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We reconsider the Born–Oppenheimer–Huang treatment of systems of electrons and nuclei for the
case of their interaction with time-dependent fields. Initially, we present a framework in which all
expressions derived are formally exact since no truncations are introduced. The objective is to
explore the general structure of the equations under the most unrestricted conditions, including the
possibility that the electronic basis is dependent both on the nuclear coordinates and on time. We
then derive an application of the theory applicable to cases of interaction with strong time-dependent
fields. The method truncates the electronic basis only after the time-dependent interaction is taken
into account in the electronic wave functions. This leads to theory which is similar to a Born–
Oppenheimer-type truncation within the interaction picture. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1606433#

I. INTRODUCTION

The Born–Oppenheimer–Huang~BOH! treatment of
systems of electrons and nuclei has long been used for the
description of quantum dynamics in atomic, molecular and
chemical physics.1–16 Usually one either immediately sepa-
rates the explicit time dependence to consider stationary
states of total energyE, or one assumes that all of the time
dependence is contained in the nuclear wave function. The
traditional BOH treatment restricts the adiabatic electronic
wave functions to having no explicit time dependence. This
need not be so as has been mentioned elsewhere,6 though,
intuitively, introducing time-dependent electronic states
seems a needless complication. However, it is interesting to
explore the most general form that the equations can have
rather than imposing restrictions from the outset on the man-
ner in which the time dependence enters. We shall see that
doing so leads to a description that has interesting parallels
with the situation of charged particles in the presence of an
electromagnetic field. In particular, we find that the natural
connection can be viewed from the standpoint of various
interaction pictures, the transformations which behave like
gauge transformation giving rise to gauge contributions to

the nuclear momentum.17 In general, one finds that it is cru-
cial that the momentum operator of the nuclei includes all
possible contributions just as is the case for a charged par-
ticle in a vector potential.

This paper is organized as follows: In Sec. II we present
the formal analysis based on the nonrelativistic Schro¨dinger
equation for a system of nuclei and electrons. Section III
contains a discussion of the results.

II. GENERAL TIME-DEPENDENT TREATMENT OF
COMBINED NUCLEAR AND ELECTRON DYNAMICS

We consider a molecular system with N nuclei and some
number of electrons, which we treat using a direct product
basis. For notational convenience we incorporate the elec-
tronic degrees of freedom for the state of the system using an
abstract set of vectors, and we treat the nuclear degrees of
freedom in the coordinate representation. The identity in this
‘‘semiabstract’’ form is

1̂5(
j

u j ,R,t;l&d~R2R!^ j ,R,t;lu. ~1!

The indexl is used to denote the particular choice of elec-
tronic basis~to differentiate among the infinitely many pos-
sibilities! and j indicates a particular member of the elec-
tronic basis setl. Here R represents the complete set of
nuclear coordinates. For notational convenience the abstract
vectors have been written as though they are discretely in-
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dexed, but this need not be the case. Note that we allow for
the possibility of using a different set of abstract vectors at
eachR and t and that we have indicated this flexibility ex-
plicitly. The semiabstract form of a general system operator,
Ô, is

Ô~RuR8!5(
j

(
k

u j ,R,t;l&O~RuR8! j ,k
~l!^k,R8,t;lu, ~2!

where

O~RuR8! j ,k
~l!5^ j ,R,t;luÔ~RuR8!uk,R8,t;l&

[@O~RuR8!# j ,k
~l! , ~3!

is a matrix element in thel, R representation. The double
underline indicates a matrix in the electronic basis quantum
numbers. In particular, the matrix element for the operator
P̂n , corresponding to the linear momentum operator of
nucleusn, is

Pn~RuR8! j ,k
~l!5^ j ,R,t;luP̂n~RuR8!uk,R8,t;l&

5
\

i
^ j ,R,t;lu¹nd~R2R8!uk,R8,t;l&

5H 1I
\

i
¹n1`n~R,t !J

j ,k

~l!

d~R2R8!, ~4!

where¹n is the gradient with respect to the coordinates of
nucleusn, and, by definition

`n~R,t ! j ,k
~l![

\

i
^ j ,R,t;lu¹nuk,R,t;l&. ~5!

From the orthogonality of the electronic ket vectors it is
immediate seen that̀ n(R,t) j ,k

(l) is a self-adjoint matrix.
Thus, the linear momentum matrix element in this represen-
tation is split into two contributions~neither of which isa
priori small! that are determined by the choice of represen-
tation, l. This immediately shows the parallel between the
present system and a charged particle in an external electro-
magnetic field. Specifically, there is a contribution to the mo-
mentum of nucleusn that arises due to the incomplete sepa-
ration of electronic and nuclear degrees of freedom; i.e., the
electronic basis states can, in general, depend on both the
nuclear coordinates and time. We remark that different
choices of the electronic basis correspond to various interac-
tion pictures and the related unitary or gaugelike transforma-
tions. Thejth component of the wave function in thel, R
representation is given by

c~R,t ! j
~l!5^ j ,R,t;luc~R,t !&, ~6!

where uc(R,t)& is the state of the system in its original,
semiabstract form. If one interpretsc(R,t)(l) as the nuclear
wave function, then clearly (\/ i )¹n acting on it is not the
total momentum. It lacks the contribution arising from the
gauge transformation, which is associated with the nuclear
position dependence of the electronic basis. The transforma-
tion between representationsl0 andl1 is conveniently rep-
resented in matrix notation as follows:

c~R,t !~l1!5Al0→l1
~R!•c~R,t !~l0!, ~7!

where the matrixAl0→l1
(R) is defined by

@Al0→l1
~R!# j ,k5^ j ,R,t;l1uk,R,t;l0&. ~8!

It is unitary ~and can be interpreted as a gauge transforma-
tion! satisfying the conditions

@Al0→l1
~R!#215@Al0→l1

~R!#†5Al1→l0
~R!. ~9!

For a general semiabstract operatorÔ~RuR8!, the mixed-
representationmatrix element

^ j ,R,t;l1uÔ~RuR8!uk,R8,t;l0&, ~10!

can be analyzed in two different ways; one can insert a reso-
lution of the identity either in front of or following the op-
erator, to obtain the identity

O~RuR8!~l1!
•Al0→l1

~R8!5Al0→l1
~R!•O~RuR8!~l0!. ~11!

In particular for`n(R,t) we find that
\

i
¹nAl0→l1

~R!1`n~R,t !~l1!
•Al0→l1

~R!

5Al1→l0
~R!•`n~R,t !~l0!. ~12!

This can be interpreted as the gauge transformation of the
momentum operator for nucleusn arising due to the trans-
formation from thel0 to thel1 pictures.

We now consider a general electronic basis. The equa-
tion for the time-dependent nuclear wave function,
c(R,t) j

(l) , is derived starting from the time-dependent
Schrödinger equation

i\
]

]t H(k
uk,R,t;l&c~R,t !k

~l!J
5E dR8Ĥ~RuR8!(

k
uk,R8,t;l&c~R8,t !k

~l! , ~13!

where Ĥ~RuR8! is the semiabstract Hamiltonian operator.
Thus

i\
]

]t
c~R,t ! j

~l!5(
k

F E dR8(
n51

N
^ j ,R;luP̂n

2~RuR8!uk,R8;l&
2mn

c~R8,t !k
~l!G

1^ j ,R,t;luS He~R,t !2 i\
]

]t D uk,R,t;l&c~R,t !k
~l! . ~14!
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Here we have written the Hamiltonian in the form

Ĥ~RuR8!5 (
n51

N P̂n
2~RuR8!

2mn
1d~R2R8!Ĥe~R,t !,

where the electronic Hamiltonian,Ĥe(R,t), is given in terms
of T̂e and V̂(R,t), respectively, the kinetic-energy operator
for the electrons and the system potential energy operator, by

Ĥe~R,t !5T̂e1V̂~R,t !. ~15!

Note that we have allowed explicitly for the possibility that
V̂ can be time-dependent. From Eq.~4! we find that

^ j ,R,t;luP̂n
2~RuR8!uk,R8,t;l&

5E dR9( ^ j ,R,t;luP̂n~RuR9!u l ,R9,t;l&

3^ l ,R9,t;luP̂n~R9uR8!uk,R8,t;l& ~16!

5F H 1I
\

i
¹n1`n~R,t !~l!J 2G

jk

d~R2R8!, ~17!

and thus

i\
]

]t
c~R,t ! j

~l!5(
k

F (
n51

N 1

2mn
H 1I

\

i
¹n1`n~R,t !~l!J 2G

jk

1^ j ,R,t;luS He~R,t !2 i\
]

]t
D uk,R,t;l&

3c~R,t !k
~l! . ~18!

This equation constitutes a general result for the time-
dependent problem and is the central result of this paper. It is
in this form that the connection between the electronic basis
choicel, the choice of interaction picture, and the choice of
gauge is most apparent. Essentially, one chooses a basisl by
deciding what result is desired when@Ĥe(R,t)2 i\]/]t# acts
on the electronic state vectorsuk,R,t:l&. This also deter-
mines the particular interaction picture, and when the
uk,R,t50:l& ’s areeigenstatesof Ĥe(R,t) it is clear that the
time dependence of the statesuk,R,t:l& is simply a phase
factor ~which depends onR!. That is, it is obviously simply
a gauge transformation of the electronic state. Of course
there are many choices that can be made. We consider one of
these ~which differs significantly from the ordinary ap-
proach! which shows explicitly the power of the present gen-
eral formulation.

The electronic adiabatic basis set (l5AD) is chosen so
that its members satisfy the time-dependent Schro¨dinger
equation for the electronic problem, that is

S Ĥe~R,t !2 i\
]

]t D uk,R,t;AD&50. ~19!

From Eq.~18! the equation forc(R,t) j
(AD) then is

i\
]

]t
c~R,t ! j

~AD!

5(
k

F (
n51

N
1

2mn
H 1=

\

i
¹n1`n~R,t !~AD!J 2G

j ,k

3c~R,t !k
~AD! . ~20!

Note that V̂(t) does not appear explicitly in the final
equation. We shall refer to this as the ‘‘dressed nuclei’’ gauge
because there is no longer any nuclear potential, but rather
the nuclei possess momentum that consists of contributions
1=(\/ i )¹n and`n(R)(AD). It is the fact that thec(R,t) j ,k

(l) do
not carry all of the nuclear coordinate dependence which
causes the gradient operator to no longer be the total momen-
tum operator.

As an application of this development, which allows
great flexibility in choosing the underlying gauge, we con-
sider the problem of a nonperturbative interaction of a mol-
ecule with a strong electromagnetic field. Assuming that
V̂(t)5VeN1E(t)•D̂ where VeN is the electron–nucleus
Coulomb interaction andD̂5e(nr̂n is the total electronic
dipole moment andE(t) is the electric field at timet. We
assume the electric field is turned on at timet.0. Let us
expand theM time-dependent adiabatic functions as a linear
combination of L eigenstates att50 ~i.e., the time-
independent adiabatic basis!:

u j ,R,t;AD&5(
l 51

L

u l ,R,t50;AD&v l j ~ t,R!;

j 51,2,...M . ~21!

It is important to realize thatv is a rectangular matrix of
dimensionL3M and that in actual applicationsL may be
considerablylarger thanM without affecting the number of
coupled time-dependent Schro¨dinger equations one has to
solve ~which is L!.

This approach dresses the low~M! dimensional time-
dependent electronic problem using a~much! larger ~L-! di-
mensional space of time-independent adiabatic wave func-
tions. This is in contradiction to the usual approach that uses
a smallL to start with~in order to keep the number of Schro¨-
dinger equations, to be solved, as small as possible! and,
therefore, may distort the effect of the perturbation, in par-
ticular when the perturbation is large.

This inspires a new transformation, where the`n(R,t)
which is aM3M matrix from Eq.~5! can be shown to be
given in the form:

`n
~DRA!~R,t !5v†~R,t !•S \

i
¹1`n~R,t50!D •v~R,t !,

~22!

where`n(R,t50) is a matrix of dimension ofL3L. Here,
‘‘DRA’’ denotes the ‘‘dressed adiabatic’’ representation. The
dressed nuclear equation of motion is of reduced number of
effective electronic states~i.e., M! is
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i\
]

]t
c~R,t ! j

~DRA!

5(
k

F (
n51

N
1

2mn
H 1=

\

i
¹n1`n~R,t !~DRA!J 2G

j ,k

3c~R,t !k
~DRA!. ~23!

This equation can be diabatized, by carrying out a time-
dependent adiabatic-to-diabatic transformation~similar to the
one performed within the time-independent framework—see
Ref. 3! employing the matrixADRA→DRD(R,t) which has to

be a solution of the space–time first-order differential equa-
tion:

\

i
~¹n1`n~R,t !~DRA!!ADRA→DRD~R,t !50,

~24!

i\S ]

]t
1He~R,t !~DRA!DADRA→DRD~R,t !50,

where the dressed adiabaticM3M potential matrix
He(R,t)DRA is

He
DRA~R,t !5v†~R,t !v̇~R,t !

5v†~R,t !He
DRA~R,t50!v~R,t !. ~25!

It is important to realize that the dimensions ofv†,
He(R,t50)DRA and v are M3L, L3L, and is L3M ,

respectively. The final set of coupled nuclear Schro¨dinger
equations is

i\
]

]t
c~R,t ! j

~DRD!5 (
n51

N
1

2mn
H \

i
¹nJ 2

c~R,t ! j
~DRD!

1(
k

@He~R,t !# j ,k
~DRD!c~R,t !k

~DRD! , ~26!

where the dressed-diabaticM3M potential matrix is

He
DRD~R,t !5ADRA→DRD

† ~R,t !•He
DRA~R,t !•ADRA→DRD~R,t !.

~27!

It is important to emphasize that a solution for Eq.~24!
is guaranteed only in case the time–space curl condition
~similar to the one encountered in the time-independent
framework3,16! is fulfilled. The solution follows by integrat-
ing Eqs.~24! along atime–spacecontours.

III. DISCUSSION

We have seen that the most general treatment of the
time-dependent Schro¨dinger equation describing systems of
nuclei and electrons leads to equations which, like those of a
charge particle in an external vector potential, involve con-
tributions to nuclear momentum operator in addition to\/ i
times the nuclear gradient operator. In the present instance,
such nuclear momentum terms result from the fact that the
nuclear ‘‘wave functions’’c(R,t)k

(l) do not contain all of the
dependence on the nuclear coordinates. The structure is such

that different choices of the electronic basis essentially can
be viewed as invoking different interaction pictures, or
equivalently different gauges.

We also suggest that there is an analogy with the cen-
trifugal potential and centrifugal reaction in rotational mo-
tion. For a central force problem, the motion of a particle in
three dimensions can be reduced to an equivalent one-
dimensional problem. The radial part of the true kinetic en-
ergy becomes the kinetic energy of the one-dimensional
problem, while the rotational part of the true kinetic energy
is interpreted as an additional contribution to the potential
energy for the one-dimensional motion. It in turn gives rise,
classically, to a fictitious force. Analogously for our problem,
the true kinetic-energy operator for the nuclei is

(
n51

N P̂n
2

2mn
,

where in thel, R representation the momentum operator is
given by Eq.~4!. If, in the spirit of the Born–Oppenheimer
development, one chooses to interpret the components of
c(R,t)(l) as nuclear wave functions and correspondingly

(2\2/2mn)¹n
2 as the nuclear kinetic-energy operator for par-

ticle n, then the terms that arise from̀n(R)(l) in the true
kinetic energy are no longer to be interpreted as nuclear
kinetic-energy terms. However, they are still a part of the
Hamiltonian, of course, and thus must be ultimately reintro-
duced in a different guise. The effects of the electrons on the
nuclear dynamics can thus be viewed as leading to fictitious
nuclei ~i.e., dressed nuclei! whose dynamics is ‘‘potential
free.’’

As an application to the theory, we have presented a
method to treat the nuclear dynamics under strong electro-
magnetic fields. The treatment proposed includes the projec-
tion of the fully time-dependent states at timet on the adia-
batic states at timet50 ~before the field is turned on!. Only
then a truncation to a smaller basis is performed, where the
nuclear dynamics is carried out. This approach is strictly
different from the methods in common use, where the time-
dependent perturbation is represented as a truncated matrix at
the level of thet50 adiabatic states. One way to understand
our approach is that while the conventional approaches trun-
cate the equations of the Schro¨dinger picture, we advocate
the truncation of the ‘‘dressed’’ equations within the interac-
tion ~or Dirac! picture. This should lead to a considerably
better description of the nuclear dynamics using similar com-
puting resources.
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