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A method for ab initio nonlinear electron-density evolution
Roi Baera) and Recca Gould
Department of Physical Chemistry and The Lise Meitner Minerva-Center for Quantum Chemistry,
The Hebrew University of Jerusalem, Jerusalem 91904, Israel

~Received 15 August 2000; accepted 1 December 2000!

A numerical method is given for effecting nonlinear local density functional evolution. Within a
given time interval, Chebyshev quadrature points are used to sample the evolving orbitals. An
implicit equation coupling wave functions at the different time points is then set up. The equation
is solved iteratively using the ‘‘direct inversion in iterative space’’ acceleration technique. Spatially,
the orbitals are represented on a Fourier grid combined with soft pseudopotentials. The method is
first applied to the computation of the3Pg adiabatic potential energy curves of Al2 . Next, the
electronic dynamics of a toy molecular wire is studied. The wire consists of a C2H4 molecule
connected via sulfur atoms to two gold atoms, the ‘‘electrodes.’’ The molecule is placed in a
homogeneous electric field and a dynamical process of charge transfer is observed. By comparing
the transient with that of a resistance-capacitance circuit, an effective Ohmic resistance and
capacitance is estimated for the system. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1342761#

I. INTRODUCTION

A fundamental problem of theoretical chemistry is to
accurately account for the dynamics of electrons and nuclei
in molecules. This challenge is beyond the reach of present
computational capabilities, so simplifying approximations
must be made. The fact that nuclei are thousands of times
heavier than electrons is exploited and the dynamics of the
two entities are thus treated separately. We focus in this ar-
ticle on the fast electron dynamics.

Even with fixed nuclei, exerting a stationary potential
VN on the electrons, it is impractical to demand a detailed
description of the electronic motion. Instead, a reduced ac-
count is adopted, limited to the study of the evolution of the
one-electron density. The time-dependent density functional
theory ~TDDFT!, developed by Runge and Gross,1 is a gen-
eral framework with which this is achieved. In TDDFT,
within a Kohn–Sham2 approach, the time-dependent electron
density is written as

r~r ,t !5 (
n51

Ne

ucn~r ,t !u2, ~1!

whereNe is the number of electrons. The evolution of theNe

single electron Kohn–Sham~KS! orbitals cn(r ,t) is deter-
mined by a time-dependent variational principle applied to
the KS energy

E$cn%5 (
n51

Ne

^cnuKucn&1 (
n51

Ne

^cnuVNucn&

1
e2

2 E E r~r 8,t !r~r ,t !

ur2r 8u
d3r 8 d3r 1Exc$r%. ~2!

Here, the first term is the kinetic energy of noninteracting
electrons in the KS orbitals; the second is the corresponding
energy of electron–nuclei interaction. The third term is the
direct Coulomb repulsion energy of the densityr(r ,t). Fi-
nally, the last term, also a functional ofr(r ,t), accounts for
all the residual many-body energetics, such as exchange and
correlation. This leads to the following set ofNe equations of
motion for the Kohn–Sham orbitals:

i\
]cn~r ,t !

]t
5H~c~r ,t !!cn~r ,t !, n51, . . . ,Ne , ~3!

where the Hamiltonian operator is dependent on the KS or-
bitals. Within the local density approximation,2 the exchange
correlation takes a simple form,E5*r«(r)d3r and one can
write the Hamiltonian of the electronic system as

H52
\2

2me
¹21VN~r !1e2E r~r 8!

ur2r 8u
d3r 81Vxc~r~r !!,

~4!

whereVxc(r)5«(r)1r«8(r). Equations~3! and~4! consti-
tute a set of nonlinearly coupled Schro¨dinger-type equations.

This paper develops a method for computing the nonlin-
ear evolution of an initial KS orbital configuration in time.
The nonlinearity of the equations makes a solution consider-
ably more difficult than the case of linear evolution.

A numerical scheme for solving the nonlinear Schro¨-
dinger equation must simultaneously address time evolution
and spatial representation of the wave functions and opera-
tors. These two topics are interrelated and should be applied
in a balanced way. When global methods such as Fourier-
grid or plane waves3 are applied for the spatial representa-
tion, a matching high-precision time evolution method must
follow. The usual differential equation methods, such as
adaptive Runge–Kutta, and Adams–Bashforth–Moulton
predictor–corrector schemes~see Ref. 4 for discussion!, asa!Electronic mail: roib@fh.huji.ac.il
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well as more recent and specialized techniques4–6 are low
order in time step. Using these methods within a high-quality
spatial representation leads to an unbalanced overall treat-
ment. This problem was recognized by Miyamotoet al., who
recently developed a high-order split operator method for
treating this problem.7

An example of a global evolution method, a perfect
match for the high-quality spatial representation of the Fou-
rier grid,8 is the method of Kosloff.9 However, this approach
is limited to thelinear Schrödinger equation because it ex-
ploits the closed form of the evolution operator,c(t)
5e2 iHt /\f, which is expanded by a series of Chebyshev
polynomials. Via thet2t8 formalism10–12or a Lanczos sub-
space propagation,13,14 the Kosloff method was extended to
time-dependent Hamiltonians. However, these extensions
still rely on the linearity of the basic equations.

The evolution method we present below also exploits the
power of Chebyshev polynomials. However, here it is done
in such a way that a closed form for the evolution operator is
not needed so that nonlinear and explicitly time-dependent
Hamiltonians can be treated. We achieve this by performing
the Chebyshev interpolationin the time domaininstead of
the energy domain, as effectively done in the Kosloff
method.3 This alternative treatment is flexible enough to treat
both time dependent and nonlinear Hamiltonians.

The approach is based on a recently published nonlinear
solver for the Gross–Pitaevskii equations describing the
mean-field dynamics of Bose Einstein condensates.15 It is in
some ways similar to the well-known Adams–Moulton
~AM ! method,16 but is critically different in two aspects. The
AM method relies onextrapolationand uses equally spaced
points in the time domain. Contrariwise, the method pre-
sented here relies oninterpolationand uses Chebyshev sam-
pling points in the time domain. These differences allow the
achievement of highly accurate results.

The fundamentals of the method are explained in Sec. II.
In Secs. III and IV, its capabilities are demonstrated by com-
puting the excitation energies of triplet Al2 followed by an
application to a molecular wire model.

II. METHOD

The following integral equation is equivalent to the time-
dependent Schro¨dinger equation@Eq. ~3!#:

cn~ t !5fn2 i\21E
0

t

Ĥ~$c~t!%,t!cn~t!dt. ~5!

A global representation for time dependence within a given
interval @0,T# is now constructed

cn~ t !5 (
k50

N21

cn~ tk!Qk~ t !, ~6!

where theN sampling pointstk and interpolation functions
Qk(t) are independent ofcn(t). Plugging this into Eq.~5!,
one can write

cn~ tm!5f2 i
T

\ (
l 50

N21

Ĥ~c~ t l !,t l !cn~ t l !I lm , ~7!

where

I lm5
1

TE0

t l
Qm~t!dt. ~8!

Equation ~7! is an implicit equation on the values of the
wave function at the set of discrete points. Once this equa-
tion is solved, the values at the sampling points are used to
represent the entire time dependence via Eq.~6!.

The N sampling pointstn are chosen as Chebyshev
quadrature points. Thus, the interval@0,T# is mapped to the
interval @21,1# by x5(2t/T)21 and the sampling points
are the roots of the Chebyshev polynomial of orderN

tn5T~11xn!/2, n50,1, . . . ,N21, ~9!

wherexn are defined in the Appendix@Eq. ~A8!#, where a
more complete account of the details of the theory, including
an explicit form for the functionsQn(t), is given.

The implicit Eq. ~7! is solved by settingcn
0(t l)

5e2 iHt l /\fn effected using Kosloff evolution,9 and then
performing the following iterations to convergence:

cL11~ tm!5f2 i
T

\ (
n50

N21

Ĥ~cL~ tn!,tn!cL~ tn!I nm . ~10!

FIG. 1. Numerical error vs propagation time for the Al2 computation. The
error is estimated from the relative deviance from energy and charge con-
servation.

FIG. 2. The dipole excitation spectrum of triplet Al2 by the time-dependent
LDA method. The transform parameters are:T53300 a.u.;s5525 a.u.;
to51650 a.u.
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Convergence is accelerated by using the technique of direct
inversion in iterative space~DIIS!.17 An important issue is
the number of sampling pointsN. It can be shown that this is
determined by15

N5
e

4
VT1Nr , ~11!

whereV is the largest temporal frequency in the electronic
density, estimated as the largest eigenvalue of the Hamil-
tonian. The integerNr lies between 3 to 10, depending on the
required accuracy.15

III. ELECTRONIC EXCITATIONS

As a demonstration of the method, we apply it to the
computation of electronic excitation energies of the alumi-
num dimer. Recently, several authors have published suc-
cessful applications of linear response versions of TDLDA to
compute excitation energies,18,19 yielding excitation energies
usually within a few electron volts of the experimental re-
sults. The idea of using TDLDA in real time for computing
the excitation energies, without invoking linear response
theory, was first put forward by Yabana and Bertsch.20 This
approach has been used in several studies.21–24 A slightly
different way of extracting the excitation energies from the
time-dependent signal is taken here.

A. Computing excitation energies

The ground-state density is perturbed by issuing a mo-
mentum kick to all orbitals20

cn~r !5eik•rcn
GS~r !'~11 ik"r !cn

GS~r !, ~12!

where k5uku is small. This excites only dipole-coupled
modes. Other modes can be excited by designing additional
types of perturbations, and analyzing the dynamics in a simi-
lar way shown below. The response to this perturbation is
determined by accurately following the time evolution of the
electronic density, recording the dipole moment signal

D~ t !5eE rr~r ,t !d3r . ~13!

For simplicity, let us examine the signal in the direction
of the kick x ~so-called parallel excitations!. The accurate
dipole signal in thex direction is composed of frequencies
corresponding to the excitation energies\vn05En2EGS,
given by

d~ t !5e^CGSue2 ikx̂eiĤ tx̂e2 iĤ teikx̂uCGS&

5eFx0012k(
n

ux0nu2sin~vn0t !G1O~k2!, ~14!

whereex̂5e(m51
Ne x̂m is the electron dipole operator in thex

direction, andxn05^Cnux̂uCGS& is the transition dipole ele-
ment. Here, we designate byC the exact electronic eigen-
states. The LDA-based evolution yields an approximate di-
pole signal, and the ground-state excitationsvn0 and
transition dipole magnitudes can thus be determined by Fou-
rier analyzing the signal. For a component of the signald(t)
of length 0,t,Tf , define the following transform:

TABLE I. Low-lying vertical-parallel excitation energies~eV! of Al2 ~at 5.3
bohr!. The results are compared with experimental and other theoretical
estimates.

Matrix
~Ref. 26!

Absorption
~Ref. 25!

Emission
~Ref. 27! Ref. 29 Ref. 30 TDLDA

1 3Pg 1.86 repuls. 1.85 1.88 2.1
2 3Pg 3.03 3.03 3.06 3.2
E8 33Pg 3.48 3.49 3.57 3.6
G 3Pg 4.28 4.28 4.3

FIG. 3. Adiabatic potential energy curves for Al2, computed by TDLDA.
The solid lines are the results of Ref. 30. The filled circles are the results of
the present computation~connected by dotted lines as guides to the eye!.

FIG. 4. A model molecular wire where the ethylene molecule is connected
via sulfur atoms to the leads, modeled as gold atoms.

TABLE II. Cartesian coordinates~a.u.! of the atoms in the model molecular
wire. The number of valence electrons explicitly treated is also shown.

Atom X Y Z Electrons

Au1 0.00 0.15 27.46 11
S1 0.00 22.10 23.53 6
C1 0.00 0.51 21.34 4
H1 1.68 1.66 21.64 1
H2 21.68 1.66 21.64 1
C2 0.00 20.49 1.36 4
H3 1.68 21.64 1.66 1
H4 21.66 21.64 1.66 1
S2 0.00 2.12 3.55 6

Au2 0.00 20.13 7.48 11
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I ~v!5
1

A2psekx
E

2`

`

e2@~ t2to)2/2s2#e2 ivt@d~ t !2d̄#dt,

~15!

with to5Tf /2 and s!Tf ~thus, the integral limits can be
extended to infinity!. Whens andTf are large, the compo-
nents of the spectrum are well resolved and nonoverlapping,
and the functionuI (v)u becomes

uI ~v!u →
larges!Tf

(
n

uxn0u2e2~1/2!s2~v2vn0!2
~16!

The interpretation of the spectrumuI (v)u is that each re-
solved peak corresponds to an excitation frequency and the
peak height is related to the transition dipole moment, given
by

udn0u25e2uI ~\vpeak5En0!u. ~17!

B. Vertical-parallel excitations of Al 2

We now apply this method and compute the Al2 excita-
tion spectrum. This system is a nontrivial test case because
long propagation times are needed for resolving the small
energy differences. For comparison with experiment and
other theoretical treatments, there are several sources,
experimental25–27 and theoretical.28–30

The computation treats explicitly the 6 valence electrons,
where the wave functions are represented on a three-
dimensional grid spanning a cubic 20320320 bohr3 box.
Core electrons are eliminated using a norm conserving
Troulier–Martins31 LDA-based pseudopotential, generated
by theFHI98PP32 package.

A spin-polarized time-independent LDA computation
was first performed, for determining the ground-state density
and properties. The common experimental and theoretical
wisdom, that the Al2 ground state is a3Pu state, was ascer-
tained. We then computed the ground-state energy curve of
Al2 and performed a nuclear wave-packet computation, for

FIG. 5. Temporal snapshots of the
linear charge density l(z,t)
5**dr(r ,t)dx dy, where dr(t)
5r(t)2r(0).
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determining the vibrational spectroscopic properties. We find
that in thev50 vibrational state, the Al2 bond length isR
52.81 Å and the 0→1 vibrational transition energy is 238
cm21. As is common with LDA, when compared to
experiment25 and recentab initio computations,30 the bond
length is overestimated, with a discrepancy of 0.07 Å. The
LDA vibrational frequency is underestimated~by 40 cm21!.

With the ground-state density at hand, the TDDFT com-
putation is carried out. The time step wasT50.1 a.u.,
sampled withN56 Chebyshev points. The high accuracy
and stability of the numerical evolution method is evident
from an inspection of Fig. 1, where it is seen that the relative
numerical error~as estimated from violation of energy and
charge conservation! is small and its accumulation rate is
sublinear in time.

The dipole signal yields an excitation spectrum as shown
in Fig. 2, for a dimer separation ofR55.5 bohr. The re-
solved lines are Gaussian in shape with height indicative of
the transition dipole moment@see Eq.~17!#. Repeating the
computation for several bond lengths, it is possible to obtain
adiabatic potential curves as shown in Fig. 3 and compared
to the corresponding computations of Ref. 30. In Table I, a
comparison of the vertical excitation energies with theoreti-
cal and experimental data is made. It is seen that for the
lower transitions, the excitation energies are large by 0.1–0.2
eV, when compared to the relevant experiments.

IV. ELECTRON DYNAMICS IN A MOLECULAR WIRE

The real-time approach to time-dependent density func-
tional theory opens new venues to handling problems where
electron dynamics and correlation is important. For example,
the method is applied to a molecular wire. Molecular
wires33,34 ~MW! are essential building blocks of molecular
size electronic devices. In the simplest form, they consist of
a molecule connected to two metallic leads. When the leads
are placed under a potential difference, an instantaneous
electric current forms where electrons are transferred from
one lead to the other, presumably through the molecule. The
conductance of the MW depends in a complex way on the

geometry, on the potential difference, and on the molecule
itself.34,35 Theoretical treatments of this system are mostly
based on the Landauer expression,36 usually made within a
single electron approximation neglecting electron
correlation.37,38With TDLDA, one can treat the system at an
ab initio level considering electron correlation.

As an illustration, we take a simplified MW. Each elec-
trode is modeled by a single gold atom, and the ethylene
molecule (C2H4) is connected to each lead via a sulfur
atom35 ~see Fig. 4!. The coordinates of the atoms in the MW
are given in Table II. The molecule is placed in a rectangular
cell sampled by a grid of spacingdx ~in each dimension!.

Starting with the ground state density att50 a.u., an
electric field directed along the Au–Au axis~the z-axis!, is
applied. The potential difference is linear along the molecu-
lar wire, and forced to zero beyond the gold atoms. The
dynamics of the charge density is then followed in time.

The behavior of the density as a function of time can be
inferred from the snapshots of the linear density along thez
axis, shown in Fig. 5.

By a partial integration of the charge distribution, the
total chargeQ transferred from the left part of the molecule
(z,0) to its right part (z.0) is determined, as shown in
Fig. 6. It is seen that after a fast charge transfer, the charge
distribution continues to oscillate in time.

We now construct a model to interpret these transients.
As a result of the initial applied potential differenceVo , an
amount of chargeQ(t) is transferred by timet from the left
to the right atom. A counter electric field is then formed so
that the total potential difference between the two electrodes
is given by

V~ t !5Vo2C21Q~ t !, ~18!

whereC is an effective capacitance of the molecular wire.
Assuming an effective resistanceR, the current at timet is
given by

RI~ t !5V~ t !. ~19!

Equations~18! and~19! lead to a differential equation for the
chargeQ(t). This equation is identical to that of anRC
circuit, yielding a transferred charge of

Q~ t !5CVo~12e2t/RC!. ~20!

The initial potential difference between the gold atoms is
estimated from the electric field strength and their distance
along thez axis

Vo5E~zAu12zAu2!50.41 V. ~21!

TABLE III. The resistance and capacitance of the MW as determined by the
RC model from theab initio data for various grid spacings (dx) and box
dimensions (123123Lz bohr3!.

Lz
~bohr!

dx
~bohr!

R•C
~a.u.!

R
~kV!

C
(10220 F!

A 28 0.50 10.1 50.0 0.5
B 28 0.40 10.0 55.0 0.5
C 28 0.33 10.0 55.0 0.5
D 32 0.40 12.6 51.0 0.6

FIG. 6. The charge transferred from the right part to the left part of the
molecule as a function of time. Shown, the calculated transients~A–D! and
the RC-circuit transient~E! discussed in the text. The latter is fitted to the
data of curves C and D. The grid parameters for the A–D transients are
given in Table III.
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By fitting the signal of Eq.~20! to the observed signal~see
Fig. 6!, one can determine the resistance 50 kV and capaci-
tance 2310220 F of the MW. These results were found to be
reasonably stable against change of grid spacing and box
length, as shown in Table III. We should note that the charge
transfer results are highly converged with respect to grid
spacing atdx50.4 a.u. This is seen clearly in Fig. 6, where
curves B and C are practically indistinguishable. The conver-
gence of the transients with cell size is slower, although the
resistance and capacitance results are only slightly insensi-
tive.

The calculated value of the resistance of a molecular
wire is substantially smaller than that normally calculated for
such structures~using Landauer formulas!. This is because
the resistance of a molecular fragment when it is adsorbed on
a metal is fixed not only by the molecule itself but also by
the density of states in the metal. The methodology devel-
oped here can in principle be applied to a larger portion of
the metal, by adding more gold atoms. Such a procedure is
conceptually simple, but very costly in terms of computa-
tional resources.

By changing the box sizeLz and the grid spacingdx, the
sensitivity of the results to these parameters can be assessed.
It is seen in Fig. 6 and Table III that the results are converged
to high accuracy whendx50.4 bohr. Convergence with box
size is slower but still seems reasonable.

V. SUMMARY

We have presented an accurate nonlinear time evolution
scheme based on Chebyshev interpolation in the time do-
main. The equation set up is an implicit integral equation.
The implicit nature of the method is prerequisite for a stable
evolution. The solution of the nonlinear implicit equations is
greatly accelerated by a DIIS17 scheme.

In principle, the time stepsT can be large; however, the
number of sampling points is proportional toT ~see the Ap-
pendix for a discussion! so that a very large value ofT is
penalized by increased memory demands. The iterations are
harder to converge for very large time steps. We find a well-
balanced method~in terms of memory vs time step! is one
where the number of sampling points is low—aroundN55
to N510.

The high accuracy and reliability of the method is pre-
requisite for studying elaborate dynamical electronic pro-
cesses, such as sub-femtosecond spectroscopy and various
charge transfer processes. The merits of the method were
demonstrated by computing adiabatic potential energy
curves of Al2 . We have demonstrated that this approach en-
ables studying complicated time-dependent electronic pro-
cesses in systems such as molecular wires. Work in this di-
rection will be undertaken in future studies.
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APPENDIX

The choice of theN sampling pointstn within a time
interval @0,T# and the interpolating functionsQm(t) (n,m
50,...,N21), for interpolating a time-dependent function
f (t) @using Eq.~6!#, is now discussed. The sampling points
and functions are connected by the interpolation property

Qm~ tn!5dnm . ~A1!

A correct choice of the interpolation points is crucial for
the accuracy and efficiency of the method.

The starting point of our reasoning is the possibility of
approximating a time-dependent functionf (t) using a
Chebyshev polynomial expansion. For this purpose, let us
define a functionf̃ (x)5 f ((x11)(T/2)) on the intervalx
P@21,1#, and write the expansion as39

f̃ ~x!' f̃ N~x!5 (
k50

N21

FkCk~x!. ~A2!

Here,Ck(x) is the kth Chebyshev polynomial, obeying the
following recursion relations:39

Ck1152xCk2Ck21 , C051, C15x, ~A3!

and

Fk5
22dk0

p E
21

1 f̃ ~x!Ck~x!

A12x2
dx, ~A4!

because the Chebyshev polynomials constitute an orthogonal
family over the interval

2

pE21

1 Cn~x!Cm~x!

A12x2
dx5dnm~11dn0!. ~A5!

The maximal error committed in truncating the expan-
sion afterN terms can be bounded39

maxxu f ~x!2 f N~x!u5uFNumaxxuCN~x!u<uFNu. ~A6!

For smooth functions, takingN to infinity causes the expan-
sion to converge uniformly to the function over the interval.
It can be proved that this expansion@Eqs. ~A2! and ~A4!#
leads to the best converging polynomial approximation in the
maximum norm.39 This result is related to the fact that of all
polynomialspN(x)5xN1aN21xN211•••1a0 , the polyno-
mial 22NCN(x) is the smallest~maximum norm-wise! in the
interval @21,1#.

The intermediate conclusion is, that this procedure for
approximating functions is a ‘‘best-fit technique.’’ We now
add to this fact the concept of the Gaussian quadrature, also
called ‘‘quadrature of the highest degree of algebraic
precision.’’40 This technique is applied to the integrals that
define the expansion coefficients. The Gaussian quadrature
theory implies that the following rank-N quadrature rule is
exact for all polynomials of degree 2N21:40
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E
21

1 p~x!

A12x2
dx'

p

N (
n50

N21

p~xn!, ~A7!

where the pointsxn areN roots of theNth Chebyshev poly-
nomial CN(x), given explicitly by

xn52cosS p~n1~1/2!

N D , n50,1,...,N21. ~A8!

We first apply the Gaussian quadrature to the orthogonal
relations of the Chebyshev polynomials@Eq. ~A5!#, obtaining
a discretized orthogonal relation of ordern,N

(
n50

N21

Ck~xn!Ck8~xn!5
N

22dk,0
dk,k8 . ~A9!

Next, we apply it to the integrals defining the expansion
coefficients, yielding the order-N discretized completeness
relation, of the Chebyshev polynomials39

(
k50

N21
22dk0

N
Ck~xn!Ck~xn8!5dn,n8 . ~A10!

This last equation directly connects with Eqs.~6! and ~A1!,
yielding the form ofQn(t)5Q̃n((2t/T)21), with

Q̃n~x!5 (
k50

N21
22dk0

N
Ck~xn!Ck~x!. ~A11!

Finally, plugging Eq.~A11! into Eq.~8! gives the integration
weights

I n~x!5 (
k50

N21
22dk0

2N
Ck~xn!Sk~x!, ~A12!

with

Sk~x!5E
21

x

Ck~x!dx. ~A13!

This integral can be evaluated analytically from the follow-
ing recursion, derivable from Chebyshev polynomial proper-
ties:

~k12!Sk1152~x221!Ck1~k22!Sk21 , ~A14!

and

S05x11, S15~x221!/2. ~A15!

Putting all the pieces together, using Chebyshev sampling
points @Eq. ~A8!#, together with sampling functionsQn(t)
@Eq. ~A11!# yields a representation which enjoys the follow-
ing virtues:

~1! Interpolative:Exact at the sampling points;
~2! Best fit (maximum norm-wise):thus, it must be highly

accuratebetweenthe sampling points too;
~3! Chebyshev efficiency:Enjoys the merit of being themost

efficientexpansion achieving the two goals above.

An important feature of this scheme is that it is global:
within a given numberN of sampling points, neither the
location of the sampling points nor the form of the interpo-
lation functionQn(t) is affected by the functionf (t) we are

representing. This is what makes the integral equation evo-
lution scheme above possible. However,N must be chosen
large enough to ensure that the aliasing errors introduced by
the discrete sampling are so small that their accumulation is
slow. We show in another publication15 the detailed consid-
erations one makes in determining the numberN. Here, we
just quote the result

N5
e

4
VT1Nr , ~A16!

whereV is the largest~in absolute value! eigenvalue of the
Hamiltonian,T is the length of the interval, andNr is an
additional number of points depending on the accuracy to be
achieved in the computation. For good accuracy (1e28 in
energy conservation per step! Nr55.
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