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Born—Oppenheimer invariants along nuclear configuration paths

Roi Baer?
Department of Physical Chemistry and the Lise Meitner Minerva Center for Quantum Chemistry,
The Hebrew University of Jerusalem, Jerusalem 91904, Israel

(Received 3 April 2002; accepted 29 August 2D02

Whenever a quantum chemist extracts the eigenstate of an electronic Hamiltonian, he makes,
consciously or not, a decision concerning the phase of the wave function. This is done for each
calculated state at each nuclear position. Thus he defines a Born—Oppenti®nerame of
reference. There is no absolute phase just as there is no absolute position or time in mechanics. This
leads naturally to the question: What are the quantities which do not depend on the arbitrary phases,
i.e., what are the BO invariants? In this article we identify BO invariants with respect to an arbitrary
path in nuclear configuration space. We identify invariant electronic states along these paths and
their Aharonov—Anandan geometric phases. For closed loops not passing through electronic energy
degeneracies these invariant states are the BO adiabatic wave functions and the phases are the Berry
phases. The results establish rigorous relations between the full nonadiabatic couplings matrix and
the geometric phases. ®002 American Institute of Physic§DOI: 10.1063/1.1515768

I. INTRODUCTION derlying structure and the generality of this phenomenon.
The actual effects of Berry phases on chemical molecular
Molecules are composed of light electrons and heavyprocesses are described and debated in recent litefatdre.
nuclei. Exploiting this fact, by adopting a quantum mechani-  This article aims to establish the connection between the
cal basis, which simplifies when nuclei are frozen, is calledrequently used NACs and the geometric invariant phases.
the Born—OppenheiméBO) picture? It introduces two ba- Starting from a basic practical observation concerning the
sic concepts: the adiabatialso called BQ potential surfaces behavior of the NACs along an arbitrary path in nuclear con-
and the nonadiabatic couplinsACs). The BOapproxima-  figuration space, we find a set of electronic states which have
tion assumes that the NACs are negligiblEhis greatly sim- simple path—transport properti€Sec. I). These states are
plifies the mathematical treatment of molecular wave functhen associated to invariant phases which are subsequently
tions and results in the appealing picture depicting moleculaconnected to the Aharonov—Anandan thebhy.the case of
dynamics as the motion of nuclei under a potential. The BQoops that do not pass through electronic degeneracies these
approximation is frequently accurate enough to allow thestates are the adiabatic states and the phases are the Berry
detailed understanding and prediction of molecular properphase% (Sec. ll). After examining an exampléSec. V),
ties and processes. involving a nonreal Hamiltonian we finalize by a short dis-
For a large class of chemically interesting processes, theussion of the possible implications these results have on
usual BO approximation, leads however to gross qualitativeruncating the Born—Oppenheimer approximati&ec. \j.
errors. These are typically classified asnadiabatic pro-
cessesand include for example, most of the photochemical

reactions in nat_ure. Here one mL_Jst cpn5|der_the effects ql BORN—OPPENHEIMER PATH INVARIANTS
several electronic states so nonadiabatic couplings and some-

times several adiabatic surfaces must be addressed. Suppose a quantum chemist calculates the eigenstates
Several interesting discoveries made over the years cony 1's] and eigenenergies,[s] of the electronic Hamiltonian
cerning the BO picture had important ramifications on theHe[s] of a given molecule. This calculation is repeated for
application of nonadiabatic dynamics. Longuet-Higgirss | nuclear configurations along a path in nuclear configura-
vealed an interesting property of the BO picture: When a reajigp, spaceR(s) parametrized by a real number(Later, we
adiabatic function is moved continuously around a conicaly;| argue that our results are independent of parametriza-
intersection it changes sign upon returning to the initial POion.) He is careful to select the eigenstates in such a way
sition. The single-valuedness was restored by making theat they are differentiable with respect sothus the adia-

electronic wave function complex including a nuclear- patic wave functions at-+ds can be written as
dependent phase factor. These findings were not just curiosi-

ties, they have a profound effect on nuclear dynamics, as was s+dsl= & lsl+ & [slds 21
first pointed out by Mead and Truhl&r. The work of Berry Uil 1= dnlsl+nls]ds @

a_md later Aharo.nov.and Anand7anonce_rning cyclic evolu- \yhare n=dy, /ds. The wave functions so defined depend
tion of the Hamiltonian and wave functions revealed the UNnly on the points of the path and not on the parametrization
used. This is seen when one considers a different parametri-
dElectronic mail: roi.baer@huiji.ac.ile; Fax:972-2-651-3742. zation R’(t) and ¢,[t]. Defining t(s) by the conditions
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R(s)=R’(t(s)) and demanding),[t(s)]=#,[s], Eq. (2.1 solely in terms of the adiabatic surfaces and NACs, without

keeps its form¢>n[t+dt]:¢n[t]+¢n[t]dt due to the chain any direct reference to the adiabatic electronic wave func-
rule of differentiation. tions, then only invariant quantities are of importance.

Now, suppose the total number of states being treated by In a slightly more technical jargon, we call the different
the quantum chemist is such that the group of statespan  Possible phase choices “gauges.” Equati@i) then is the
essentially the same space as tha-atls (for all s). Then,  gauge transformation of the NA@swhile Eq.(2.8) is that of

the D matrix. We search for gauge invariant quantities be-
Yals+ds]=2 (Sumt Tam(S)dS) Y[ S], (2.2  cause these are expected to be intimately connected to physi-
m cally measurable quantities of the molecule which cannot

where 7..(s) is the matrix of nonadiabatic couplings depend on specific choice of phase in the electronic wave

) function.
(NACs): In order to identify such gauge invariant quantities, we
Tom(S) = (Yl ). (2.3 first rewrite Eq.(2.8) as
(Note: in many texts this is defined as tinansposer’). It is D(s,sq) =€ ")[[?9~ 0] (s,55)]e "0 (2.9

intqitively clear that Eq(2.2) is vali'd When.QII possible adia- \otice that from Eq.(2.7), 6(s)—6(sg)=i/% diad (s
batic states are included, but this condition can be relaxed .. ds. Th ite the “reph d(’]’ ¢ ¢
when the NACs matrices,(s) decompose to blocks along i 7(s')] ¢ us we can write the ‘rephased: transtorma-
the patH?® ion matrix:

Using Eq.(2.2), we can write in general displacement C(s,so)ze‘fio diag 7is)dsp (s, 5,) (2.10

of the basis at; to s
0 which, like D(s,sy), displaces the adiabatic statessgtto

B adiabatic states &t (the additional factor is a mere phase
w“[s]_é D(S,S0) nmifml Sol. 24 facton but on C, the gauge transform is reduced to a
s-independent unitary transformation:

C(s,50)=€'"0C(s,55)0 %0, (2.1

: (25 What is the meaning of this? For one thing, this shows that
the eigenvalues of the unitary mati@ the phase factog'An
whereP is the ordering symbol. We call this operation “dis- are invariant. That is, no matter which of the quantum chem-

where the numerical matri® is defined b{?

D(s,s0)=P exp{ fsT(S’)dS’

S

placement undeb.” ists are asked, the phase factors they reportCfaare the
Now, consider asecond quantum chemistalculating same. _ _ _
adiabatic states and energies of the same Hamiltddjfs] Notice that a displacement of an adiabatic state uter

along the same path. Of course, he obtains the same set i§fan adiabatic state along the path:

energiese [ s] but each of the states he calculates can differ

by a phase factor from those of the first chemist: Ps]= 2 C(S,S0) il Sol. (2.12
m

Yn[s]=€"y,[s]. (260 50 what is special aboyt‘®[s]? Thanks to Eq(2.11), both

The second quantum chemist, being no better or worse thahemists, following the same sequence of stdpst with
the first, will thus produce a different set of NACs. The re- their different NACS will get the same set of adiabatic func-
lation between the two sets is tions, apart of theonstantphase factoe' ’n(%o):

?nm: e'(fn(s)= em(s))Tnm+i -en(s) Snm- (2.7 djgo)[s] et djgo)[s]. (213
So this basis is in this sensanonical
In general, the wave function,zgc)[s] are different from
Yl So]. However, certain linear combinations returnsab
their values atsy, apart from a phase factor. To see these,
“consider a column vectdd with UT=(u; wu, ...) that

This is quite a simple relation: The diagonal elemept is

boosted with respect te,, by i 6,(s) while the nondiagonal
elements of acquire a phase with respect to those.ofFhus
the magnitude of the nondiagonal elements remains un

changed, but theis-dependent phase does. defines a linear combination of wave functionsy[sy]

Plugging Eq«(2.6) into Eq.(2.4), i~tis clear by inspection =3 U [ So]. In general, ifC displacesy,[so] according
that the relation between tHe and D matrices of the two (5 gq (2.12), this carriers over to any linear combination.
quantum chemists is Thus:

D(s,s0)=€'"9'D(s,55)€ %0, (2.9
v | ouls]= > UnC(S.S0)mntal So]. (214
where 6(s) is the diagonal matrix withé,(s) appearing on m.n
its diagonal. Now, consider the case whetk=U, is the left eigenvector

The mere phase difference between the two sets of adiaf C(s,s,) belonging to the eigenvalug?. Then Eq.(2.14)
batic wave functions used forces the quantum chemists tgecomes

disagree about various quantities, for example, tseare B
different. If the dynamics of the molecule is to be determined eulsI=e7 ey [So] (2.19
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which shows thatpuk[s] is displaced byC to itself (apart i (cosf, —isinéy
from a phasgwhen the nuclei follow the path,—s. m(¢)= §<i sinf, —cosé, " (4.3
The statespy, form a closed path in projective space ) ) )
® ‘TheD-matrix[Eq.(2.5)]is: D= —1. So the wave functions

. These paths have the meaning that their Aharonov
Anandan (AA) phasé is the invariant BO phase of the
nuclear path.

We see howany nuclear path not necessarily closed,

change sign around the loggeen also directly in Eq4.2)].
The invariant phases are calculated from Bj1) 8= (1
Fcosf,). Conforming to the Berry theoréhrelating the

generates a set of invariant loops in projective space, eac‘?ﬁa_s’e to the solid angle subtend_ed by the loop. A_ dn‘feyent

loop having a geometrical AA phase fac®f which is by ~ choice of wave function phase will not change the invariant
N i pl2

our construction also a BO invariant. These results are inde[—’hases’ for example, multiplying E(f.2) by &, leads to

pendent of the path parametrization variagldhis follows a new NACS}:HZ_JF_T’ while the D_-matr_ix equals the unit
from the use of line integrals. matrix (a,=27), giving the same invariant phases.

Ill. LOOPS: RELATION TO BERRY’S PHASE V. DISCUSSION

We have focused in this article on the loop matri€es
and C, . We have shown that for loops not going through
electronic energy degeneracies these matrices have very
simple structure: they are diagonal and contain only phase
Factors. The phase factors of tHe-matrix describe the
single-valuedness of the adiabatic st#emd those of the

Up to now the patiR(s) was completely general. For
closed paths, or loops, where there exists such that
R(sp) =R(s;), there are additional simplifications. Once the
loop is closed, the adiabatic wave functions must return t
themselves with at most a phase fadtoe assume that there

'S No dege_neracy along the phatiThus, ”“? closed loop Co involve the invariant phase factors, obtained from the
matrix, which we denote aB, must be diagonal, and be- Berry phases

cause it is unitary, the diagonal elements are pure phase fac- The essence of the BO approach is to represent a mo-

tors: e'“n. 2123 These phases tell us something about the be; : . . o
: , . . . lecular process as an effective dynamics of just the nuclei in
havior of the adiabatic wave function once the loop is closed, . . .
. oo a small number of adiabatic states. Accordingly, the NAC

For example, in the Longuet—Higgins model the wave func- . .
matrices are truncated. However using a truncated set of

tion changes sign after transversal of a closed loop, thus thﬁACs will destroy the gauge invariant phase associated with

phase appearing is =T How'ever,' due to the gauge each path. In the case of a single conical intersection, this is
freedom, the phase @ is not an invariant. Instead, what . . 1228 .
avoided using a vector potenfidt'??® or suitable

Eq. (2.10 tells us that itis the phase @ which is a loop representation$.For a multisurface case, it is essential to

invariant, given by: develop methods that keep as much of the invariant proper-

5 ties intact?®3°

|
ﬁnzan-i-if Thn(S)ds. (3.1
S,
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