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Abstract

A method is developed to compute non-adiabatic couplings (NACs) between the electronically ground and excited

states of amolecule. Applying themethod to theHþH2 system, using the adiabatic local density approximation (ALDA),

yields very good results as long as the CI is not approached too closely. � 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The Born–Oppenheimer–Huang (BOH) ap-
proximation [1] forms a conceptual framework
and jargon with which we think about molecular
processes. It is motivated by the fact that nuclei are
thousands of times heavier than electrons. Within
this theory, electrons affect the nuclear dynamics
via two types of quantities: adiabatic potential
energy surfaces (PES)

enðRÞ ¼ wnjĤHejwn

D E
n ¼ 0; 1; . . . ; en 6 enþ1

ð1:1Þ
and non-adiabatic couplings (NACs)

sl
nm ¼ wnj@lwm

� �
; n;m ¼ 0; 1; 2; . . . ð1:2Þ

The latter quantities are important for detailed
understanding of certain classes of biological,
photochemical and other molecular processes. In

the above expressions, wn is a normalized eigen-
state of the electronic Hamiltonian ĤHeðRÞ ¼ T̂T þ
V̂V ðRÞ þ ÛU , respectively composed of: electronic
kinetic, electron–nuclear attraction and electron–
electron repulsion energies. Since the electronic
Hamiltonian depends on the position of the nuclei
R, so do the eigenfunctions wn and eigenenergies
en. The NACs of Eq. (1.2) are defined in terms of
the partial derivative @l � @=@Rl with respect to a
Cartesian nuclear coordinate Rl. The NACs have
several notable properties. For problems without
spin–orbit interactions sl can be considered a real
antisymmetric matrix. The sign of sl

nm is arbitrary,
although the signs of different components, for
example, sl

01 and sm
01 are related. The Hellmann–

Feynman theorem holds

sl
nm ¼

wnj@lĤHejwm

D E
em � en

; ð1:3Þ

showing that the approximation, of neglecting
NACs, is invalid especially in regions where en
approaches em.
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In recent years, there is a growing experimental
and theoretical interest in the effects of non-adia-
batic interactions in the presence of conical inter-
sections (CIs) [2–12]. One important conclusion is
that a quantitative description of many molecular
processes depends on the availability of accurate
NACs. These quantities are readily accessible
when the electronic structure of the system is an-
alyzed in terms of the electronic wavefunctions.
Electronic structure methods that construct the
electronic wavefunction can supply the NACs via
analytical derivative methods [13]. These ap-
proaches however are limited to small or medium
sized systems because the electronic wavefunctions
become exceedingly complicated as the number of
electrons grows.

The Kohn–Sham density functional theory [14]
(DFT) is a method to compute the ground potential
surfaces of very large systems. It can do so because it
completely alleviates explicit construction of the
electronic wavefunction. Runge and Gross [15] ex-
tended the scope of DFT to time-dependent elec-
tronic processes, making excited electronic states
accessible. Indeed, the resulting time-dependent
density functional theory (TDDFT) is evolving to
be the method of choice for studying excited elec-
tronic states of large molecules [16–23].

Despite the great success in computing adia-
batic PES’s the applicability of TDDFT to non-
adiabatic couplings has been scarcely investigated.
Chernyak et al. [24] have given closed expressions
for the NACs in adiabatic and non-adiabatic ver-
sions of TDDFT. But to our knowledge, there has
not yet been any attempt to actually compute via
TDDFT the NACs for a specific molecular system,
thus there is no experience as to the quality of such
a calculation.

In this Letter we develop a method of com-
puting NACs to the groundstate, namely sl

0;n based
on real-time density functional theory. In several
aspects it is similar to the method of Chernyak et
al. [24], for example, it invokes linear response
theory. It is different in the choice of the perturb-
ing operator, the use of real-time TDDFT, and the
method of extracting the NACs from the resulting
calculation. We apply the method to HþH2, the
benchmark system for assessing the effects of a CI
on reactive scattering [9,25,26].

The structure of the paper is as follows. The
theory is developed in Section 2. The application
to the molecular system is shown in Section 3
summarizing in Section 4.

2. Theory

2.1. The basic approach

We first perturb the system with a weak short
time-dependent pulse. The response of the system
is thus linear with pulse strength. Usually in such a
circumstance, first-order perturbation theory is
used, together with known matrix elements of the
perturbing operator to compute the response of
the system. We make the theory work in reverse:
the exact response of the system is determined di-
rectly by the time-dependent Kohn–Sham equa-
tions and the resulting signals are then analyzed
using first-order perturbation theory to obtain
matrix elements.

2.2. Details of the method

The field we use couples to the system through
some observable of the form p̂p ¼

PNe
q¼1 pðrqÞ where

Ne is the number of electrons, thus the Hamilto-
nian controlling the time-dependent evolution of
the electrons is

ĤHðtÞ ¼ ĤHe þ gf ðtÞp̂p: ð2:1Þ
Here g is the field strength and f ðtÞ is a pulse of

duration T

f ðtÞ ¼ e
�ðt�T0Þ

2

2T 2 : ð2:2Þ

A convenient choice for the perturbing operator
p̂p is a component of the dipole operator, for ex-
ample: pðrÞ ¼ ez. Other observables may be used
as well, the requirement is that p̂p have non-van-
ishing matrix elements pn0 ¼ hwnjp̂pjw0i, where wn –
the coupled electronic state and w0 is the ground
electronic state.

The perturbation drives the system into motion
resulting in a time-dependent wavefunction wðtÞ.
Soon, the external field dies out but the motion it
stirred up remains. Suppose now we ‘measure’ the
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time-dependent expectation value of another op-
erator, say ŶY ¼

PNe
n¼1 yðrnÞ. Using linear response

theory as [27], the signal DY ðtÞ ¼ hwðtÞjŶY jwðtÞi
�Y00 of this operator can be written as

DY ðtÞ ¼ g
i�h

Z 1

0

f ðt � sÞ ŶY ðsÞ; p̂p
h i

00
ds; ð2:3Þ

where ŶY ðsÞ ¼ eiĤHesŶY e�iĤHes. Expanding Eq. (2.3) in
eigenstates of He and performing the integral yields
for t � T

DY ðtÞ ¼ 2g
�h
Im

X
n

Y0npn0e
�ixn0tfxn0 ; ð2:4Þ

where xn0 ¼ en � e0 are the excitation energies
above the groundstate, Y0n ¼ hw0jŶY jwni, pn0 ¼
hwnjp̂pjw0i and fx ¼

ffiffiffiffiffiffi
2p

p
T e�ixT0e�

T2x2

2 is the Fourier
transform of f ðtÞ.

Now, assume we have computed, using
TDDFT, the signal DY ðtÞ ¼

R
½qðr; tÞ � qgs�yðrÞd3r,

of length 2Tf . Let D~YY ðxÞ be the windowed Fourier
transform of DY ðtÞ:

D~YY ðxÞ ¼
Z 1

�1
eixte

�
ðt�Tf Þ2

2r2 DY ðtÞdt; ð2:5Þ

where r ¼ Tf=2p. Assuming the electronic Hamil-
tonian and the operators Y ðrÞpðrÞ are real, it is
straightforward to show that for x in the vicinity
of xn0

D~YY ðxÞ � Qðx;xn0ÞY0npn0; ð2:6Þ
where

Qðx;xn0Þ ¼
2pgTr
i�h

e�
T 2x2

n0
2 e�

r2ðx�xn0Þ2
2 e�ixn0T0eiðx�xn0ÞTf :

ð2:7Þ

This relation becomes exact in the limit of a
long signal (r ! 1). We can now apply Eq. (2.6)
twice. Once, taking ŶY ¼ p̂p, D~ppðxÞ ¼ Qðx;xn0Þjpn0j2
and twice taking for ŶY the nuclear force: yðrÞ ¼
FlðrÞ ¼ �@lV ðrÞ. From Eq. (2.3) D ~FFlðxÞ=xn0 ¼
�Qðx;xn0Þsl

0npn0, which upon squaring and di-
viding by D~ppðxÞ yields:

sl
0n

�� ��2 ¼ D ~FFlðxÞ
���

���2
x2

n0Qðx;xn0Þ�D~ppðxÞ : ð2:8Þ

Eq. (2.8) is the central formula for determining
the non-adiabatic coupling of excited states to the

groundstate. One can determine x accurately by
searching for an appropriate value that renders
jsl

0nj
2
real. We summarize the procedure in the

following algorithm:
Algorithm: (1) Compute the groundstate den-

sity of the molecule q0ðrÞ (using DFT). (2) Starting
from qð0Þ ¼ q0, solve [28,29] the time-dependent
Kohn–Sham equations [15] based on the Hamil-
tonian of Eq. (1.1). (3) Compute the dipole com-
ponent pðtÞ ¼ e

R
xqðr; tÞd3r and the nuclear force

FlðtÞ ¼ �qðr; tÞoVlðrÞd3r. (4) Fourier transform
DpðtÞ and DFlðtÞ (Eq. (2.5)) to D~ppðxÞ and D ~FFlðxÞ.
For sufficiently long time signals, the peaks in the
spectra are well resolved, Gaussian shaped near an
excitation frequency. This allows the determina-
tion of the excitation energy x0n in a manner that
Eq. (2.8) yields a purely real quantity obtaining the
corresponding NAC sl

n0.

3. Applications to equilateral H þH2

We apply the method to the HþH2 system,
using the adiabatic local density approximation
(ALDA) [30] within the TDDFT approach. Our
calculation is performed using a plane waves ba-
sis and Troullier–Martins norm conserving
pseudopotentials for the H-atoms [31]. A local
spin-density functional with the correlation func-
tional of Perdew and Wang [32] was used. Time
propagation method is the Chebyshev collocation
approach developed recently [28,33]. The values of
all parameters of the calculation are summarized
in Table 1.

The results are compared with previously pub-
lished work [3,34,35]. In Fig. 1 we present the re-
sults of two in-plane components of the NACs on
the second atom for fixed hyper-spherical coordi-
nates q ¼ 2:5 a0 and / ¼ 120�, as a function of h
(here, we refer the reader to [3] for explanation of
the coordinates nomenclature). For h > 1 the
agreement between the two calculations is quan-
titatively good. The energetics is also very close.
However, as the conical intersection is approached
further, agreement quickly degrades. This is seen
first also when considering the adiabatic potential
energy curve on the same path in Fig. 2. We could
not find a true crossing within the ALDA calcu-
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lation. This could be a result of the well known
inadequacy of ALDA to describe near degenera-
cies.

Next, we compare with the DMBE results[35]
along the path depicted in Fig. 3. The TDDFT z-
Cartesian component of the NACs are shown in
Fig. 4 along with those calculated by the DMBE
method [35]. The two sets of results are in quali-
tative agreement. However, the present results
decay considerably slower while receding from the
CI and they are less peaked near the CI. The slow
decay is a deficiency of the DMBE method, as
indicated by Abrol et al. [3]. Yet the disagreement

Fig. 1. The Cartesian components of the NACs on the second

atom as a function of the hyper-spherical angle h, computed

using TDDFT (empty circles) and by Abrol et al. [3] (filled

circles). The agreement is good for h > 1. For h < 1 (not

shown) ALDA rapidly looses accuracy.

Fig. 2. The two adiabatic potential energy curves, as a function

of the hyper-spherical angle h, computed by DFT/TDDFT

(empty circles) and by Abrol et al. [3] (filled circles). For h > 1

the agreement is very good. However, as the CI is approached

even closer the ALDA results fail to show the crossing.

Table 1

Parameters of the calculations and their values

Parameter Definition Symbol Value

Grid length L 16 ao
Grid spacing Dx 0.5 ao
Ha–Hb distance (Fig. 3) R 1:4 ao
Path angle (Fig. 3) n 1�
Hyper-radius q 2:5 ao
Hyper-angle / 120�
Pulse duration Eq. (2.2) T 7 a.u.

Pulse center Eq. (2.2) T0 20 a.u.

Pulse strength Eq. (2.1) g 1� 10�5 a:u:

Fourier-window Eq. (2.5) r 1� 103 a:u:

Fig. 3. The setup of the HþH2 system. See text for details.

Fig. 4. The z component of the NAC along the path depicted in

Fig. 3. Superimposed, as filled circles, the DMBE results [35].
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close to the CI is again an indication that ALDA is
inadequate near the CI.

We conclude from these results that the NACs
can be calculated to good accuracy as long as the
conical intersection is not approached too closely.
It is not yet clear why the ALDA results degrade
near the conical intersection. It is known however
that LDA and ALDA cannot always handle near
degeneracies well and this may certainly be the
problem. Further work needs to be invested in
order to study this problem.

4. Summary

A method was developed to compute the NACs
between the ground and excited states from time-
dependent density functional theory, formulated in
real time. We have tested the method on the con-
ical intersection of the reactive H3 system, using
the adiabatic local density approximation. We
compared our results with those of Abrol et al. [3]
and those of Varandas et al. [3]. We find that as
long as the conical intersection is not too closely
approached, the NACs are well characterized by
ALDA. Closer to the degeneracy the calculation of
the energy separation, as well as the NACs fail.
The reason for this is probably the known inade-
quacy of LDA and ALDA near electronic degen-
eracies.
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