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We reconsider the Born—Oppenheimer—Huang treatment of systems of electrons and nuclei for the
case of their interaction with time-dependent fields. Initially, we present a framework in which all
expressions derived are formally exact since no truncations are introduced. The objective is to
explore the general structure of the equations under the most unrestricted conditions, including the
possibility that the electronic basis is dependent both on the nuclear coordinates and on time. We
then derive an application of the theory applicable to cases of interaction with strong time-dependent
fields. The method truncates the electronic basis only after the time-dependent interaction is taken
into account in the electronic wave functions. This leads to theory which is similar to a Born—
Oppenheimer-type truncation within the interaction picture. 2@3 American Institute of Physics.
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I. INTRODUCTION the nuclear momentur.In general, one finds that it is cru-
cial that the momentum operator of the nuclei includes all

The Born—Oppenheimer—Huan@OH) treatment of possible contributions just as is the case for a charged par-

systems of electrons and nuclei has long been used for thile in a vector potential.

description of quantum dynamics in atomic, molecular and  This paper is organized as follows: In Sec. Il we present

chemical physicd=® Usually one either immediately sepa- the formal analysis based on the nonrelativistic Sdimger

rates the explicit time dependence to consider stationargquation for a system of nuclei and electrons. Section Il

states of total energi, or one assumes that all of the time contains a discussion of the results.

dependence is contained in the nuclear wave function. The

traditional BOH treatment restricts the adiabatic electroniql. GENERAL TIME-DEPENDENT TREATMENT OF

wave functions to having no explicit time dependence. ThisCOMBINED NUCLEAR AND ELECTRON DYNAMICS

need not be so as has been mentioned elsevitamygh, We consider a molecular system with N nuclei and some

intuitively, introducing time-dependent electronic Statesnumber of electrons, which we treat using a direct product

seems a needless complication. However, it is interesting tBasis For notational convenience we incorporate the elec-

explore the most general form that the equations can have . :
. : - tfonic degrees of freedom for the state of the system using an
rather than imposing restrictions from the outset on the man-

ner in which the time dependence enters. We shall see thapstract _set of vecto_rs, and we treat _the nuclgar d_eg_rees_ of
reedom in the coordinate representation. The identity in this

doing so leads to a description that has interesting parallels ™~ . . .
) DA . . semiabstract” form is

with the situation of charged particles in the presence of an

electromagnetic field. In particular, we find that the natural

connection can be viewed from the standpoint of various

interaction pictures, the transformations which behave like ) ) .

gauge transformation giving rise to gauge contributions tOThe'lndex.A IS U_Sed to Fienote the partIQU!ar choice of elec-

tronic basis(to differentiate among the infinitely many pos-

) - _ sibilities) and j indicates a particular member of the elec-

, Electronic mail: kouri@uh.edu tronic basis set. Here R represents the complete set of
Author to whom correspondence should be addressed. Permanent address: . . .

Soreq Nuclear Research Center, Yavne 81800, Israel. Electronic maiF“"CIea-r coordinates. For notational convenience the abstract

michaelb@fh.huji.ac.il vectors have been written as though they are discretely in-

1:2 li, RN S(R=R)(j,Rt;N|. )
J
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dexed, but this need not be the case. Note that we allow fowhere |#(R,t)) is the state of the system in its original,
the possibility of using a different set of abstract vectors asemiabstract form. If one interprefgR,t)™ as the nuclear
eachR andt and that we have indicated this flexibility ex- wave function, then clearly7(/i)V,, acting on it is not the
plicitly. The semiabstract form of a general system operatoriotal momentum. It lacks the contribution arising from the

0, is gauge transformation, which is associated with the nuclear
position dependence of the electronic basis. The transforma-
6(R|R’)=2 > |j,R,t;)\>O(R|R’)}”,Q(k,R’,t;M, (2) tion between rep_resentgtioh@ and\; is conveniently rep-
ok ' resented in matrix notation as follows:

where PROM=A, .\ (R)- (R, (7)

O(RIR")N=(j,R,t;\|O(RIR")|k,R’,t;\)
=[O(R[R)TY, (&)

is a matrix element in tha, R representation. The double

underline indicates a matrix in the electronic basis quantum, . . q be i d ¢
numbers. In particular, the matrix element for the operatoJt is unitary (and can be interpreted as a gauge transforma-

P,, corresponding to the linear momentum operator oftlon) satisfying the conditions

where the matrixA}\Oﬂl(R) is defined by

[Ar, (R = RENK R ). (8)

nucleusn, is [AAOHM(R)]_l:[AAOHM(R)]T:AMHAO(R)- 9
Pn(RlR’)J(”k)=<j,R,t;)\|Isn(R|R’)|k,R’,t;>\) For a gengral semiabstract operatﬁ(R|R’), the mixed-
' representatiormatrix element
h R
=i—<j,R,t;AIVné(R—R’)Ik,R’,t;M (J,R,t;N|O(RIR)) KR’ t; N g), (10
5 o) can be analyzed in two different ways; one can insert a reso-
:[l._vnﬂgn(R,t)] S(R—R’), (4) lution of the identity either in front of or following the op-
! = ik erator, to obtain the identity

whereV, is the gradie_n_t_with respect to the coordinates ofo(R|Rf)m).Axoﬂl(R'):Axoﬂl(R).Q(R|R/)<Ao>. (12)
nucleusn, and, by definition - -

In particular forp(R,t) we find that

h
n ) ) A
Pl RO T I RENRIREN) O AL (R RO A (R)
|

From the orthogonality of the electronic ket vectors it is (o)
immediate seen thap,(R,t)}) is a self-adjoint matrix. =Ax (R @n(RU O (12

Thus, the linear momentum matrix element in this represen-., . . .
b Iﬁ'Th|s can be interpreted as the gauge transformation of the

tation is split into two contributiongneither of which isa >
I . . momentum operator for nucleusarising due to the trans-
priori smal) that are determined by the choice of represen-

tation, \. This immediately shows the parallel between theformatlon from th(.a)‘o to thex, pictures. . .
o n We now consider a general electronic basis. The equa-

present system and a charged particle in an external electr?- ) .

T . : N ion for the time-dependent nuclear wave function,
magnetic field. Specifically, there is a contribution to the mo- R1YM is derived starting the time-d dent
mentum of nucleus that arises due to the incomplete sepa-w(ht.aij » 1S e?ve starting from the time-dependen
ration of electronic and nuclear degrees of freedom; i.e., th<§C radinger equation
electronic basis states can, in general, depend on both the
nuclear coordinates and time. We remark that differengﬁﬁ D |k Rt'A)z//(Rt)(”
choices of the electronic basis correspond to various interac- dt | < = Tk
tion pictures and the related unitary or gaugelike transforma-
tions. Thejth component of the wave function in the R :f dR’|:|(R|R’)2 [k,R", t;\) (R, M, (13
representation is given by k

o) /i where I:|(R|R’) is the semiabstract Hamiltonian operator.
(RO =(,RENB(R,D)), ©®  Thus

(i, R;M|[PA(RIR")[K,R";\)
2m,

9 N
ihﬁw(R,t)Jo‘):; “ olR’ng1 iﬁ(R’,t)ﬁ)‘)}

+<j,R,t;)\|( HE(R,t)—ih%) [k, REN (RN (14)
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Here we have written the Hamiltonian in the form

. N PARI|R) .
H(R|R’)=nzl 2—m|n+ S(R—R/)HLR,1),

where the electronic Hamiltoniaﬁle(R,t), is given in terms

of fe and \7(R,t), respectively, the kinetic-energy operator

Baer et al.

J
i 0 (AD)
i P P(R,1);

N1 a 2
=> { > H[ li—VnﬂOn(R,t)(AD)]
k n=1 n ik

X P(R,1)AD). (20

for the electrons and the system potential energy operator, by

Ho(R,1) =T+ V(R,1). (15)

Note that\?(t) does not appear explicitly in the final
equation. We shall refer to this as the “dressed nuclei” gauge
because there is no longer any nuclear potential, but rather

Note that we have allowed explicitly for the possibility that the nuclei possess momentum that consists of contributions

V can be time-dependent. From Edg) we find that
(RN PARIR) KR tA)
=f dR"Y, (j,R,t;\|Po(RIR")|I,R", t;:\)

X (1,R" ;N Po(R"[R") [k, R’ t;\) (16)

2
} S(R—R'), (17)

jk

h
= {{ :_l-._Vn_h(On(Ryt)(}\)
i ¥nvo v/

and thus

N

d 1 ( & 2
i W(ROM=2 [2 [1.—Vn+gon(R,t>m] 1
k - ik

n=12m, | i

d
+(j ,R,t;)\|( He(R,t)—iﬁE) |k, R, t;\)

X (R, DM (18)

1(h11)V, andp,(R)“P). It is the fact that they(R,t)!}) do

not carry all of the nuclear coordinate dependence which
causes the gradient operator to no longer be the total momen-
tum operator.

As an application of this development, which allows
great flexibility in choosing the underlying gauge, we con-
sider the problem of a nonperturbative interaction of a mol-
ecule with a strong electromagnetic field. Assuming that
V(t)=VentE(t)-D where Vg is the electron—nucleus
Coulomb interaction andD=eX ., is the total electronic
dipole moment and(t) is the electric field at time. We
assume the electric field is turned on at tite0. Let us
expand theM time-dependent adiabatic functions as a linear
combination of L eigenstates att=0 (i.e., the time-
independent adiabatic basis

L
I=1
i=1,2,.M. 21)

It is important to realize thab is a rectangular matrix of

This equation constitutes a general result for the timedimensionLXM and that in actual applicatioris may be
dependent problem and is the central result of this paper. It i§onsiderablylarger thanM without affecting the number of
in this form that the connection between the electronic basi§oupled time-dependent Schlinger equations one has to
choice\, the choice of interaction picture, and the choice ofsolve (which isL).
gauge is most apparent. Essentially, one chooses aXhgis This approach dresses the laM) dimensional time-
deciding what result is desired whEH(R,t) —i%d/dt] acts ~ dependent electronic problem usingrauch larger (L-) di-
on the electronic state vectofk,R,t:\). This also deter- Mensional space of time-independent adiabatic wave func-
mines the particular interaction picture, and when thetions. This is in co_ntra_tdlct|on to the usual approach thgt uses
k,R,t=0:\)’s areeigenstatesf I:|e(R,t) it is clear that the a_smaIIL to st_art with(in order to keep the number of.Schro
time dependence of the statBsR,t:\) is simply a phase dinger equations, to be solved, as small as possiafel,
factor (which depends o). That is, it is obviously simply therefore, may distort the_eﬁgct of the perturbation, in par-
a gauge transformation of the electronic state. Of coursdcUlar when the perturbation is large.
there are many choices that can be made. We consider one of . | NiS inspires a new transformation, where #g(R,t)
these (which differs significantly from the ordinary ap- W_h'Ch_'S aMxM matrix from Eg.(5) can be shown to be
proach which shows explicitly the power of the present gen-91ven in the form:
eral formulation.

The electronic adiabatic basis sat= AD) is chosen so
that its members satisfy the time-dependent Sdimger
equation for the electronic problem, that is

PR =0"(RY)-

h
i—V+fJn(R.t=0)) -o(R1),
(22)

whereg (R,t=0) is a matrix of dimension of X L. Here,
“DRA" denotes the “dressed adiabatic” representation. The
dressed nuclear equation of motion is of reduced number of
effective electronic stateg.e., M) is

(19

- d
Ho(R, 1) —i% E) |k,R,t;AD)=0.

From Eq.(18) the equation fory(R,t)*" then is
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that different choices of the electronic basis essentially can
be viewed as invoking different interaction pictures, or
equivalently different gauges.
We also suggest that there is an analogy with the cen-
trifugal potential and centrifugal reaction in rotational mo-
Ik tion. For a central force problem, the motion of a particle in
(23  three dimensions can be reduced to an equivalent one-
dimensional problem. The radial part of the true kinetic en-
This equation can be diabatized, by carrying out a timegrgy pecomes the kinetic energy of the one-dimensional
dependent adiabatic-to-diabatic transformatsimilar to the problem, while the rotational part of the true kinetic energy
one performed within the time-independent framework—segs interpreted as an additional contribution to the potential
Ref. 3 employing the matriXApra_.oro(R,t) Which has to  energy for the one-dimensional motion. It in turn gives rise,

be a solution of the space—time first-order differential equaclassically, to a fictitious force. Analogously for our problem,

J
; (DRA)
if p H(R,1);

N1k 2
=E[E |;i—vn+gon<R,t)<DRA>]

k n=1 2rnn

X (R, 1) (PR

tion: the true kinetic-energy operator for the nuclei is
3 N |52
= (Vat+ 9a(R,) ) Apra . pro(R,1) =0, i
i n=1 2M,
d (24) where in the\, R representation the momentum operator is
ih E+H3(R,t)(DRA) Apra—pro(R,1) =0, given by Eq.(4). If, in the spirit of the Born—Oppenheimer
development, one chooses to interpret the components of
where the dressed adiabatiMxM potential matrix  #(R,t)® as nuclear wave functions and correspondingly
He(R,1)°R* is (—#2/2m,) V2 as the nuclear kinetic-energy operator for par-
HORAR 1) = (R, (R, 1) ticle n, then the terms that arise from(R)()‘) in the true
—_— kinetic energy are no longer to be interpreted as nuclear
=o"(R,HOHPAR,t=0)w(R,1). (25 kinetic-energy terms. However, they are still a part of the

It is important to realize that the dimensions @$',
He(R,t=0)P*" and w are MXL, LXL, and isLXM,

respectively. The final set of coupled nuclear Sdimger
equations is

1
n=1 2rnn

; J (DRD) h ? (DRD)

+; [He(ROTFD (RO, (26)

where the dressed-diabatit X M potential matrix is
HE"P(R,1) = Abga . oro(R:t) - HEFA(R1) - Apra_.pro( R ).
(27)

It is important to emphasize that a solution for E24)

is guaranteed only in case the time—space curl conditio
(similar to the one encountered in the time-independen
framework is fulfilled. The solution follows by integrat-

ing Egs.(24) along atime-spacecontours.

Ill. DISCUSSION

Hamiltonian, of course, and thus must be ultimately reintro-
duced in a different guise. The effects of the electrons on the
nuclear dynamics can thus be viewed as leading to fictitious
nuclei (i.e., dressed nucleiwhose dynamics is “potential
free.”

As an application to the theory, we have presented a
method to treat the nuclear dynamics under strong electro-
magnetic fields. The treatment proposed includes the projec-
tion of the fully time-dependent states at timnen the adia-
batic states at time=0 (before the field is turned gnOnly
then a truncation to a smaller basis is performed, where the
nuclear dynamics is carried out. This approach is strictly
different from the methods in common use, where the time-
dependent perturbation is represented as a truncated matrix at
the level of thet=0 adiabatic states. One way to understand
our approach is that while the conventional approaches trun-
cate the equations of the Schinger picture, we advocate

the truncation of the “dressed” equations within the interac-

fion (or Dirag picture. This should lead to a considerably
better description of the nuclear dynamics using similar com-
puting resources.
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