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Abstract

A method for computing the singlet—triplet energy difference (STED) of molecules with nearly degenerate states is
described. It is based on the shifted contour auxiliary field Monte Carlo, implemented with plane waves and pseud-
opotentials. Two additional critical elements are: a variational multireference approach, for treating non-dynamical
correlation and direct correlated sampling of energy differences. Applications to the H-He-H and CH, systems are
given, estimating STED of —14.3 £+ 0.1 and 9.8 & 0.3 kcal/mol, respectively. The overall accuracy is limited by the type
of pseudopotential used, with preference to those based on generalized gradients. © 2001 Elsevier Science B.V. All

rights reserved.

1. Introduction

The characterization and description of mag-
netic—exchange interactions in molecules and sol-
ids is a highly active research area of modern
experimental chemistry extending applications to a
variety of fields in inorganic chemistry, materials
science and bioorganic chemistry. Exchange-active
molecules exhibit a manifold of nearly degenerate
electronic states determining the magnetic prop-
erties of the material. A frequently used phenom-
enological model for studying the behavior of
magnetic systems is the Heisenberg Hamiltonian
(1] H=—->,JuS« Sp, accentuating spin-spin
interactions, where each spin S, is located at a site
a of the magnetic solid. Magnetic systems are
generally classified as ferromagnetic or antiferro-
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magentic according to their tendency to develop or
destroy a collective magnetic moment. It is clear
from the form of the Heisenberg interaction that
predominantly positive phenomenological mag-
netic coupling constants J,;, lead to ferromagnetic
behavior, while negative constants promote antif-
erromagnetism.

The phenomenological magnetic coupling con-
stants can be determined directly from ab initio
electronic structure theory, applied to a single di-
mer H,, = —J;S, - Sp,. The eigenstates are char-
acterized by eigenvalues of > = (S, +S,)°, S? and
Si so that for a given pair of spins, S, and S, the
energy manifold consists of states with total spin
S=|S,—S|,...S, + S, and the Heisenberg energy
eigenvalues are:

_g“b [S(S+1) — S,(S, + 1)

— Sp(Sy + 1)]. (1)

E(S, S, 8) =

0009-2614/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S0009-2614(01)00723-0



536 R. Baer | Chemical Physics Letters 343 (2001) 535-542

Thus, J,, can be estimated from ab initio compu-
tation of the energy difference between adjacent
spin states [2]

E(S,8.,8) —E(S —1,8,,5;)

Jab ~ S . (2)

The most common use of this equation is the case
of § =1, leading to a connection of the magnetic
coupling with STED

J = E(singlet) — E(triplet). (3)

In this Letter, we discuss a new method for com-
puting the high accuracy singlet-triplet energetic
difference in molecules. The methods presented are
based on the shifted contour auxiliary field quan-
tum Monte Carlo method (SC-AFMC) [3.,4]. In
previous publications, we showed that SC-AFMC
can be implemented using correlated fields and this
technique allows the computation of forces, de-
formation barriers and spectroscopic constants of
molecules [5,6]. Here, we demonstrate that corre-
lated sampling SC-AFMC is applicable to the
computation of STED.

We study the methods for computing STED
with application to two molecular systems. First,
we treat the collinear H-He—H complex biradical
(Section 3.1). This is the simplest model for super-
exchange a known benchmark for testing broken
symmetry [7] and associated approximations to the
magnetic coupling constants (for a comprehensive
review on broken symmetry the reader is referred
to Ruiz et al. [8]). We find that the non-dynamical
correlation dominates the problem and single-ref-
erence SC-AFMC is extremely inefficient and im-
practical. Thus, a multireference formalism,
similar to that of Bernu et al. [9] and Rom et al.
[10] is developed (Section 2.2) emphasizing the
variational properties of the method. The mul-
tireference method, together with the correlated
sampling, is applied to the system and the Monte
Carlo process used in two differently related sam-
plings is applied to the system and the Monte
Carlo process is used in two different ways to
compute the same STED.

Finally, we apply the method to the CH, radical
(Section 3.2). Here, non-dynamical correlation is
less of a problem, however, the fact that the triplet

state is lower in energy than the singlet state,
causes a strong mixing in the open-shell S, =0
reference which precludes the use of open-shell
references for the singlet.

2. Theory
2.1. Shifted contour auxiliary field Monte Carlo

Consider a system of interacting electrons, with
the following Hamiltonian, in second quantization
form:

. 1
H=K'p+5p"Vp, (4)

where p(r) =", Wl (r)y,(r) is the electron den-
sity operator, V(r,r) = eXr —r|”' is the positive
Coulomb repulsion and K a one-body term, in-
cluding the kinetic energy, the external potential,
and the other one-body interaction terms. We use
here the notation

pTVpE/p(r) -

v —r|

2
p(r)drd’r. (5)

For a N, electron system, the auxiliary field Monte
Carlo specializes in computing the following types
of matrix elements:

Sm’m = <(pm/|eiﬁ]:[|¢m> (6)
and
Hm’m = <¢m’|l:leiﬁﬁ‘¢m>7 (7)

where @, is a N.-electron determinantal wave-
function. It is enough to focus on Eq. (6) because
the other type of matrix elements can be obtained,
for example, by differentiation

H(p) = —S'(B). (8)
Computing these matrix elements is extremely
demanding because of the two-body part of the
Hamiltonian AH. This feat can be made tractable
using the shifted contour auxiliary field approach,
details and references of which are supplied in
[4,11]. The matrix elements are computed using the
following Monte Carlo procedure summarized by
the following equation:
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N
Sm'm(ﬂ) _ e1/2@ V“’”ﬁ<<‘1’m/| H em; Vo AB

n=1

% o MK+Vau() |®,,) > . )

w{o}

Here the f-time interval is sampled by N equally
spaced time points f, =nAf (n=0,1,...,N)
where Aff = f/N. At each time point f3,, a three-
dimensional real density o,(r) is randomly gen-
erated by a standard process assuring a distribu-
tion adhering to the positive definite Gaussian
weight

N
W{G,(r)} = e /220170 Vo, (10)

The real function a,(r) is the contour shift de-
signed for reducing the statistical noise of the
Monte Carlo process [3,4]. It was shown that the
ideal shift is time-dependent and depends on both
the left and right states

a(r, 1) = (D |e P p(r)e 7| d,,). (11)

However, accurate determination of this quantity
is as difficult as computing S. Thus, an approx-
imate shift is adopted. It should be noted that,
similar to the concept of importance sampling,
the result is in principle independent of the shift
o. Yet, the statistical variance can be substan-
tially reduced if a suitable approximation to Eq.
(11) is made. In this Letter we use the following
shift:

% (1) = (@ | (1) D) (12)

The fact that « depends only on the right-hand side
function greatly facilitates the computation. The
importance in using a contour shift cannot be
overestimated and computations which have not
utilized it have had very limited success with this
method [12,13].

Once the contour shift «,(r) has been deter-
mined and the random densities o,(r) have been
generated, the evolution is executed on each of
the one-electron orbitals in the determinant &@,,.
The fact that the effective Hamiltonian in Eq. (9)
is a one-body Hamiltonian means that each
orbital can be evolved independently of the
others.

2.2. Variational multireference AFMC

For some systems, non-dynamical correlation is
important and a multireference version of AFMC
is needed. We follow the approach, inspired by the
work of Bernu et al. [9] and suggested also by Rom
et al. [10]. Our derivation emphasizes the varia-
tional properties of the method.

Consider a set of M determinantal wavefunc-
tions @,,(&,...,¢y,), m=1,...,M, the choice of
which is application-dependent, as discussed in the
next section. Here &, are the coordinates and spin
of the nth electron.

Projecting with the Boltzmann operator, dam-
ping the high-energy components, a new set of M
functions is obtained

®,(B) =e M, (13)

A linear combination of the resulting wavefunc-
tions can efficiently approximate the true ground-
state wavefunction:

ngs ~Y¥= Z Cm¢m(ﬁ)' (14)
m=1

The coefficients C,, are determined by the varia-
tional principle, according to which

Ee < (¥|H|¥) (15)

when (¥|¥) = 1. Thus, the best coefficients are
determined by minimizing the energy expectation
value, subject to wavefunction normality. This
amounts to minimizing the following functional:

J(C) = C'HC — &{C'SC - 1}, (16)

where a matrix—vector notation is employed, for
example

M
CTSC: Z C;:,/Sm’mcma (17)

mm'=1

the Lagrange parameter ¢ multiplies the normal-
ization constraint and the matrices appearing in
Eq. (16) are defined in Eqgs. (6) and (7), the esti-
mation of which was discussed in the previous
section. The constrained minimization leads to the
following generalized eigenvalue equation:

HC = SCE, (18)
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where E is the diagonal matrix of Lagrange mul-
tipliers. The smallest Lagrange multiplier is the
variational estimate for the ground state energy.
Indeed, the following inequality exists in the limit
of large f3:

Eg SE(B) < Egs + Epyye P (B 5), (19)

Estimates for low-lying excitation energies are gi-
ven by the other diagonal elements of the matrix
E.

3. Applications

We now present two applications of Auxiliary
Field Monte Carlo to the computation of STED in
molecular systems. The computations were all
performed using a plane wave basis for the one-
electron wavefunctions, where the molecule is
placed in a cubic cell of length L, and a three-
dimensional grid of spacing Ax. We use the
technique of Martyna et al. [14] for efficiently
mitigating finite cell size effects. All computations
employ B-LYP [15,16]-based Troullier—-Martins
type [17] pseudopotentials, generated for hydro-
gen, carbon and helium by the Farpp98 computer
program of Fuchs and Scheffler [18]. All pseudo-
potentials are non-local with /., =2 and the
Kleinman-Bylander form [19] is used for their ef-
ficient application in the code.

3.1. H-He—H: Magnetic exchange benchmark sys-
tem

The linear, symmetric system H---He---H, is
not a stable molecule, so there is no experimental
determination of the STED. Yet, this is a four-
electron system and it is amenable to reasonably
accurate full CI treatments [20-22]. It is known
then that when the hydrogen—helium distance
Ry ne 1s large, a near-degenerate singlet-triplet
manifold is seen and the result is an ideal bench-
mark system for testing various approximations of
STED computation.

We study this system for the hydrogen—helium
distance of Ry p. = 1.25 A. In the first encounter,
we used two unrestricted Hartree—Fock (UHF)
determinantal wavefunctions: one with S. = 0, and

the other with S, = 1. In a naive AFMC applica-
tion, we applied correlated sampling for the two
electronic states. This can be done because both
determinants have the four orbitals, and the same
auxiliary fields can be used for both. The results
are shown in Fig. 1. The statistical error is well
under control, due to the correlated sampling,
however the STED converges very slowly. We
might think from the figure that the converged
value is about —8 kcal/mol however the correct
value based on full CI computations [20,21,23] is
about —14 kcal/mol. The reason for the large dis-
crepancy is the improper treatment of the near
degeneracy. The singlet UHF reference is strongly
spin-contaminated by the lowest triplet state. All
‘broken symmetry’ type approximations are based
on just this phenomenon [8]. Since the STED is
around 0.02 Ht, the time scale for the Monte Carlo
process to resolve this difference is f > 50 a.u. The
way to correctly and efficiently compute the STED
is to use the multireference theory of Section 2.
This leads to two independent ways of computing
the STED.

We begin by considering the UHF S, =10
reference @, = |¢p;P,¢;¢,]. The two optimized
orbitals ¢, and ¢, are each localized on a different

4.0,
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Fig. 1. A slowly convergent computation of the STED for
H-He-H, with H-He distance equal to 1.25 A. The STED of
this system is known to be around 14 kcal/mol. At this rate,
convergence will be reached after f = 50 a.u. Solid lines are
exponentials best fitted to the data for f > 0.5 a.u. The effect of
increasing the cubic cell length L is also shown.

L =12 Bohr

J (kcal/mole)
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hydrogen atom but otherwise, they are similar.
Thus, the spin-exchanged determinant
@) = |, P34 is close in energy. These two de-
terminants can be used as a basis for multirefer-
ence variational AFMC of Section 2.2. In
addition, one can use the UHF S, = 1 open-shell
determinant. Here, there is no contamination from
the singlet state and higher spin states are better
separated from the triplet ground state. Using this
determinant allows an independent way to esti-
mate the STED. The results of these two compu-
tations are shown in Fig. 2. It is seen that both
computations lead to a similar STED. In order to
determine the § — oo limit, we use the fact that the
asymptotic behavior is exponential:

J(B) =AJe P 4. (20)

In order to estimate the statistical error, we
calculated the transient J(f) five statistically in-
dependent times. Each run employed 600 itera-
tions. Following each run, a fit is made to the
computed transient J(f) to determine the pa-
rameters J,, AJ and A4 of Eq. (20). The statistics
is then made on the parameters, and the result
for the STED is J = —14.3+0.1 kcal/mol for
the UHF calculation. It is worthwhile to com-
ment that the correlation energy contribution to
J is very small (order of 1 kcal/mol) when the 2-

J(kcal/mole)
/

ofo—1
Fdeo—

15 L.~

Fig. 2. Two independent ways to compute the STED J for the
H-He-H benchmark system (see text for details). Solid lines are
exponentials obtained by best fit. Total of 3000 iterations.

state UHF computation is used. This is very
different from the situation in the next applica-
tion, where the correlation energy is a huge
contribution to J.

3.2. Singlet—triplet energy differences in methylene

The methylene radical (CH,) is a classical
benchmark system of quantum chemistry, where
theoretical predictions, initially contradicting with
experimental results, were later shown to be cor-
rect [24]. The STED was also an issue of great
debate between theory and experiment.

We approached the CH, system, using the ex-
perimentally known C,, geometries [25]: for the
triplet state we take Rcy=1.075A angl
Oucu = 133.9° and for the singlet, Rcy = 1.107 A
and Oycy = 102.4°. We first performed Hartree—
Fock computations to obtain, for each spin state,
the determinantal wavefunction to be used as ref-
erences for the QMC process. The references for
the singlet and triplet states were the closed-shell
(S =0) restricted Hartree-Fock (RHF) and the
S. =1 unrestricted Hartree-Fock (UHF) deter-
minants, respectively. There is no need to form a
pure triplet state here because the Monte Carlo
procedure will automatically distil it from other
mixed S > 0 states. It is important to refrain from
using the S, = 0 UHF determinantal wavefunction
as a reference for the singlet computation. This is
because the triplet ground state is mixed into it,
and the QMC process will only enhance the triplet
contribution.

How sensitive is the computational result to cell
size and grid spacing? A qualitative answer can be
obtained by considering the issue at the Hartree—
Fock level, as shown in Fig. 3. Both cell-size and
grid spacing convergence is fast and the Ax = 0.33
Bohr and L = 16 Bohr combination is accurate for
practical chemical purposes. Yet, this basis is
much too demanding and we chose Ax = 0.4 Bohr
and L =12 Bohr (L' =0.083 Bohr'). On the
Hartree—Fock level, choosing this basis leads to an
S-T energy difference which is about 0.6 kcal/mol
too large.

The SC-AFMC computation proceeds as fol-
lows. First, reference states for the triplet and
singlet states are produced using Hartree-Fock
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Fig. 3. Hartree-Fock triplet-singlet energy difference of meth-
ylene at the experimental geometries as a function of cubic cell
length L and grid spacing Ax (both in Bohr). The arrow points
to the configuration chosen for the Monte Carlo computation,
L =12 Bohr and Ax = 0.4 Bohr.

theory. For the triplet, an unrestricted Hartree—
Fock (UHF) determinant is obtained, containing
the orbitals

Yoy = ‘(1a1)2(1b2)2(2a1)(1b1)]. (21)

As for the singlet reference, the lowest energy
RHF determinant (at the singlet geometry) is

P, = ‘(1a1)2(1b2)2(2a1)2‘. (22)

These two determinants, respectively, possess the
same symmetry as the triplet and singlet ground
state wavefunctions [26]. With each of them as
references, we ran SC-AFMC to compute the
corresponding energies. For reducing the statisti-
cal noise in the STED, the two computations are
correlated by using the same auxiliary fields. Here
we explicitly exploit the fact that the auxiliary
fields are sampled in a spin independent way and
implicitly rely on the resemblance of the corre-
sponding shapes of the molecular orbitals. How-
ever, this is not a perfect resemblance especially
due to the different nuclear configurations and spin
arrangements. Thus, the correlated sampling is less
effective than, say, for a force computation [5]. The

result of this computation is shown in Fig. 4 where
the STED is plotted as a function of f.

Following reference [Sherrill, 1998 #163] we
tried to include a low-lying singlet state with the
reference wavefunction. Within the variational
SCAFMC, this meant to run a two-dimensional
variational SCAFMC, with the second 'A; wave-
function being [Sherrill, 1998 #163]:

Pia, = |(1a1)7(1b,)%(2b))?. (23)

The results of the ensuing computation are also
shown in Fig. 4. Comparing the two computa-
tions, the addition of the second 'A; state has
considerably accelerated the convergence of the
computation. A propagation time of fg, = 3 a.u.
is sufficient. Once again, treating the non-dynam-
ical correlation in a variational-algebraic way is
essential for obtaining an accurate result.

We estimate the statistical error in a similar way
to that done for the previous system, using five
statistically independent runs, each employing a
certain number of iterations (in this case, 6500 for

30

—~ 25K

S\

(@)
20

£ N

C_!S N_1-singlet state

: 10 2-singlet states Kﬂ;ﬁ
5

0 05 1 15 2 25 3
f(au)

Fig. 4. Correlated sampling SC-AFMC computations of the
STED for the methylene molecule. The full lines are best-fit
exponentials to the Monte Carlo results for f > 0.3 a.u. Two
computations are shown, with just one singlet reference and two
singlet references. The horizontal line is the relevant experi-
mental result. The extrapolated f — oo value is J = 10.4 +0.3
kcal/mol. Cell length is L = 12 Bohr; grid spacing Ax = 0.4
Bohr and time step is Af =0.1 a.u. Total of 20000 Monte
Carlo iterations.
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the single reference and 3500 for the double ref-
erence). For each run, a fit is made to determine
the parameters J,, AJ and A4 of Eq. (20). Statistics
is again made on the parameters, and the result for
the STED i1s J,, = —10.4 & 0.3 kcal/mol. Our final
estimate for J,, takes into account the represen-
tation error, which we estimate from the Hartree—
Fock computation to be —0.6 kcal/mol (Fig. 3).
Thus our final estimate for the STED is
J = —-9.84+0.3 kcal/mol, which should be com-
pared to the relevant experimental value of J = 9.4
kcal/mol [27,28].

The only uncontrolled approximation in our
method is that of using the pseudopotential. We
have tested, at the Hartree—Fock level, six different
density functional — based pseudopotentials. Three
of them use the local density approximation (LDA)
and the other three — various versions of the gen-
eralized gradients approximation (GGA). It was
found that results derived from various LDA-
based pseudopotentials are similar (to within 0.5
kcal/mol) and the same is seen for the GGA-based
pseudopotentials. However, the results derived
from LDA-based pseudopotentials were consis-
tently higher by 2 kcal/mol than those derived from
the GGA-based ones. We compared two AFMC
computations: one using the LDA-based pseudo-
potential and the other — that based on GGA. It
was seen that the energetic difference observed at
the Hartree—Fock level is closely preserved also in
the correlated computation. Thus, within a given
model for the nucleus, there is little difference as to
what exact form of a functional was taken, but
between the two models, the difference is larger.
Thus, the pseudopotential uncertainty dominates
the accuracy in our calculation. Furthermore, the
results derived from the GGA-based pseudopo-
tentials were in close agreement with the experi-
mental results (to within statistical uncertainty),
while those derived from LDA-based pseudopo-
tentials give a poor fit to experiment.

4. Summary
The shifted contour auxiliary field Monte Carlo

method is shown to be able to accurately compute
electronic excited state energy differences, namely

the singlet—triplet differences of small benchmark
molecules. The methods for achieving this feat
include a variational multireference version of
AFMC for dealing with non-dynamical correla-
tion and the concept of correlated sampling for
different spin states.

In this work, the unrestricted Hartree—Fock was
used for constructing the optimized determinants
reference states of the AFMC process. An alterna-
tive, more standard approach, consists of con-
structing triplet references from a linear
combination of two triplet-paired determinants. Ina
future study, we intend to compare these two ap-
proaches to the computation of triplet state energies.

Finally, we have found that the uncontrolled
source of error in our computation — the pseudo-
potential — can dominate the accuracy. Specifi-
cally, we find that results derived from GGA based
pseudopotentials agree closely with experiment
while those derived from LDA-based pseudopo-
tentials yield a discrepancy of 10-20%.
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