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ABSTRACT: A method is developed for computing the direct current and
alternating current conductance of molecular wires at small bias. The basic ingredients
are: linear response theory, time-dependent density functional theory, imaginary
potentials, and a jellium model for the metallic leads. The theory is capable of
incorporating the effect of realistic charge distributions in the system and
electron—electron correlation. We demonstrate the method on the jellium—Cz—jellium
system. © 2002 Wiley Periodicals, Inc. Int ] Quantum Chem 91: 524-532, 2003
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Introduction

C an single molecules function as electronic
components? This is the central issue ad-
dressed by the emerging field of molecular elec-
tronics [1]. Even though the first molecular device,
a rectifier, was conjectured by Aviram and Ratner
[2] as early as 1974, only recently have such systems
become accessible to experiments [3-9]. It is diffi-
cult to overestimate the impact this field can have.
Molecular electronic components are predicted to
be smaller and faster than contemporary electronic
devices by five to six orders of magnitude [10].
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Spectacular applications of such devices may even
include developing machine intelligence competing
with humans.

The role of theory in the molecular electronics
field is important. Approximate theoretical models
are valuable guides to the discovery of new phe-
nomena, therefore pinpointing directions for exper-
imental research. Accurate models on the other
hand are indispensable for interpreting intricate ex-
perimental data, and they provide high-quality
benchmarks for testing and improving the approx-
imations. Yet accurate treatments of the electron
dynamics in molecular wires are rare. Most treat-
ments are within the framework of the Landauer
formalism [11, 12]. This approach proved especially
useful for studying mesoscopic systems [13, 14] and
forms the basis of several studies of molecular



ELECTRICAL CONDUCTANCE OF A MOLECULAR WIRE

wires, based on different levels of electronic struc-
ture theory, such as extended Huckel or tight bind-
ing [15-21], and tight binding supplemented with
self-consistent field electrostatic potential [22] as
well as ab initio Hartree-Fock theory [23-25] or
density functional theory [26-28].

The ab initio computations within the Landauer
framework are high level but they assume fast elec-
tron response. Sluggish response and inelastic ef-
fects cannot be addressed. The theory is also limited
to the direct current (DC) conductance, while alter-
nating current (AC) characteristics of molecular
wires are important, as well [29]. It is well estab-
lished that electronic correlation effects are impor-
tant for understanding the optical response of mol-
ecules. Thus, the role of correlation may also be
important in processes of electronic transport in
molecules.

In this article we outline a framework in which
benchmark-quality AC and DC response of a mo-
lecular wire connected to metallic leads can be
made. The method is based on linear response
theory, time-dependent density functional theory
(TDDEFT) [30], and a special treatment of the metal-
lic leads. Previous attempts [31, 32] to use time-
dependent functional theory for computing DC
conductance relied on a low transmission probabil-
ity and short time approximation. Such an ap-
proach is not always adequate for systems with
large conductance.

Conductance by Linear Response

The AC conductance along the z-axis between
two points z;, z, is a time-dependent function G(z,;
z,, t — t') defined in terms of the current I(z,, t)
induced in a system by a small time and spatial
total electric field E(z,, t'):

% t
I(zy, t) = j J G(zy; 21, t — t') E(zy, t")dt'dz,
(1)

To compute the conductance, we consider a time-
dependent Hamiltonian:

Ne

Hmb(t) = HO + 2 U(Zn)p(t) (2)

n=1

where H, is the full many-body electronic Hamil-
tonian and

pit) = e 012 @)

is a dimensionless time-dependent envelope func-
tion. The perturbation is caused by an electric field
E directed along the z axis and spatially localized
near z = z,. This field is given by:

E(t, z) = e 'p(t)v'(z — 2p) (4)

The electric field induced by transverse currents
within the wire is neglected in this treatment. We
now define a z-averaged conductance:

G(zy 2o, t) = Av™! f G(zy; z, )0 (z — zp)dz

)

with the total potential difference defined as:

Av = IK v'(z)dz (6)

With this quantity, the conductance is related to the
current by:

I(z,, t) = e 'Av jw G(zy; zo, T)p(t — 1d1  (7)
0

After Fourier transforming this expression, we ob-
tain a simple relation between the AC current and
the AC conductance:

61( Zy, (U)

p(w)Ao (8)

G(Zz} Zp, ®) =

where the AC conductance is:
G(zy; 2o, ) = f G(zy; zo, t)e™'dt 9)
0

and:
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FIGURE 1. The perturbation v(z) (circles) [Egs. (2) and (12)] and the derived localized electric field E(z) = ev'(2)

(squares).

I(z,, w) = j 1(zy; zo, t)e''dt (10)

is the AC current. A similar equation defines p(w).
Values of various parameters in these expressions
are given in Table L.

By computing the flux F(z,, ) = ¢~ 'I(z,, t), using
TDDFT, the conductance is assessed from the final
formula:

- 7hE(z,, w)
G(zy; 2o, @) = o “pl@ho (11)

where g, = 2¢*/h is the basic unit of quantum
conductance and F(z,, w) = e”'I(z,, w) is the Fou-
rier-transformed flux. In our calculation, we chose
the following form for the potential causing the
current (see Fig. 1 for its shape):

Av

v(z) = 1+ o= (12)

Because our calculation is within the linear re-
sponse regime, the exact form of the potential does
not in principle affect the estimate of the conduc-
tance. Yet we consider here an averaged conduc-

tance [Eq. (5)] so there is a fairly small dependence
of the conductance on this averaging.

Modeling the Metallic Leads

Any realistic treatment of conductance of a small
electronic device must address the specific details
of electron distribution and relaxation in the leads
[33, 34]. Following the work of Lang et al. [26-28],
we assume the metallic leads can be modeled by
jellium plates placed in the proximity of the molec-
ular wire (M in Fig. 2).

Dynamic density

imaginary
potential

Pz

Imaginary
potential

Frozen density

FIGURE 2. The model for molecular wire along the
z-axis. The molecule (M) is placed between two jellium
plates, in which a negative imaginary potential is placed
to absorb transported electrons. (See text for further
details.)
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TABLE |

Values of various parameters.

Definition Symbol Value
Eqg. (14)

ao 0.0018 E, a5 2

z, —19 a4

Zg 19 ag
Ea. 3)

T 3 au

T, 8 au
Eqg. (4) z, —8a,
Eqg. (12)

Av 0.01 E,

o 2a; "
Total number of orbitals N+ 68
Number of dynamical

orbitals Np 32
Grid dimensions L, =1L,

L, 10 a,, 65.6 a,
Grid spacing Ax = Ay

= Az 0.5 a4
Jellium density parameter rg 3.0
Jellium plates’ separation 2.2 a4
C-C distance 2.5 a,

The electron density in the jellium plates is di-
vided into two parts: a frozen density and a dynam-
ical density. The frozen density is located in the part
of the plate far from the molecule, whereas the
dynamical density includes the molecule. Within
the frozen electron density a negative imaginary
potential is added to absorb the outgoing electric
current, simulating the dissipation mechanism of
the macroscopic leads. The reason we introduce a
frozen density is because we want to avoid absorb-
ing electron density of the surrounding jellium it-
self by the imaginary potential: only genuine elec-
tric current is to be absorbed. The Hamiltonian used
to control the dynamics of the electronic system is:

Htatul = Hmb - lr(f) (13)
where I'(r) is a localized potential of the form:

I(r) = Al(z — 2)*0(z, — 2) + (2 — 2p)*0(z — zp)]
(14)

where z; and z; are deep in the leads. The param-
eters used in actual calculation are given in Table I.

The imaginary potential is intended to absorb
the transmitted electrons. However, as mentioned
above, it has an undesired effect: it rapidly absorbs

any electronic charge in the jellium leads, even
charge not directly involved in the process of trans-
port. To mitigate this artifact, we develop the con-
cept of frozen electron density in the proximity of
the absorbing potential. We now discuss how such
a frozen density is defined and how the time prop-
agation, within the formalism of TDDEFT is per-
formed.

Assume that the molecule—jellium system con-
tains a total of 2N electrons. The ground-state den-
sity, determined by performing a DFT calculation,
is partitioned into dynamic and frozen components:
pr(r) = pp(r) + pg(r). Both parts are represented as
sums of square orthogonal orbitals:

po(®) = 2 leF pe®) = X e} (15)
d=1 I=Np+1

The orbitals ¢,(r) span the Kohn-Sham occupied
space of the total system at its ground state, al-
though they themselves are not Kohn-Sham orbit-
als. How do we construct this set of orbitals? The
key idea is to localize N, states near the molecular
wire. This can be done in many ways; we use the
following physically motivated method. After ob-
taining the Kohn-Sham orbitals of the system with
all its 2Ny electrons, we perform an additional
ground-state calculation on a miniaturized system:
a system with the same molecule but smaller jel-
lium plates containing only 2N, electrons (Np <
N7p). These two calculations produce two sets of
Kohn-Sham orbitals: one for the large model and
one for the small model of the same system system.
The orbitals ¢,(r) of Eq. (15) are now constructed:
they are formed as linear combinations of the
Kohn-Sham orbitals of the large model in such a
way that the first Ny orbitals are as similar as
possible to the Kohn—-Sham orbitals of the smaller
model. Details of the construction are given in the
Appendix. As an example, consider the C; molecule
between two jellium plates aligned along the z-axis
(Fig. 2). We adopt the linear configuration of Lang
et al. [26], where the C—C distance is 2.5 g, and the
distance between the positive charged faces of the
plates is 2.2 a,. In both models, large and small, of
this system, the jellium plates have the same cross
section (area in x and y directions). But the plates in
both models differ in their length in the z direction.
The large model contains 2N = 68 electrons and
jellium plates of total positive charge Q; = 56le| that
extend from z = —32 to z = 32 a,; the small model
contains 2N; = 32 electrons and its leads extend
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FIGURE 3. Contour plots of the dynamical (a), frozen (b), and total (c) number densities (a, ) of the electrons in the
C; + jellium molecular wire. The total number of electrons is 68, 32 of which are dynamical and 36, frozen. Also

shown are the contours of the Kohn-Sham effective potential (in E,) of C; + jellium molecular wire (d). The lengths of
the vertical (z) and horizontal axes (x) are indicated in atomic units a,. Full length of leads extends from — 32.8 a, to

+32.8 a,.

from z = =12 z = +12 a,, involving total positive
charge of Q; = 20|e|. The three types of electron
density (dynamic, frozen, and total) of this system
are shown in Figure 3. It is seen that the dynamical
density, involving N = 32 electrons, includes al-
most all the charge of the C; molecule (12 valence
electrons) and the additional charge of the sur-
rounding system (20 electrons from the jellium).
Thirty-six electrons are frozen at the far ends of the
jellium—comprising the frozen density. Roughly
speaking, the dynamic density extends from z =
—10 to z = +10 a,.

When the system is subject to the time-depen-
dent perturbation v(z)p(t) of Eq. (2), the dynamical
density is propagated in time while the frozen den-
sity, representing the part of the jellium leads far
from the molecule, stays frozen. As the dynamical
orbitals are evolved under the Kohn-Sham dynam-

ics, they “feel” the frozen density via the Coulomb
force and the exchange-correlation potential that
this density inspires. But in addition to that, the
Pauli principle must be enforced, by demanding the
dynamical orbitals be orthogonal to the frozen or-
bitals. The required TDDFT equations of motion for
such a dynamics can be derived from an action
principle under the orthogonalization constraint:

ih¢,(t, t) = He,(t, 1) (16)

where H[{¢,}}'";] depends on all the orbitals (dy-
namical as well as frozen) by:

Al{e}n1= Q'Hlpr1Q (17)

Here Hlp;] is the TDDFT effective Hamiltonian,
depending on the total density, whereas the projec-
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tion operators Q are designed to project out of the
frozen space:

Nt

Q=1- 2 [v)Xyl (18)

I=Ns+1

Examining the ground-state Kohn—-Sham potential
[Fig. 3(d)], a small barrier of about 1 eV is evident as
an electron proceeds from the jellium into the mole-
cule. This barrier is low relative to the kinetic energy
of highest occupied orbital (7.1 eV). In theories of
conduction based on a scattering approach, this is
indicative that the molecular wire will exhibit the
features of ballistic DC conductance, as indeed re-
ported [26, 27]. We show that within our calculation
the electron—electron interactions within the leads
considerably reduce the conductance.

How Is Flux Calculated?

An important remark concerning the definition
of flux F(z, t) used in Eq. (11) is in order. Usually,
the flux into a region N surrounded by a surface
S(N) is defined as a surface integral:

F(t) =” J(x, £) - dS (19)
eS(N)

T

where J(r, t) = (h/m)Im{2 N1, i (x, HV,(x, 1)} is
the current density. This definition is not correct for
the Hamiltonian of Eq. (17). Instead, the flux into a
region N should be calculated in a more general
way, which we describe now. Assume first a Ham-
iltonian K(t) = K(T) — i’ where K, is Hermitian but
otherwise quite general. Next, define an operator N
= J(#) defining the region N into which the flux is
to be computed, where:

1 ren
R(r) = {0 otherwise (20)

The flux into N is then defined by:

i .
Fin(t) = E <81(I', t)>d r|due to flux

Ne/2

=2i 2 J (W (x, DIIR,(E), Ri(x, D] (x, £)dr

n=1

(21)

This definition leads to Eq. (19) when the Hamilto-
nian is of the usual Kohn-Sham type: K,(t) = —(#*/
2m,)V? + v,(r, t). However, Eq. (21) is more general,
because it applies to any type of Hamiltonian K,(t).
In our case, we used Eq. (21) within the Kohn-Sham

propagator, taking: K.(t) = Q"{H[ps] + v(z)p(t)}Q.

TDDFT Evolution

The equations of motion to be solved are now:
ihg,(t) = Kt (Hhn =1...Np (22)
with:
K= Q'(Hlpr] + v(2)p(t) —iT@®)Q  (23)

These are nonlinear equations of motion that must
be solved to high precision. The method used for
their solution has been described elsewhere [32, 35]
and we only mention the principle involved. The
time axis is partitioned into intervals of T = 0.1 a.u.
Each interval is then sampled by M sampling points
t,,(m=1...M). The size of M is determined by the
accuracy required. In our calculations we took M =
6. Assuming the knowledge of the states ¢, at time
mT, with m an integer, the state of the system at any
time within the interval ¢+ € [mT, (im + 1)T] is
written as:

@) = 2 0.(t,)Qu(t) (24)

where Q,(t) are polynomials in time with the collo-
cation property within the interval:

Q)ﬂ(t}‘l) = 8””’[ (25)

The Kohn-Sham equations, in integral form, are
thus transformed to the following discretized equa-
tions, which can be solved by iteration:

M

T
lvbn(tm) = d) —1 E E K(pT(tm’)/ tm’)lpn(tm’)lm’m
(26)

with:
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FIGURE 4. The real part of the conductance of C; + jellium. G(z,, z; w) (z, = — 8 a,) as calculated at several lo-
cations z, along the molecular wire, where the zero of the z axis is the central carbon atom.

1 [
Ilm = TJ Qm(T)dT (27)

Conductance of C;

We now apply this method to compute the con-
ductance of the C; + jellium system. The specific
parameters we took are with all summarized in
Table I. The current I(z, w) at different positions z
along the wire is then computed via a TDDFT cal-
culation, using a recently developed numerical
propagator [32, 35].

The results of the calculation are shown in Figure
4, displaying the real part of the conductance. The
conductance is a complex number, but only the real
(or imaginary) part contains independent data. The

AC results peak at z-dependent locations with com-
mon peaks at around, w = 0.1, 0.16, 0.26 a.u. The DC
conductance of ~0.15 g, is almost z-independent.

The DC conductance is smaller by a factor of about
8 than that calculated by Lang et al. [26, 27] for the
same system. The reason for this discrepancy is prob-
ably connected to the different properties assigned to
the metallic leads. In the scattering formalism, the
leads form a source of energetic electrons, whereas in
the current model the coherent dynamics within the
leads are explicitly taken into account.

Discussion

We have presented a new method for computing
the conductance of a molecule. The metallic leads
are modeled by jellium, whereas the wire is treated
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using pseudopotentials. The far part of the jellium
electron density is frozen using the algorithm we
outlined. The resulting method allows computation
of conductance incorporating electron—electron in-
teraction. Correlation is treated on the TDDFT/
ALDA (adiabatic local density approximation) level
and the method includes implicitly the realistic
charge distributions. The Kohn-Sham effective po-
tential (Fig. 3) exhibits only a small barrier to con-
ductance, of height 1 eV, much less than the kinetic
energy of electrons in the highest occupied (Fermi)
orbital. Theories based on a scattering approach
therefore report a high value of conductance of this
system [27] (close to one unit of quantum conduc-
tance g,). However, the DC conductance we calcu-
lated is significantly smaller. We believe the dis-
crepancy stems from the different ways the two
models incorporate dissipation into the problem.
The method outlined in this article introduces dis-
sipation to absorb outgoing flux. In the scattering
approach, both the incoming and the outgoing flux
is assigned to dissipative leads, viewed as electron
reservoirs [13]. Future investigations will be di-
rected to elucidate the differences between these
two mechanisms of conduction.
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Appendix: Dynamic and Frozen
Density

In this appendix we describe the construction of
the frozen and dynamic orbitals. This is done by
constructing two models of the same molecular
wire; one is embedded in the other. The first model
contains Np, electrons, forming the so-called “dy-
namical density,” whereas the second model has
Nr = Np + Ngelectrons, where N is the number of
electrons forming the “frozen density.”

As mentioned in the text, the two models are
identical except for the extent of the jellium plates.
Thus, the difference in the number of electrons is a
result of the size of the jellium plates. Now, one

performs a ground-state DFT calculation for each of
the two models, yielding N, occupied Kohn-Sham
orbitals i;(r) of the small system (d = 1...Np) and
N occupied orbitals W,(r) of the larger system ¢ =
1...Np.

The charge distribution of the larger system is
now partitioned into a dynamical and a frozen part,
pr(r) = pp(r) + pp(r) in the following way. First, we
define a set of N orthogonal orbitals ¢,(r) (d =
1...Np) that reside completely in the occupied
space of the larger system but resemble as closely as
possible the occupied orbitals of the small system.
Thus, writing:

Nt

@q(r) = E Wi(r) Ay (28)

=1

A rectangular matrix of coefficients A = (A,;) is
now located, such that the following quantity is
minimized:

Na

> (s — @alba — @) (29)

=1
under the orthogonality constraint:
8171711’ = <(Pnl|(Pm’> i A+A = INDXND (30)

Introducing the Ny X Np overlap matrix O, =
(¥ |ip,) and the Lagrange coefficient matrix, A, the
Lagrangian to be minimized assumes the following
form:

L{A} = tr[-(O'A + ATO) + AA'A]  (31)
Leading to the conditions:
O=AA A=A (32)

We invoke the singular-value decomposition theo-
rem [36], according to which, O = UwV*' where U is
a Ny X N, matrix with orthonormal columns U'U =
Iy xn,, Vis a Np X Np unitary matrix, ViV =vVvt=
Iy xn,, and w is a diagonal matrix with real and
nonnegative diagonal elements. The decomposition
is unique up to row/column permutations of the
matrices. The matrix A, which minimizes the La-
grangian of Eq. (31), can be written as:

A=UV' A=VwV' (33)
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Thus, the matrix A is immediately given in terms of
the overlap matrix O. The complement of {¢,}); in
the occupied space {¥,}}¥"; is described by the orbit-
als:

Nt

¢/(r) = 2V (®)B; f=Np+1...Ny

=1

(34)

The N; X Np matrix B of coefficients can be ob-
tained by diagonalizing the Hermitian N; X Ny
matrix UU". This matrix must have exactly Ny eig-
envectors with zero eigenvalues. These eigenvec-
tors can be taken as the columns of B.
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