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Born–Oppenheimer invariants along nuclear configuration paths
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Whenever a quantum chemist extracts the eigenstate of an electronic Hamiltonian, he makes,
consciously or not, a decision concerning the phase of the wave function. This is done for each
calculated state at each nuclear position. Thus he defines a Born–Oppenheimer~BO! frame of
reference. There is no absolute phase just as there is no absolute position or time in mechanics. This
leads naturally to the question: What are the quantities which do not depend on the arbitrary phases,
i.e., what are the BO invariants? In this article we identify BO invariants with respect to an arbitrary
path in nuclear configuration space. We identify invariant electronic states along these paths and
their Aharonov–Anandan geometric phases. For closed loops not passing through electronic energy
degeneracies these invariant states are the BO adiabatic wave functions and the phases are the Berry
phases. The results establish rigorous relations between the full nonadiabatic couplings matrix and
the geometric phases. ©2002 American Institute of Physics.@DOI: 10.1063/1.1515768#
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I. INTRODUCTION

Molecules are composed of light electrons and he
nuclei. Exploiting this fact, by adopting a quantum mecha
cal basis, which simplifies when nuclei are frozen, is cal
the Born–Oppenheimer~BO! picture.1 It introduces two ba-
sic concepts: the adiabatic~also called BO! potential surfaces
and the nonadiabatic couplings~NACs!. The BOapproxima-
tion assumes that the NACs are negligible.2 This greatly sim-
plifies the mathematical treatment of molecular wave fu
tions and results in the appealing picture depicting molec
dynamics as the motion of nuclei under a potential. The
approximation is frequently accurate enough to allow
detailed understanding and prediction of molecular prop
ties and processes.

For a large class of chemically interesting processes,
usual BO approximation, leads however to gross qualita
errors. These are typically classified asnonadiabatic pro-
cessesand include for example, most of the photochemi
reactions in nature. Here one must consider the effect
several electronic states so nonadiabatic couplings and s
times several adiabatic surfaces must be addressed.

Several interesting discoveries made over the years
cerning the BO picture had important ramifications on
application of nonadiabatic dynamics. Longuet–Higgins3 re-
vealed an interesting property of the BO picture: When a r
adiabatic function is moved continuously around a coni
intersection it changes sign upon returning to the initial p
sition. The single-valuedness was restored by making
electronic wave function complex including a nuclea
dependent phase factor. These findings were not just cur
ties, they have a profound effect on nuclear dynamics, as
first pointed out by Mead and Truhlar.4,5 The work of Berry6

and later Aharonov and Anandan7 concerning cyclic evolu-
tion of the Hamiltonian and wave functions revealed the

a!Electronic mail: roi.baer@huji.ac.ile; Fax:1972-2-651-3742.
7400021-9606/2002/117(16)/7405/4/$19.00

Downloaded 11 Oct 2002 to 132.64.1.37. Redistribution subject to AIP
y
-
d

-
r

e
r-

e
e

l
of
e-

n-
e

al
l
-
e

si-
as

-

derlying structure and the generality of this phenomen
The actual effects of Berry phases on chemical molecu
processes are described and debated in recent literature8–20

This article aims to establish the connection between
frequently used NACs and the geometric invariant phas
Starting from a basic practical observation concerning
behavior of the NACs along an arbitrary path in nuclear co
figuration space, we find a set of electronic states which h
simple path–transport properties~Sec. II!. These states are
then associated to invariant phases which are subsequ
connected to the Aharonov–Anandan theory.7 In the case of
loops that do not pass through electronic degeneracies t
states are the adiabatic states and the phases are the
phases6 ~Sec. III!. After examining an example~Sec. IV!,
involving a nonreal Hamiltonian we finalize by a short di
cussion of the possible implications these results have
truncating the Born–Oppenheimer approximation~Sec. V!.

II. BORN–OPPENHEIMER PATH INVARIANTS

Suppose a quantum chemist calculates the eigens
cn@s# and eigenenergies«n@s# of the electronic Hamiltonian
He@s# of a given molecule. This calculation is repeated f
all nuclear configurations along a path in nuclear configu
tion spaceR(s) parametrized by a real numbers. ~Later, we
will argue that our results are independent of parametr
tion.! He is careful to select the eigenstates in such a w
that they are differentiable with respect tos, thus the adia-
batic wave functions ats1ds can be written as

cn@s1ds#5cn@s#1ċn@s#ds, ~2.1!

whereċn5dcn /ds. The wave functions so defined depen
only on the points of the path and not on the parametriza
used. This is seen when one considers a different param
zation R8(t) and fn@ t#. Defining t(s) by the conditions
5 © 2002 American Institute of Physics
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R(s)5R8(t(s)) and demandingfn@ t(s)#5cn@s#, Eq. ~2.1!
keeps its formfn@ t1dt#5fn@ t#1ḟn@ t#dt due to the chain
rule of differentiation.

Now, suppose the total number of states being treated
the quantum chemist is such that the group of states ats span
essentially the same space as that ats1ds ~for all s!. Then,

cn@s1ds#5(
m

~dnm1tnm~s!ds!cm@s#, ~2.2!

where tnm(s) is the matrix of nonadiabatic coupling
~NACs!:

tnm~s!5^cmuċn&. ~2.3!

~Note: in many texts this is defined as thetransposetT!. It is
intuitively clear that Eq.~2.2! is valid when all possible adia
batic states are included, but this condition can be rela
when the NACs matricestnm(s) decompose to blocks alon
the path.21

Using Eq.~2.2!, we can write in general adisplacement
of the basis ats0 to s:

cn@s#5(
m

D~s,s0!nmcm@s0#, ~2.4!

where the numerical matrixD is defined by22

D~s,s0!5 P̂ expF E
s0

s

t~s8!ds8G , ~2.5!

whereP̂ is the ordering symbol. We call this operation ‘‘dis
placement underD.’’

Now, consider asecond quantum chemist, calculating
adiabatic states and energies of the same HamiltonianHe@s#
along the same path. Of course, he obtains the same s
energies«n@s# but each of the states he calculates can di
by a phase factor from those of the first chemist:

c̃n@s#5eiun~s!cn@s#. ~2.6!

The second quantum chemist, being no better or worse
the first, will thus produce a different set of NACs. The r
lation between the two sets is

t̃nm5ei ~un~s!2um~s!!tnm1 i u̇n~s!dnm . ~2.7!

This is quite a simple relation: The diagonal elementt̃nn is
boosted with respect totnn by i u̇n(s) while the nondiagona
elements oft̃ acquire a phase with respect to those oft. Thus
the magnitudeof the nondiagonal elements remains u
changed, but theirs-dependent phase does.

Plugging Eq.~2.6! into Eq.~2.4!, it is clear by inspection
that the relation between theD and D̃ matrices of the two
quantum chemists is

D̃~s,s0!5eiu~s!D~s,s0!e2 iu~s0!, ~2.8!

whereu(s) is the diagonal matrix withun(s) appearing on
its diagonal.

The mere phase difference between the two sets of a
batic wave functions used forces the quantum chemist
disagree about various quantities, for example, thet’s are
different. If the dynamics of the molecule is to be determin
Downloaded 11 Oct 2002 to 132.64.1.37. Redistribution subject to AIP
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solely in terms of the adiabatic surfaces and NACs, with
any direct reference to the adiabatic electronic wave fu
tions, then only invariant quantities are of importance.

In a slightly more technical jargon, we call the differe
possible phase choices ‘‘gauges.’’ Equation~2.7! then is the
gauge transformation of the NACst, while Eq.~2.8! is that of
the D matrix. We search for gauge invariant quantities b
cause these are expected to be intimately connected to p
cally measurable quantities of the molecule which can
depend on specific choice of phase in the electronic w
function.

In order to identify such gauge invariant quantities, w
first rewrite Eq.~2.8! as

D̃~s,s0!5eiu~s0!@ei @u~s!2u~s0!#D~s,s0!#e2 iu~s0!. ~2.9!

Notice that from Eq. ~2.7!, u(s)2u(s0)5 i *s0

s diag@t(s8)

2t̃(s8)#ds8. Thus we can write the ‘‘rephased’’ transforma
tion matrix:

C~s,s0!5e2*s0

s diag~tusu!dsD~s,s0! ~2.10!

which, like D(s,s0), displaces the adiabatic states ats0 to
adiabatic states ats ~the additional factor is a mere phas
factor! but on C, the gauge transform is reduced to
s-independent unitary transformation:

C̃~s,s0!5eiu~s0!C~s,s0!e2 iu~s0!. ~2.11!

What is the meaning of this? For one thing, this shows t
the eigenvalues of the unitary matrixC, the phase factoreibn

are invariant. That is, no matter which of the quantum che
ists are asked, the phase factors they report forC are the
same.

Notice that a displacement of an adiabatic state undeC
is an adiabatic state along the path:

cn
~C!@s#5(

m
C~s,s0!nmcm@s0#. ~2.12!

So what is special aboutcn
(C)@s#? Thanks to Eq.~2.11!, both

chemists, following the same sequence of steps~but with
their different NACs! will get the same set of adiabatic func
tions, apart of theconstantphase factoreiun(s0):

c̃n
~C!@s#5eiun~s0!cn

~C!@s#. ~2.13!

So this basis is in this sensecanonical.
In general, the wave functionscn

(C)@s# are different from
cm@s0#. However, certain linear combinations return ats to
their values ats0 , apart from a phase factor. To see the
consider a column vectorU with UT5(u1 u2 ...) that
defines a linear combination of wave functions:wU@s0#
5(mumcm@s0#. In general, ifC displacescn@s0# according
to Eq. ~2.12!, this carriers over to any linear combinatio
Thus:

wU@s#5(
m,n

umC~s,s0!mncn@s0#. ~2.14!

Now, consider the case whereU5Uk is the left eigenvector
of C(s,s0) belonging to the eigenvalueeibk. Then Eq.~2.14!
becomes

wUk
@s#5eibk~s!wUk

@s0# ~2.15!
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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which shows thatwUk
@s# is displaced byC to itself ~apart

from a phase! when the nuclei follow the paths0→s.
The stateswUk(s)

form a closed path in projective spac
`. These paths have the meaning that their Aharono
Anandan ~AA ! phase7 is the invariant BO phase of th
nuclear path.

We see howany nuclear path, not necessarily closed
generates a set of invariant loops in projective space, e
loop having a geometrical AA phase factoreibn which is by
our construction also a BO invariant. These results are in
pendent of the path parametrization variables. This follows
from the use of line integrals.

III. LOOPS: RELATION TO BERRY’S PHASE

Up to now the pathR(s) was completely general. Fo
closed paths, or loops, where there existssf , such that
R(s0)5R(sf), there are additional simplifications. Once t
loop is closed, the adiabatic wave functions must return
themselves with at most a phase factor~we assume that ther
is no degeneracy along the path!. Thus, the closed loopD
matrix, which we denote asD( must be diagonal, and be
cause it is unitary, the diagonal elements are pure phase
tors: eian.21,23 These phases tell us something about the
havior of the adiabatic wave function once the loop is clos
For example, in the Longuet–Higgins model the wave fu
tion changes sign after transversal of a closed loop, thus
phase appearingD( is an5p. However, due to the gaug
freedom, the phase ofD( is not an invariant. Instead, wha
Eq. ~2.10! tells us that it is the phase ofC( which is a loop
invariant, given by:

bn5an1 i E
s0

sl
tnn~s!ds. ~3.1!

For closed loops the adiabatic functions themselves form
invariant loops in the projective space. This means that
loops, as discussed by AA and others,24,25 bn is the Berry
phase.6 We emphasize, that while the entire electronic ba
is needed to prove Eq.~3.1!, the final result is valid for each
of the electronic states separately. This is in fact a form
proof of Berry’s results, which assumed adiabatic evoluti

IV. EXAMPLE: COMPLEX CONICAL INTERSECTION

We test the general results in the case of conical in
section in the presence of spin–orbit coupling.26 Using the
model of Stone,27 involving a Hermitian–Hamiltonian:

He5RS cosu ieif sinu

2 ie2 if sinu 2cosu D . ~4.1!

DiagonalizingHe leads to the transformation:

A~u,f!5S eif/2 cosu/2 2 ieif/2 sinu/2

2 ie2 if/2 sinu/2 e2 if/2 cosu/2 D . ~4.2!

The columns of the matrixA are eigenvectors of the Hami
tonian. They depend on two nuclear parameters. Consid
circular precession, similar to Matsikaet al.26 around theU
axis:R5q andu5u0 are frozen whilef revolves from 0 to
2p. The t matrix @Eq. ~2.3!# is constant:
Downloaded 11 Oct 2002 to 132.64.1.37. Redistribution subject to AIP
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t~f!5
i

2 S cosu0 2 i sinu0

i sinu0 2cosu0
D . ~4.3!

TheD-matrix @Eq. ~2.5!# is: D(52I . So the wave functions
change sign around the loop@seen also directly in Eq.~4.2!#.
The invariant phases are calculated from Eq.~3.1! b5p(1
7cosu0). Conforming to the Berry theorem6 relating the
phase to the solid angle subtended by the loop. A differ
choice of wave function phase will not change the invaria
phases, for example, multiplying Eq.~4.2! by eif/2, leads to
a new NACst̃5 i /21t, while theD-matrix equals the unit
matrix (an52p), giving the same invariant phases.

V. DISCUSSION

We have focused in this article on the loop matricesD(

and C( . We have shown that for loops not going throug
electronic energy degeneracies these matrices have
simple structure: they are diagonal and contain only ph
factors. The phase factors of theD-matrix describe the
single-valuedness of the adiabatic states22 and those of the
C( involve the invariant phase factors, obtained from t
Berry phases.

The essence of the BO approach is to represent a
lecular process as an effective dynamics of just the nucle
a small number of adiabatic states. Accordingly, the NA
matrices are truncated. However using a truncated se
NACs will destroy the gauge invariant phase associated w
each path. In the case of a single conical intersection, th
avoided using a vector potential4,11,12,28 or suitable
representations.9 For a multisurface case, it is essential
develop methods that keep as much of the invariant pro
ties intact.28–30
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