebyshev expansion is proportional
to DbDH whereDH is the spectral range of the auxiliary-
field Hamiltonian. In traditional AFMC, where there is no
contour shift,DH is determined by the bare pseudopotential
and can be large. Thus time evolution is numerically expen-
sive. Because in SC-AFMC the atomic core is partially
screened by the shifting field the spectral range of the auxil-
iary Hamiltonian is smaller and time evolution is less de-
manding. The typical number of terms of the expansion in
the computations is between 15 and 20 terms.

A. H2 correlation energy

Unlike the HF-SCF energy, the correlation energy of H2

converges rapidly with cell size to the valueEc(H2)51.05
60.02 eV, as seen in Table II. The statistical error of 0.02
eV was achieved with 3000 iterations.

The H2 correlation energy based on a full core compu-
tation is59 1.11 eV. Thus the bond correlation energy under a
pseudopotential underestimates the true correlation energy.
This corrects the overestimation of the HF-SCF atomization
energy by the pseudopotential discussed previously, making
the total electronic atomization energy only 0.02 eV larger
than the correct H2 atomization energy.

B. Be valence correlation energy

An example of the temperature dependent electronic en-
ergy of Be after 8000 SC-AFMC iterations is shown in Fig.
1. It is seen that the cure is well fitted by an exponential
W(b) for time b.1 a.u. After performing a fit the statistical
error is defined in Eq.~3.3!. The cell size dependent valence

FIG. 1. Recovered correlation energy of BeH2 in a cubic cell of length
L56 a.u. and grid spacingdx50.5 a.u. after 6000 iterations as a function
of b.

TABLE II. Correlation energy and decay constantDE ~both in eV! for H2

vs cell sizeL. Based on: GGA-PP anddx50.5 a.u.N is the number of
iterations andb is the final time.

L ~a.u.! Ecorr N b ~a.u.!

8 0.99~2! 3000 5
12 1.06~2! 3000 5
16 1.05~2! 3000 5
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correlation energy of the Be atom shown in Table III from
which the extrapolated value ofEc51.3360.03 eV is de-
duced. This should be compared toEc51.255 eV—the ex-
trapolated valence correlation energy calculated by Martin60

using a coupled-cluster singles and doubles method@equiva-
lent to full CI ~configuration interaction! in this case#.

C. BeH2 valence correlation energy

The valence correlation energy of the BeH2 molecule is
shown in Table IV. Both correlation energy and decay con-
stant are less sensitive to the cell size than the Be atom.

The valence correlation energy isEc(BeH2)
52.14(3) eV. This value is obtained by extrapolation and
should be compared to 2.19 eV, the valence correlation en-
ergy reported by Martin60 using cc-pVnZ type basis sets used
in a coupled cluster approximation which includes all
single-, double-, and an approximate treatment of triple ex-
citations@CCSD~T!#.61

Our calculated bond valence correlation energy is
0.80~3! eV, a value comparable to 0.93 eV deduced by
Martin59 using CCSD~T!. Martin shows that the contribution
of core electrons to the correlation energy is only;5% of
this value, comparable to the statistical sampling error.

D. Valence correlation energy of Be 2

In order to stabilize the SC-AFMC integration, a good
approximation is needed to the fully correlated one-electron
density matrix.33 In many cases, the Hartree–Fock density is
used satisfactorily. However, for Be2 substantial nondynami-
cal correlation exists, due to the small energetical difference
between 2s and 2p levels45 ~see Ref. 62 for an interesting
discussion concerning the definition of nondynamical corre-
lation!. Here, the Hartree–Fock density is not a good ap-
proximation to the correlated density because the Hartree–
Fock determinant is not dominant in the ground-state wave
function. The correlation energy of Be2 is, therefore, difficult
to compute via conventional SC-AFMC because the stabili-
zation is made with a Hartree–Fock determinant. The value
b512 a.u. used is dictated by the size of the Monte Carlo

fluctuations. It is expected~although we have not checked
this! that a better approximation to the density can signifi-
cantly reduce the statistical fluctuations and a larger value of
b will be reached.

The Monte Carlo energy, fluctuations and dependence
on inverse temperature and the cell size are shown in Fig. 2.
It is seen that for the smallest cell shown, the statistical fluc-
tuations are small indicating that the multireference nature of
the problem is sensitive to cell size. This is reasonable as cell
size affects energy level spacing of a particle in cell.

The valence-correlation energy of Be2 is shown for vari-
ous cell lengths in Table V. Due to the large statistical error,
it is difficult to determine precisely the correlation energy. At
a cell length of 16 a.u. the valence correlation energy is
22.95~15! eV. This leads to bond valence-correlation energy
of 0.3 ~2! eV, which in light of the large statistical error
compares reasonably well with the extrapolated value of 0.43
eV estimated by Martin46 using a highly accurate coupled
cluster approximation.63

IV. SUMMARY

A new quantum Monte Carlo method has been presented
for electronic structure computations using norm-conserving
pseudopotentials and plane-waves. The method is shown ca-
pable in principle of high accuracy description of chemical
bonds as shown in Table VI.

The adequacy of norm-conserving pseudopotentials to
describe the interaction with atomic cores in a fully corre-

FIG. 2. Monte Carlo correlation energy as a function of inverse temperature
for Be2 in various cell lengthsL58,12,14,16 a.u.~from top to bottom!.

TABLE III. Be valence correlation energy~eV! vs cell sizeL. Based on
GGA-PP and a grid spacing ofdx50.5 a.u.N is the number of iterations
andb is the final time. Numbers in parentheses are statistical errors in the
last digits.

L ~a.u.! Ecorr N b ~a.u.!

8 0.64~2! 8000 10
12 1.16~2! 8000 10
16 1.32~3! 12000 10

TABLE IV. BeH2 valence correlation energy~eV! vs cell sizeL. Based on
GGA-PP anddx50.67 a.u.N is the number of iterations andb is the final
time. Numbers in parentheses are statistical errors in the last digits.

L ~a.u.! Ecorr N b ~a.u.!

8 2.12~2! 5000 6
12 2.13~3! 5000 6

TABLE V. Be2 valence correlation energy~eV! vs cell sizeL. Based on
GGA-PP anddx50.5 a.u.N is the number of iterations. Numbers in paren-
theses are statistical errors in the last digits.

L ~a.u.! Ecorr N

8 2.21~3! 6000
12 2.68~10! 9000
14 2.75~10! 7000
16 2.95~15! 8000
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lated electronic structure computation was another issue we
set to examine here. Our results show that the quality of
atomization energies depend on the level of theory used to
develop the pseudopotential. A pseudopotential based on
GGA consistently gives better results than pseudopotential
based on LDA. When comparing HF-SCF atomization ener-
gies based on LDA/GGA pseudopotentials (DHF/LDAPP and
DHF/GGAPP) with all-electron full core energiesDHF/Full , we
find a systematic trend

DHF/LDAPP.DHF/GGAPP.DHF/Full . ~4.1!

We believe that the DFT based pseudopotentials limit the
accuracy of the explicitly correlated atomization energy to
around 0.2 eV~for the systems studied here!. Thus, one im-
portant future direction of this project is the inclusion of core
and core-valence correlation effects, when they are expected
to be important. This can be done using the CPP of Shirley
and Martin22 ~the Ve-e part of the CPP can also be treated
because the AFMC method can in principle treat any type of
two-body interaction!.

We found that correlation energy generally converges
faster than the Hartree–Fock energy as cell length is in-
creased. We conclude that smaller cells are needed for the
extensive correlated computation. In H2 and BeH2 correla-
tion energy converged at smaller cell lengths than the corre-
lation energy of Be and Be2. The latter systems exhibited
nondynamical correlation~also seen as increased statistical
errors!. This shows that when nondynamical correlation ex-
ists the correlation effects are less localized.

An additional problem we encountered is the slow con-
vergence of correlation energy in Be2 with respect to the
propagation time. We suspect that this problem too is di-
rectly associated with the presence of nondynamical correla-
tion. Thus, an important future direction is the development
of specialized methods to allow SC-AFMC to deal with this
problem.

The computational labor invested in the SC-AFMC stage
is extensive. Typically, the QMC computation on these small
molecules consumes one to two orders of magnitude more
CPU time than a CCSD~T! based computation. We anticipate
the tables to be turned once larger systems are treated. This,
however, remains to be explored in future applications of the
method.
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