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A method for ab initio nonlinear electron-density evolution

Roi Baer® and Recca Gould
Department of Physical Chemistry and The Lise Meitner Minerva-Center for Quantum Chemistry,
The Hebrew University of Jerusalem, Jerusalem 91904, Israel

(Received 15 August 2000; accepted 1 December 2000

A numerical method is given for effecting nonlinear local density functional evolution. Within a
given time interval, Chebyshev quadrature points are used to sample the evolving orbitals. An
implicit equation coupling wave functions at the different time points is then set up. The equation
is solved iteratively using the “direct inversion in iterative space” acceleration technique. Spatially,
the orbitals are represented on a Fourier grid combined with soft pseudopotentials. The method is
first applied to the computation of th°EHg adiabatic potential energy curves of,AlNext, the
electronic dynamics of a toy molecular wire is studied. The wire consists ofHy @olecule
connected via sulfur atoms to two gold atoms, the “electrodes.” The molecule is placed in a
homogeneous electric field and a dynamical process of charge transfer is observed. By comparing
the transient with that of a resistance-capacitance circuit, an effective Ohmic resistance and
capacitance is estimated for the system. 2@01 American Institute of Physics.
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I. INTRODUCTION Here, the first term is the kinetic energy of noninteracting
. ) , electrons in the KS orbitals; the second is the corresponding
A fundamental problem of theoretical chemistry is 10 gnergy of electron—nuclei interaction. The third term is the
accurately account for the dynamics of electrons and nucl€iirect coulomb repulsion energy of the densiigr,t). Fi-
in molecules. This challenge is beyond the reach of preserﬂa”y' the last term, also a functional pfr,t), accounts for
computational capabilities, so simplifying approximations 5| the residual many-body energetics, such as exchange and

must be made. The fact that nuclei are thousands of timesy re|ation. This leads to the following setlsf equations of
heavier than electrons is exploited and the dynamics of the, J«i51 for the Kohn—Sham orbitals:

two entities are thus treated separately. We focus in this ar-
ticle on the fast electron dynamics. o dP(r,t)

Even with fixed nuclei, exerting a stationary potential 17—z =HW (I D)¥n(r,t), n=1,... Ne, ©)
Vy on the electrons, it is impractical to demand a detailed
description of the electronic motion. Instead, a reduced acwhere the Hamiltonian operator is dependent on the KS or-
count is adopted, limited to the study of the evolution of thebitals. Within the local density approximatiérihe exchange
one-electron density. The time-dependent density functionagorrelation takes a simple forrE= [ pe(p)d®r and one can
theory (TDDFT), developed by Runge and Grdsis, a gen-  Write the Hamiltonian of the electronic system as
eral framework with which this is achieved. In TDDFT, 42 )
within a Kohn—Sharhapproach, the time-dependent electron H=— —V2+VN(r)+e2J p(r’) d3r' +V,(p(r)),

density is written as 2pe lr—r’|
" 4
p(rt)= 2 (T D2, (1) whereV,.(p)=¢(p) +pe'(p). Equaqions(3) and(4) consti-
n=1 tute a set of nonlinearly coupled Scliger-type equations.

This paper develops a method for computing the nonlin-
whereN, is the number of electrons. The evolution of tie  ear evolution of an initial KS orbital configuration in time.
single electron Kohn—ShartKS) orbitals ,,(r,t) is deter-  The nonlinearity of the equations makes a solution consider-
mined by a time-dependent variational principle applied toably more difficult than the case of linear evolution.

the KS energy A numerical scheme for solving the nonlinear Schro
dinger equation must simultaneously address time evolution
Ne Ne and spatial representation of the wave functions and opera-
E{in}= 2 (nlK|th)+ 2 (¥l Vil n) tors. These two topics are interrelated and should be applied
=t =t in a balanced way. When global methods such as Fourier-
e2 p(r" Vp(r,t) grid or plane wavesare applied for the spatial representa-
+ ?j f—,d3r’ d +E,{p}. (20 tion, a matching high-precision time evolution method must
[r=r'| follow. The usual differential equation methods, such as
adaptive Runge—Kutta, and Adams—Bashforth—Moulton
3Electronic mail: roib@fh.huji.ac.il predictor—corrector schemésee Ref. 4 for discussipnas
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well as more recent and specialized techniftfeare low 1078 . i g . ,
order in time step. Using these methods within a high-quality E
spatial representation leads to an unbalanced overall treat- ] Energy
ment. This problem was recognized by Miyametaal., who ]
recently developed a high-order split operator method for
treating this problen.

An example of a global evolution method, a perfect
match for the high-quality spatial representation of the Fou-
rier grid® is the method of Kosloff.However, this approach
is limited to thelinear Schralinger equation because it ex-
ploits the closed form of the evolution operatoyt) 10 } } } } f
=e U4 which is expanded by a series of Chebyshev 0 500 1000 1500 2000 2500 3000
polynomials. Via thet—t’ formalism®~*?or a Lanczos sub- t (au)
space propagatiolt;*4 the Kosloff method was extended to _ o _
. . . . FIG. 1. Numerical error vs propagation time for the, Abmputation. The
tlr'ne-dependent. Hamlltomans' ngever' _these extenSlont,grror is estimated from the relative deviance from energy and charge con-
still rely on the linearity of the basic equations. servation.

The evolution method we present below also exploits the
power of Chebyshev polynomials. However, here it is done
in such a way that a closed form for the evolution operator isvhere
not needed so that nonlinear and explicitly time-dependent 101
Hamiltonians can be treated. We achieve this by performing Ilm:_f Qu(7)dr. (8)
the Chebyshev interpolatioim the time domaininstead of TJo
the energy domain, as effectively done in the Kosloffgquation(7) is an implicit equation on the values of the
method® This alternative treatment is flexible enough to treatyave function at the set of discrete points. Once this equa-
both time dependent and nonlinear Hamiltonians. tion is solved, the values at the sampling points are used to

The approach is based on a recently published nonlineggpresent the entire time dependence via (Bj.
solver for the Gross—Pitaevskii equations describing the = The N sampling pointst, are chosen as Chebyshev
mean-field dynamics of Bose Einstein condensatésis in quadrature points. Thus, the interf@,T] is mapped to the
some ways similar to the well-known Adams—Moulton jnterval[—1,1] by x=(2t/T)—1 and the sampling points
(AM) method:® but is critically different in two aspects. The are the roots of the Chebyshev polynomial of orber
AM method relies orextrapolationand uses equally spaced
points in the time domain. Contrariwise, the method pre-  th=T(1+Xy)/2,n=01,... N-1, ©)
sented here relies dnterpolationand uses Chebyshev sam- \wherex,, are defined in the AppendipEq. (A8)], where a
pling points in the time domain. These differences allow themore complete account of the details of the theory, including
achievement of highly accurate results. an explicit form for the function€,(t), is given.

The fundamentals of the method are explained in Sec. Il.  The implicit Eq. (7) is solved by setting l/,ﬁ(ﬁ)

In Secs. Il and 1V, its capabilities are demonstrated by com-—=g~1Hti/% 4 effected using Kosloff evolutioh,and then
puting the excitation energies of triplet Afollowed by an  performing the following iterations to convergence:
application to a molecular wire model. N-1

T N
PNt =g p 2 AW )l (10

Relative Error

Il. METHOD
The following integral equation is equivalent to the time- 12 t f t : f t
dependent Schdinger equatiodEq. (3)]:
104 L
t/\
wn(t)=¢n—iﬁ’lfoH({df(r)},r)t//n(r)dr- 5 8] f
=
A global representation for time dependence within a given f 6] F
interval[0,T] is now constructed =
N—1 47 b
In(D)= 2 n(t)Qu(D), 6) 2- 0 d
A e
i i i i i 0 t f } : f B
where theN sampling pointg, and interpolation functions 5 J > 3 p . . ;

Qy(t) are independent of,(t). Plugging this into Eq(5),

one can write Excitation energy (eV)

N-1 FIG. 2. The dipole excitation spectrum of triplet,Aly the time-dependent
2 H(l/f(tl)vtl)‘/"n(tl)llma (7) LDA method. The transform parameters afle=3300 a.u.,o0=525 a.u.;
=0 t,=1650 a.u.

=

Un(tyn)=o—i
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1_: 1 FIG. 4. A model molecular wire where the ethylene molecule is connected
via sulfur atoms to the leads, modeled as gold atoms.
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A. Computing excitation energies

The ground-state density is perturbed by issuing a mo-

FIG. 3. Adiabatic potential energy curves for,Acomputed by TDLDA. mentum kick to all orbitafé’

The solid lines are the results of Ref. 30. The filled circles are the results of _ qik-r,,GS ; GS
ry= ry~(1+iker r 12
the present computatiaitonnected by dotted lines as guides to the) eye ¥l )=e l//” (r)~( )lpn (r), (12

where k=|k| is small. This excites only dipole-coupled
modes. Other modes can be excited by designing additional
types of perturbations, and analyzing the dynamics in a simi-
r way shown below. The response to this perturbation is
determined by accurately following the time evolution of the
electronic density, recording the dipole moment signal

Convergence is accelerated by using the technique of dire
inversion in iterative spacéDIIS).}” An important issue is
the number of sampling points. It can be shown that this is
determined by?
e D(t zefr r,t)dr. 13

N=ZOT+N,, (11) (W=e ) rort 19
_ _ _ For simplicity, let us examine the signal in the direction
where() is the largest temporal frequency in the electronicof the kick x (so-called parallel excitationsThe accurate
density, estimated as the largest eigenvalue of the Hamilipole signal in thex direction is composed of frequencies

tonian. The integeN, lies between 3 to 10, depending on the corresponding to the excitation energié®,,=E,— Egs,
required accurac}® given by

d(t):e(q,GSJe—ikieiﬁt;(e—iﬁteiki|q,65>
IIl. ELECTRONIC EXCITATIONS .
=e| Xog+ 2K [Xonl *Sin(@not) | +O(K?), (14
As a demonstration of the method, we apply it to the "
computation of electronic excitation energies of the alumi-whereex= ezr':‘qe:l)“(m is the electron dipole operator in the
num dimer. Recently, several authors have published sugtirection, andx,,= (¥ ,|X| ¥ g is the transition dipole ele-
cessful applications of linear response versions of TDLDA toment. Here, we designate by the exact electronic eigen-
compute excitation energie$;°yielding excitation energies  states. The LDA-based evolution yields an approximate di-
usually within a few electron volts of the experimental re-pole signal, and the ground-state excitations, and
sults. The idea of using TDLDA in real time for computing transition dipole magnitudes can thus be determined by Fou-
the eXC|tat|0n energies, without invoking linear responseier analyzing the signal. For a component of the sigi()
theory, was first put forward by Yabana and Bert&tfihis  f length 0<t<T;, define the following transform:
approach has been used in several studiegd.A slightly
different way of extracting the excitation energies from the

time-dependent signal is taken here. TABLE II. Cartesian coordinate@.u) of the atoms in the model molecular
wire. The number of valence electrons explicitly treated is also shown.

Atom X Y z Electrons
TABLE I. Low-lying vertical-parallel excitation energigsV) of Al, (at 5.3 —

bohr. The results are compared with experimental and other theoretical Asull %%% 720 1165 7;;12 1;
estimates. c1 0.00 051 ~1.34 4
Matrix ~ Absorption Emission H1 1.68 1.66 —164 1

(Ref. 26 (Ref. 29 (Ref. 27 Ref. 29 Ref. 30 TDLDA H2 —-1.68 1.66 —164 1

c2 0.00 -0.49 1.36 4

1 3Hg 1.86 repuls. 1.85 1.88 2.1 H3 1.68 —1.64 1.66 1
2311, 3.03 3.03 3.06 3.2 H4 —1.66 -1.64 1.66 1
E’ 3%, 3.48 3.49 3.57 3.6 S2 0.00 212 3.55 6

G3Il, 4.28 4.28 43 Au2 0.00 -0.13 7.48

[N
[
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20 au 40 au
0.02 t t t t t 0.02 t t } t i
0.0151 b 0.0151 E
0.011 E 0.014 3
= 0.005 3 = 0.005 E
[ [
a a
= 0 L = 0 P
[ [
< 0.005] 3 < .0.005 b
< <
-0.014 2 -0.013 b
-0.0154 E -0.0154 3
0.02 } t t } } -0.02 } } t t t
45 10 5 _ 0 5 10 15 15 -1 5 0 10 15
Z (Bohr) Z (Bohr)
100 au 200 au
0.02 } t + t t 0.02 t + t t t
0.0151 £ 0.0151 3
0.011 E 0.01] 3
5 0.005 3 5 00059 E FIG. 5. Temporal snapshots of the
% 0 b % 0 F linear charge density A\(zt)
S 00051 b S 00051 F =[[8p(r,t)dx dy, where &p(t)
< < =p(t)=p(0).
-0.014 £ 0.01] E
-0.0154 E -0.0154 3
-0.02 } t t } t -0.02 } t } t +
5 0 5 _ 0 5 10 15 45 10 5 _ 0 5 10 15
Z (Bohr) Z (Bohr)
400 au 800 au
0.02 t t t + t 0.02 t t t t +
0.0151 E 0.0151 3
0.011 b 0.014 E
= 0.005] £ £ 0.0053 3
[ Q
aQ Y 0] E
b} 0 3 o)
< 0.005] 3 < .0.005 E
< <
-0.01 2 -0.01 2
-0.0154 £ -0.0154 3
-0.02 } t t t + -0.02 t t t t t
A5 A 5 0 5 10 15 45 10 5 _ 0 5 10 15
Z (Bohr) Z (Bohr)
1 0 o s o B. Vertical-parallel excitations of Al
H(w)= —[(t—tg)20°] a—iwt _ ) )
(@) 2maek, 8 e Td)—d]at, We now apply this method and compute the Akcita-

(15)  tion spectrum. This system is a nontrivial test case because

long propagation times are needed for resolving the small

with t,=T;/2 and o<T; (thus, the integral limits can be €nergy differences. For comparison with experiment and

extended to infinity. Wheno and T are large, the compo- Other theoretical treatments, there are several sources,
nents of the spectrum are well resolved and nonoverlappingXperimenta 2" and theoreticad”~>°

and the functiorjl (w)| becomes The computation treats explicitly the 6 valence electrons,
where the wave functions are represented on a three-
largeo<T; dimensional grid spanning a cubic 220x20 bohf box.
()] — 2 |xno|?e (2o (@ wn)? (169  Core electrons are eliminated using a norm conserving
n

Troulier—Martin§! LDA-based pseudopotential, generated
by the FHI98PF? package.
The interpretation of the spectrufi(w)| is that each re- A spin-polarized time-independent LDA computation
solved peak corresponds to an excitation frequency and thgas first performed, for determining the ground-state density
peak height is related to the transition dipole moment, giverand properties. The common experimental and theoretical
by wisdom, that the Al ground state is all, state, was ascer-
tained. We then computed the ground-state energy curve of
|dnol?= €2[1 (7 @peai= Eno) | (17 Al, and performed a nuclear wave-packet computation, for
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0.02 | TABLE IIl. The resistance and capacitance of the MW as determined by the
0 D A RC model from theab initio data for various grid spacingsX) and box
; YN /\/ \ dimensions (1% 12X Lz bohP).
0.015 s e
IMANL A i RO ¥
=) ;ﬂ“’\/\ | AN e ] (bohn) (bohn (a.u) (k) (1002 F)
© / ————f .
; 0.01 7 : %/\/ R A 28 0.50 10.1 50.0 0.5
\d’ ) B B 28 0.40 10.0 55.0 0.5
Y, C 28 0.33 10.0 55.0 0.5
0.005 [/ _— D 32 0.40 12.6 51.0 0.6
0 i
0 50 _ 100 150
Time (au)

geometry, on the potential difference, and on the molecule
H 34,35 H H

FIG. 6. The charge transferred from the right part to the left part of theltself' Theoretical treatmemsﬁgf this system ar,e mOStly

molecule as a function of time. Shown, the calculated transi@gnt®) and b_ased on the Landauer express msually ma_-de within a

the RG-circuit transient(E) discussed in the text. The latter is fitted to the single  electron  approximation neglecting electron

data of curves C and D. The grid parameters for the A-D transients arggrrelation®’:38 With TDLDA, one can treat the system at an

given in Table il ab initio level considering electron correlation.

As an illustration, we take a simplified MW. Each elec-

determining the vibrational spectroscopic properties. We findrOOIe is modeled_ by a single gold atom, and '_[he ethylene
that in thev =0 vibrational state, the Albond length isk ~ molecule (GH,) is connected to each lead via a sulfur

=2.81 A and the 0-1 vibrational transition energy is 238 atom?_ (Se? Fig. 4. The coordinates .Of the atoms in the MW
1 are given in Table Il. The molecule is placed in a rectangular

cm ~. As is common with LDA, when compared to I led b id of ) ; h di ;
experimerf® and recentb initio computationS? the bond €l sampled by a grid of spacingk (in each dimension
Starting with the ground state density &0 a.u., an

length is overestimated, with a discrepancy of 0.07 A. The L . S0
LDA vibrational frequency is underestimatéoly 40 cm 2). e'eCF”C field d|recte.d alpng the Au—.Au axthe z-axis), is
With the ground-state density at hand, the TDDFT Com_apphe.d. The potential difference is linear along the molecu-
putation is carried out. The time step wds=0.1 a.u., lar wire, and forced to zero'be.yond the gold e}toms. The
sampled withN=6 Chebyshev points. The high accuracy dynarmics of th_e charge dens_lty Is then f°'_'°W‘3d in time.
and stability of the numerical evolution method is evident. The behavior of the densily as a function O.f time can be
from an inspection of Fig. 1, where it is seen that the relativénf_erreOI from_ the_ snapshots of the linear density alongzthe
numerical error(as estimated from violation of energy and axis, shown N F'_g' 5. . S
charge conservationis small and its accumulation rate is _BY @ partial integration of the charge distribution, the
sublinear in time. total chargeQ transferred from the left part of the molecule

The dipole signal yields an excitation spectrum as shown’(z.<o) 10 its right part ¢>0) is determined, as shown in
in Fig. 2, for a dimer separation d®=5.5 bohr. The re- F]g. .6' IF IS seen that after a fast .C“"’?rge transfer, the charge
solved lines are Gaussian in shape with height indicative ofJIStrlbutIOI’l continues to oscillate " time. .
the transition dipole momerisee Eq.(17)]. Repeating the We now construct a moqlel to interpret these transients,
computation for several bond lengths, it is possible to obtaire‘S a result of the initial applied potential differeng, an

adiabatic potential curves as shown in Fig. 3 and compareamount of charg&(t) is transferred by time from the left

to the corresponding computations of Ref. 30. In Table |, Jo the right atom. A counter electric field is then formed so

comparison of the vertical excitation energies with theoreti-,that. the ttc))tal potential difference between the two electrodes
cal and experimental data is made. It is seen that for thés 91ven by
lower transitions, the excitation energies are large by 0.1-0.2  V(t)=V,—C 1Q(t), (18)

eV, when compared to the relevant experiments. : . . .
whereC is an effective capacitance of the molecular wire.

Assuming an effective resistané® the current at time is

IV. ELECTRON DYNAMICS IN A MOLECULAR WIRE given by

The real-time approach to time-dependent density func-  R|(t)=V(t). (19

tional theory opens new venues to handling problems where

electron dynamics and correlation is important. For example=duations18) and(19) lead to a differential equation for the

the method is applied to a molecular wire. Molecularchargeq(t)'. This equation is identical to that of aRC
wires3% (MW) are essential building blocks of molecular ¢!t yielding a transferred charge of

size electronic devices. In the simplest form, they consist of  Q(t)=CV,(1—e YRS, (20

a molecule connected to two metallic leads. When the leads - - .
X . . The initial potential difference between the gold atoms is
are placed under a potential difference, an instantaneous ,. o -
. estimated from the electric field strength and their distance
electric current forms where electrons are transferred from

one lead to the other, presumably through the molecule. Th%Icmg thez axis

conductance of the MW depends in a complex way on the  Vo=E(Zay1—Zau2)=0.41V. (21
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By fitting the signal of Eq(20) to the observed signdkee center in the Hebrew University of Jerusalem and the High
Fig. 6), one can determine the resistance %D &nd capaci- Performance Computing Unit of the Inter University Com-
tance 2< 10 2° F of the MW. These results were found to be putation Center of Israel.

reasonably stable against change of grid spacing and box

length, as shown in Table Ill. We should note that the charge

transfer results are highly converged with respect to gridAPPENDIX
spacing atox=0.4 a.u. This is seen clearly in Fig. 6, where

curves B and C are practically indistinguishable. The conver-  The choice of theN sampling pointst,, within a time
gence of the transients with cell size is slower, although thenterval [0,T] and the interpolating function®,(t) (n,m
resistance and capacitance results are only slightly insensi=0, .. N—1), for interpolating a time-dependent function
tive. f(t) [using Eq.(6)], is now discussed. The sampling points

The calculated value of the resistance of a moleculagnd functions are connected by the interpolation property
wire is substantially smaller than that normally calculated for

such structuregusing Landauer formulasThis is because Qm(tn) = nm. (A1)
the resistance of a molecular fragment when it is adsorbed on A correct choice of the interpolation points is crucial for
a metal iS ﬁXed not Only by the m0|ecu|e |tse|f but aISO bythe aCCuracy and efﬁciency Of the method_

the density of states in the metal. The methodology devel-  Tne starting point of our reasoning is the possibility of
oped here can in _principle be applied to a larger portion Ofapproximating a time-dependent functiof(t) using a

the metal, by adding more gold atoms. Such a procedure ighepyshev polynomial expansion. For this purpose, let us
conceptually simple, but very costly in terms of computa- yofine a functionf (x) = f((x+1)(T/2)) on the intervalx

tional resources. ; -
—1,1], and write the expansion #s
By changing the box sizke, and the grid spacingx, the el | P

sensitivity of the results to these parameters can be assessed. _ - N1

It is seen in Fig. 6 and Table Il that the results are converged  f(X)=~fn(X)= kZO FkCk(X). (A2)

to high accuracy wheax= 0.4 bohr. Convergence with box

size is slower but still seems reasonable. Here, C(x) is the kth Chebyshev polynomial, obeying the
following recursion relations®

V. SUMMARY Cis1=2XCy—Cy_1, Co=1, C1=X, (A3)

We have presented an accurate nonlinear time evolutiog,,q
scheme based on Chebyshev interpolation in the time do-
main. The equation set up is an implicit integral equation. 2=y (1 7(x)Ck(x)
The implicit nature of the method is prerequisite for a stable Fi= - ﬁl JIx2 dx,
evolution. The solution of the nonlinear implicit equations is
greatly accelerated by a DSscheme. because the Chebyshev polynomials constitute an orthogonal
In principle, the time step$ can be large; however, the family over the interval
number of sampling points is proportional To(see the Ap-
pendix for a discussionso that a very large value df is 2 [ Ca(X)Cr(X) dx=38. (14 8.0) (A5)
. . i . — %mm no/-
penalized by increased memory demands. The iterations are 7J-1 /1—x2
harder to converge for very large time steps. We find a well-
balanced methodin terms of memory vs time stg¢fps one
where the number of sampling points is low—arouve 5
toN=10. o , max | f(x) — fy(x)| = [Flmax|Cy(x)|<[Fnl.  (AB)
The high accuracy and reliability of the method is pre- ) _ o
requisite for studying elaborate dynamical electronic pro-FOr Smooth functions, takinly to infinity causes the expan-
cesses, such as sub-femtosecond spectroscopy and varigi@" to converge unlform_ly to the fgnctlon over the interval.
charge transfer processes. The merits of the method wefk Can be proved that this expansi¢Bgs. (A2) and (A4)]
demonstrated by computing adiabatic potential energ)l/ead§ to the bestgcor?vergmg polynom|al approximation in the
curves of Ab. We have demonstrated that this approach enMaximum nornt Thl?\l result |sNrelated to the fact that of all
ables studying complicated time-dependent electronic propquno_nsllalspN(.x)=x tay- X7 T+ - +3ag, the polyno-
cesses in systems such as molecular wires. Work in this dial 2 "Cn(X) is the smallestmaximum norm-wisgin the

rection will be undertaken in future studies. interval[-1,1]. o _
The intermediate conclusion is, that this procedure for

approximating functions is a “best-fit technique.” We now
add to this fact the concept of the Gaussian quadrature, also

The authors thank R. Kosloff for comments and stimu-called “quadrature of the highest degree of algebraic
lating discussions. This research was supported by Grant Nerecision.”° This technique is applied to the integrals that
9800108 from the United States—Israel Binational Sciencelefine the expansion coefficients. The Gaussian quadrature
Foundation(BSF), Jerusalem, Israel. We gratefully acknowl- theory implies that the following rank- quadrature rule is
edge the use of computational resources at the Fritz Habexact for all polynomials of degreeN2—1:4

(A4)

The maximal error committed in truncating the expan-
sion afterN terms can be bound&d

ACKNOWLEDGMENTS
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1 p(x) o Nt representing. This is what makes the integral equation evo-
J 2dx~ N Z P(Xn), (A7) lution scheme above possible. Howevrmust be chosen
“1y1=x n=0 large enough to ensure that the aliasing errors introduced by
where the pointx,, areN roots of theNth Chebyshev poly- the discrete sampling are so small that their accumulation is
nomial Cy(X), given explicitly by slow. We show in another publicatibithe detailed consid-

erations one makes in determining the numReHere, we
(A8) just quote the result

- S(w(n+(1/2)
Xp=—C0§ ——

), n=0,1,..N—1.

We first apply the Gaussian quadrature to the orthogonal N=EQT+ N,, (A16)
relations of the Chebyshev polynomiisg. (A5)], obtaining 4

a discretized orthogonal relation of ordex< N
No1 where(} is the largestin absolute valugeigenvalue of the

N Hamiltonian, T is the length of the interval, anl, is an
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