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Properties of phase-coherent energy shuttling on the nanoscale

Roi Baer””
Department of Physical Chemistry and the Lise Meitner and Fritz Haber Centers, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel

Kenneth Lopata and Daniel Neuhauser”"

Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
(Received 21 August 2006; accepted 13 October 2006; published online 4 January 2007)

Recently, the possibility of transporting electromagnetic energy as local-plasmon-polariton waves
along arrays of silver nanoparticles was demonstrated experimentally [S. A. Maier et al., Nat. Mater.
2,229 (2003)]. It was shown that dipole coupling facilitates phase-coherent excitation waves, which
propagate while competing against decoherence effects occurring within each dot. In this article the
authors study the ideal coherent shuttling in such a system, leaving decoherence for future
investigation. In the weak field limit, the waves obey a Schrodinger equation, to be solved using
either time-dependent wave-packet or energy resolved scattering techniques. The authors study
some dynamical characteristics of these waves, emphasizing intuition and insight. Scattering from
barriers, longitudinal-transverse coupling and acceleration methods are studied in detail. The authors
also discuss briefly two-dimensional arrays and a simple decoherence model. © 2007 American

Institute of Physics. [DOI: 10.1063/1.2390697]

INTRODUCTION

123The interface between optics and electronics is an im-
portant subject under extensive study because of the impres-
sive progress in solid-state crystal photonic devices.'™ Min-
iaturization to the nanoscale has been demonstrated using
linear arrays of silver nanoparticles for transporting near-
field electromagnetic (EM) energy.“_7 Important advances
were made also on the molecular scale, outlining a possible
route to functional molecular photonic devices.*'* The EM
interaction between the active centers (whether particles or
molecules) enabling such transport is the resonance dipole
c:oupling.“’17 We will concentrate in this article particularly
on the nanoparticle array. At each site along the array, the
EM energy can be stored as a localized surface plasmon
(LSP) excitation. The dipole coupling enables the excitation
energy to “hop” between different sites, thus forming the
localized surface plasmon-polariton (LSPP) waves. Various
controllable parameters affect the energy flow, for example,
the distance between the nanoparticles, their surrounding di-
electric constant, and their shape and composition (for ex-
ample, core-shell techniques allow us to change significantly
the LSP frequencyls_zl). This large set of controllable prop-
erties may be valuable for constructing novel LSPP nanos-
cale devices. These may be important new scientific tech-
niques with obvious technological results, related to the
ability to drive EM energy into well-controlled and confined
regions.zzf%

A high-level approach to plasmon-polariton dynamics
includes an explicit treatment of the electromagnetic field
dynamics by means of a full numerical solution of Maxwell’s
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equations.27_3' Ideally, this should couple to the material dy-
namics (electronic and nuclear) within the metallic nanodots.
Yet, the resulting theory is complicated (even though effi-
cient methods exist to describe electron dynamics, such as
time-dependent density functional theory32’33). Instead, sim-
plified models can often capture the essential physical con-
tent of the systems.

This article takes a less involved route, which forms a
simplified treatment, on the one hand, yet is general enough
to capture, in the weak field and large separation limit, most
of the important transport properties. This treatment allows
us to study plasmon-polariton waveguides, stressing in par-
ticular the couplings between polarization modes. The result-
ing method, relying on quantum scattering theory, is efficient
and robust. We also try to develop a qualitative understand-
ing of the dynamics of these waves. The rest of the article
includes section on theory, where the model and numerical
time-dependent and time-independent methods of solution
are given; a section on devices for coherent plasmonics; and
a section summary and discussion.

THEORY

Many aspects of the LSPP optical devices have been
investigated in previous publications.]3’15’16’34’35 In this paper
we extend these studies, using a different approach based on
quantum scattering theory, relying on the exciton model of
excitations.’®*” We work in the weak damping limit and ne-
glect dephasing and energy decay mechanisms.

Consider first two identical spherical nanodots. The
radius-vector connecting the two dots is R. The distance is
large, so two approximations apply. First, the overlap of the
low-lying electronic eigenfunctions corresponding to two
different dots is small and is set equal to zero: there is no
electron sharing. Second, R™! is small enough so the dipole

© 2007 American Institute of Physics
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TABLE I. Values of parameters used in the 2D dynamics calculations.

Grid Wave packet Vi Vep
N,=N,=30 k=(-2,-2) X[ =Yp=Xgep=16
a=1.0 ro=(12,12) xp=yr=Av=0.8
&=1.0 o=1.2 I'=0.63

coupling term (proportional to R~3) dominates the EM cou-
pling between the dots. The dot we denote as 1 has a ground
state @, and three dipole connected degenerate excited states
W, ¥, and ¥,.. The corresponding states of dot 2 are ®,
and V,, a=x,y,z. The ®;— W, ,(i=1,2) transition dipole is
denoted ¢ (here we assume a spherical symmetry, so & is
independent of @). The ground state of the combined two-dot
system is well approximated by ®,®,, while the low-lying
excited states form a six-dimensional manifold, spanned by
@\ W,z and ¥, P,, a, B=x,y,z. The 6 X 6 matrix represent-
ing the Hamiltonian in this space is

<‘I)1\I’2a|H|q)1\P2ﬁ> = <‘P1a¢2|H|‘1'25‘I’2> =E, 5aﬁ’
(2.1

. B ,R*6,5—3R.Rg

<‘I’1a(p2|H|q)1‘I’2ﬁ> = EQB(R) =& R’ .

Because R~ is small, the eigenvalues of the matrix are all
concentrated in a narrow band around the value of E; (E| is
an additive constant and is set equal to zero with no loss of
generality in our approximation). We concentrate only on the
lowest excited states, so the theory is valid in the weak ex-
citation limit.

Now, the two-dot system can be generalized to an N dot
system with similar assumptions and approximations. The
location of dot i=1,...,N is R;, and we only treat the case of
large interdot separation (|R;|=|R,~R/| large) as before. The
low-lying excitation manifold is a Hilbert space spanned by
3N functions W;=V,; , indicating the probability amplitude
that the excitation is on site i in direction o (I=(ia) is a
composite index). The real and symmetric Hamiltonian ma-
trix is then

Hjy=Hjp= Ea,e(Rij)(l - 51',‘)- (2.2)
A schematic of the type of systems we want to treat is shown
in Table I.

We still need to take into account the infinite nature of
nanodot wires leading into or out of the interaction region,
i.e., the “leads” (Fig 1). In general we can have several leads.
We denote their number by L. Of course, in any actual simu-
lation the leads cannot be infinite: they are necessarily finite.
Thus, supplement each lead by a negative imaginary poten-
tial (NIP) whose role is to absorb the wave pacl(et38’39 and
prevent it from reflecting at the finite edge of the lead and
return into the device. Consider such a lead we denote by !/
(I=1,...,L). Suppose the asymptotic direction of the lead
(away from the system) is the unit vector n; and its furthest
edge is at point R;. Then the form of the NIP for this lead is

Vi 5= 0upd;jVi» with
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FIG. 1. A schematic picture of the system: an interaction or scattering zone,
where a “polariton device” is found. The device is connected to one or more
“infinite” wires called leads.

Vi=unp((R,-R) - i,

R/-R;

), (2.3)

where
onip(5,8) = — iT(A —5)30(A —5) X O(R - \S* - 7).
(2.4)

Here, 6(x) is the Heaviside function, and we found by trial
and error that the following parameters for the NIP are ap-
propriate

I'=0.001, A=15R. (2.5)

The total NIP is obtained by summing over all leads (sum-
ming on [=1,...,L), and we then add the resulting matrix to
the Hamiltonian. We now consider the Hamiltonian Hj; as
the Hamiltonian which includes the NIP.

Wave Packet analysis: Example

Once the Hamiltonian is built, the dynamics of wave
packets can be studied. One can define a Cartesian position
matrix r? (y=x,y,z),

V;YJ =,(R) v (2.6)
and a corresponding velocity

vY=1i[H,r"]. (2.7)
Furthermore, the density operator is

p() k= O Sk, (2.8)
so that the current density matrix is

W= N grpDgrre+ P 0 0o

= %(511("' 3) ) k- (2.9)

These matrices help analyze the polariton wave packet dy-
namics in the system. Let us consider a wire of N dots and
construct a wave packet 1//k=2fl'=l[Xn\I’,,,x+ Y, ¥, ] (the coef-
ficients X, and Y, indicate the probability amplitude for the
excitation to be on site ¥, and V¥, ,, respectively). To be
specific, let us study closely an example, the scattering of a
wave packet off a barrier. In a horizontal wire there is no
coupling between longitudinal and vertical waves. However,
a single dot vertically displaced from the wire breaks this
symmetry and effectively forms a barrier (see the nanodot
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FIG. 2. (Color) Top: Polariton wave packet dynamics: each circle is a nan-
odot. A colored arrowhead indicates the direction and amplitude of the di-
pole excitation. For details consult text. Bottom: The flux going into the
right lead after the scattering event.

configuration in Fig. 2). We consider this displaced dot to be
the barrier. Choosing a longitudinal initial wave packet with
wave vector k,

Xn — e_(n - no)z/ZUzeikRn, Yn — 0, (2 10)

and o=2m/k, allowing it to scatter off this barrier. Propagat-
ing the wave packet in time, the solution is

() = ey

The probability T_,, to obtain a longitudinal or a transverse
transmitted wave can be measured by integrating the current
density over time,

(2.11)

TX—»a:f Ja(rht,)dt" (212)

0

A graphical view of the resulting dynamics is shown as snap-
shots at equal time intervals in Fig. 2. In the calculation we
took é&=R=D=1 and k=2. The time interval between snap-
shots is one unit of time. In the figure, each site is repre-
sented by a circle. If site n has a probability of being excited,
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we denote this by an arrowhead. The arrow points in the
direction (|X,|?,|Y,|?) and its color indicate the amplitude of
excitation, a,=|X,|?+|Y,|*, using a rainbow scaled legend.
Purple is assigned to max a,, while red indicates an ampli-

n
tude smaller by a factor of ~7. Amplitudes below this value
are not indicated with an arrowhead.

Observing Fig. 2, we see the initial longitudinal wave
packet advancing with velocity of about three units. Once it
impinges on the barrier, part of the wave packet is transmit-
ted and another part is reflected. It is interesting to observe
that most of the transmitted waves are longitudinal while
most of the reflected waves are transverse. Indeed, using the
flux, shown in Fig. 2 (bottom), we find that transmitting a
longitudinal wave packet has a probability of 0.67 while
transmitting a transverse wave packet is much less probable,
at only 0.03. On the other hand, a large portion of the re-
flected wave packet (probability of about 0.23) is transverse
while only a small part is longitudinal (0.07). Another no-
ticeable effect in Fig. 2 is that the velocity of the reflected
wave packet is approximately two units, considerably
smaller than the velocity of the incoming or transmitted
wave packet. In the next section we describe the dispersion
relations of polaritons on the wire. These allow understand-
ing of most of the observed feature in Fig. 2, except the
amount of transmission or reflection, which usually is diffi-
cult to explain and requires explicit calculation.

Dispersion of waves on a 1D Wire

In this section, we consider theoretically the one-
dimensional (1D) infinite straight wire with active centers
placed along the x axis at a spacing of R. From Eq. (2.2) the
Hamiltonian is

H

nm = 3an7&ma (213)
m

n—

where the coupling constant depends on the type of wave,
transverse or longitudinal,

2

AT= AL=_2AT' (214)

F?
Standard Ewald-type methods can be applied for the system.
They imply that for an infinite lattice, the eigenenergy is a

function of the wave vector k € [-7/R,7/R] and of R, given
by

wy =2Af3(kR), (2.15)
where
ful) =2 %(:x) (2.16)

n=1

We see that R3wk is a function of kR. This function, denoted
as f3(kR) converges for all values of kR. However, its second
derivative —f;'(x)=f(x) =2, cos(nx)/n is divergent at x— 0,
where it behaves like (x?/4)In x%. The remainder is well be-
haved and can be expanded in a Taylor series,
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FIG. 3. (Color online) Dispersion relations (left) and group velocities (right) for the waves on an infinite equally spaced lattice.

0 =2(3)+ Han 3 A 2
X) = —(nx*=3)x"—— -
’ 4 288 86400
8
L (2.17)
10 160 640
where Z(z) is the Riemann zeta function (Z(3)

=1.202 06...). This approximation becomes indefinitely ex-
act as x— 0. When 0 <x< 7 the maximal error is 2 X 107,
For most purposes, an accuracy of 0.02 is reasonable and it is
possible to neglect terms beyond the (kR)*. We thus assume
henceforth the following dispersion relation:

In|kR| 3

3 g R
2 4

288 °
(2.18)

Dk _ 1 (kR) ~ Z[3] + ( )(kR)2 -

24 73

The dispersion relation for the longitudinal and transverse
waves is shown in Fig. 3. This curve is very similar to the
dispersion found for five-nearest neighbor small damping
limit."> The harmonic model'® can be shown to be equivalent
to the present model in the weak field limit, so this is hardly
a surprise. The bandwidth for transverse waves is half that of
the longitudinal waves. Indeed, the longitudinal waves have
a minimum energy at k=0 of —4.84, (where A;=&"/R%) and
a maximal energy of about 3.6A; at k=/R. The transverse
energy is minimal, —1.8A at k=7/R, and maximal, 2.4A, at
k=0. We see that the longitudinal band spans an energy in-
terval twice that of the transverse band. An important feature
is that both types of waves obtain zero energy at the same
wave vector k= +0.467/R. This has an important implica-
tion for the scattering properties of these waves, as discussed
in the next section. The slope of the dispersion curve is the
group velocity, and gives the relation between the wave vec-
tor (or the energy) and the actual velocity of the EM energy,

dw kR)*
v =—kz—2AR2k<(1—1n|kR|)+( ) ) (2.19)
dk 72
This velocity is shown in Fig. 3. We see that longitudinal
waves move in the same direction as the wave vector k, yet
the transverse waves move in the opposite direction. This
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fact too will have an implication on the scattering properties
of the system. One should note that the slope of the group
velocity at k=0 is infinite. This shows that the effective mass

-1 2 -1
Meff = (%) ~ (—ZARZ((IZ) —ln(Rk))) (2.20)

converges logarithmically to zero at k=0. This singular be-
havior is a result of the infinite range of the dipole interaction
(which decays only algebraically) and will not be seen in a
nearest neighbor model. The significance of this divergence
is evident only in extremely long wires, where this weak
singularity can accumulate. In practice, under usual condi-
tions, we do not expect that such conditions will prevail due
to the existence of disorder and dephasing and in long wires
retardation effects, all of which are neglected here, although
an unusually small effective mass will be seen for finite lat-
tices at long wavelengths.

Using the dispersion and group velocities in Fig. 3, we
can explain many of the features found in the example of
wave packet dynamics shown in the previous section. First,
we can explain the velocity of the longitudinal wave packet,
which is 3. This is because the group velocity corresponding
to k=2 is indeed 3. Then we need to explain the fact that
most of the transverse waves are reflected, i.e., have a nega-
tive velocity of about —2. In the scattering event the energy is
conserved so far from the scatterer; the reflected wave has
the same energy as the impinging wave. From the dispersion
curve (Fig. 3), the energy corresponding to k=2 is w=1. The
transverse waves thus formed must have k=+0.25. It is rea-
sonable that k does not change sign. Thus the wave vector of
the transverse wave is 0.25, which corresponds to a velocity
of —2. What the dispersion curves cannot tell us is the prob-
ability for various events. For this, there is no alternative but
a dynamical calculation.

Energy-polarization resolved scattering approach

We now describe a time-independent Green’s function
approach that enables an efficient calculation of the various
scattering probabilities as a function of energy. We specialize
in systems where the nanodots are all contained in a single
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FIG. 4. Three types of polariton waves: longitudinal (L) along the wire,
transverse (T) perpendicular to the wire but in the plane and vertical (V)
perpendicular to the plane. The circles are schematic representation of the
ionic cores of the dot and the gray shadows represent the oscillating electron
clouds.

plane. The polaritonic waves in any lead [ are thus of three
different types of polarizations (the reader may consult the
schematic illustrations in Fig. 4): longitudinal: when the po-
larization is in the direction fi;, transverse: when the polar-
ization is in the nanodot plane but orthogonal to fi, and ver-
tical: when the polarization is perpendicular to the nanodot
plane. Denote by P, (.. (E) the cumulative probability
for incoming waves of energy E and polarity « (where «
=L,T,V) in lead [ to scatter out to lead !’ in polarity a’. The
negative imaginary parts of the leads / and /' can be used to
compute P ) o) (E). We define a suitably projected T
matrix as follows:

T= ZFMG(E)FNH,, (221)
where
I, o a
(T1a)igjy = 0ij0upV Vg(@(nz))ﬁy,
(2.22)
nf -nny, 0
p(h) =| —nn, nf 0
0 0 1

Seideman-Miller  trace

one then obtains

Using  the
s 40
transmission,

expression  for

P.o)—.an(E) = T T(E) 'T(E)]. (2.23)
Each of the negative imaginary potentials V' [see Egs.
(2.3)-(2.5)] must ideally be nonreflecting and fully absorbing
in their corresponding asymptotic channels (leads) for Eq.
(2.23) to be valid. This is because only then do these poten-
tials act like the outgoing flux (surface integrated current
density) operator across the boundary surface between the
system and the lead.”

Since the system is not large, it is more efficient to first
diagonalize the Hamiltonian and work out the trace in the
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diagonal representation. The diagonalization is one (expen-
sive) operation scaling as the cubic number of sites O(N°).
After that, however, each trace calculation can be set up to
cost O(N?) operations.

Dynamics on a 2D lattice

While this paper is concentrated more on one-
dimensional channels, we touch briefly in this section on
two-dimensional (2D) lattices of nanoparticles. We consider
a lattice of N=N,N, particles, with nearest neighbor spacing
a. We consider a vertical excitation. This type of excitation
does not couple to in-plane (longitudinal or transverse)
modes. For this, we do not need the full Hamiltonian given
in Eq. (2.2), but only the part that relates to vertical waves.
For a completely “vertical” initial Gaussian wave packet of

width o, centered r, with wave vector K,

I,ZI(I’;O) — e—|r - r0|2/206ik-(r—r0) (2.24)

the in-plane modes are neglected, and the behavior of the
system can be completely described by the N XN Hamil-
tonian,

v, n=m
H,,=1 & . (2.25)
R’21m7 b

where, for clarity, we have dropped the z subscript and, like
before, v is the surface plasmon transition frequency of the
nanoparticles.

We impose a quadratic negative imaginary potential, re-
sulting in an absorbing “rim” around the grid. This potential
is given by

Vym = 6mn[vl(-xL - xn) + U[()Cn - xR) + v[(yB - yn)

+Ul(yT_yn)]’ (226)

where (x,,,y,) is the position of the nth nanoparticle and
vi(p) =Tp*d(p). (2.27)

The various parameters of the potential are given in Table I.
The grid was then divided into two slabs by stepping the
transition frequency v— v+Av for x=x.,, thus creating a
barrier of the form

Vitep = Oun 0X — Xgep) AV,

step —

(2.28)

where 6(x) is the Heaviside step function.
Finally, the wave packet was evolved according to

Ylrs) = e Hy(r;0),

where H is the complex-symmetric effective Hamiltonian

(2.29)

H=H+ Vg, —iV]. (2.30)

Figure 5 shows snapshots, taken at different times, of the
wavepacket on a 30X 30 lattice. with the various adjustable
parameters chosen as shown in Table I. The color contour
plots represent the probability of a nanoparticle at that posi-
tion being excited, with red representing probabilities greater
than 0.15. The first feature of note is that analogous to the
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FIG. 5. (Color online) Snapshots of LSPP dynamics on a 30 X 30 nanoparticle lattice. LSPP amplitude is color scaled. The initial LSPP starts in a region of
frequency v (blue dots), moving in the north-east direction. It subsequently collides with the region of plasmon frequency v+ Av (green dots). The wave breaks

into refracted and reflected parts.

transverse waves in 1D, the group velocity of the 2D wave-
packet is antiparallel to k for this particular choice of initial
momentum (k,=k,=-2.0). It is observed that the group ve-
locity in the x and y directions can range from negative to
zero to positive depending on the value of k, as is expected
from a dispersive medium such as this.

Upon striking the barrier, part of the wave packet is
transmitted while part is reflected; the relative proportion and
shape of the wave packet reflected vary strongly with Aw. It
is interesting to find that the wave packet slides along the
interface before reflection and refraction occur. In a future
publication we will study the “optics” of such encounters,
using the 2D dispersion relation of the system.

DEVICES FOR COHERENT PLASMONICS
Basic scattering obstacles

Polariton waves along a straight wire with equally
spaced nanodots simply propagate within the allowed energy
band, between —4.8 and 3.6 for longitudinal and transverse
waves. This is seen in Fig. 6(a). Three basic types of ob-
stacles can be formed on such a wire, as shown in Fig. 6(b),
&-¢& coupling where the transition dipole moment is
changed, (c) R—R’ coupling where the spacing between the

RIGHTS L

nanodots is changed, and (d) »—v' coupling where the tran-
sition frequency is changed. Consider then a polariton of
wave vector k and energy w; coming from a wire with tran-
sition dipole moment & and passing into a wire with transi-
tion dipole & < ¢ (for definiteness). In the wire, the energy
w; is limited to the band wy € 2A[f3(7),f3(0)]. Since A
o« R™3, we find that the band in the second wire is changed by
proportion,

! !

g! 2
min’ wmax] = ( §> [wmim wmax] .

If the energy of the wave wy, is outside of this window it will
not be able to be transmitted into the new wire and there will
be total reflection. If the energy is in this interval, then since
it 1s conserved, we must have

Ef3(kR) = €°f3(k'R).

Thus, the wave vector k must change to k&’ to accommodate
the change in coupling strength. This change in wavelength
can in general cause loss of transmittance or increased reflec-
tance. Since the value w=0 is contained in the original inter-
val (w,;, is negative while wy,,, is positive), there is always,
in principle, an energy window around =0 through which

(3.1)

[w

(3.2)
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FIG. 6. (Color online) The transmission probability through (a) a straight equally spaced wire, (b) an R— R’'=3/2 step, (c) a v=0—1'=1 step, and (d) a
£=1— ¢ =(2/3)%2 step. The inset in each graph is a schematic of the corresponding barrier.

waves can pass. Furthermore, at this energy f3=0, so the
condition (3.2) necessarily means

w,=0=kR=k'R. (3.3)

Thus, there is no change in wavelength. The transmittance
here is therefore accomplished with probability 1. This is a
very important property for this type of barrier: there is al-
ways an energy window, no matter how narrow through
which the wave can pass. We can see this numerically when
we examine the case R=R’'=1, v=7', and & =(2/3)*%¢ in
the calculated transmission curve [Fig. 6(b)]. The analysis
above is borne out: the nonzero longitudinal transmission is
limited to an interval which is 8/27[-4.8,3.6], exactly in
accordance with Eq. (3.1). Furthermore, the transmission
probability near w=0 is indeed 1. A similar correspondence
is seen for the transverse waves.

Now consider a similar situation where the spacing be-
tween the nanodots changes from R to R’ > R. Now the non-
zero transmission interval is given by
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R

3
[wr,nin’wr,nax] = (_> [wmimwmax]' (34)

RI
Again, since the value w=0 is contained in the original in-
terval there is always, in principle, an energy window around
this value through which waves can pass: this type of barrier
cannot block all waves. The wave vector changes according
to

R3f3(kR) =R'3f3(k'R’"). (3.5)

In this case, even for w=0 there is a change of wave vector,
since we have

w,=0=, kR=k'R'. (3.6)

Thus, even at w=0 there is a change of wavelength and we
cannot expect in general that the transmission probability at
=0 will be unity, as in the previous case. Once again, this
analysis is borne out in the numerical examples, as shown in
Fig. 6(c). Here we take R'=(3/2)R and £=¢'. The energy
interval is once again 8/27 times the original interval, but the
transmission probability is less than unity at w=0. Finally,
we study the case of v— v'=v+1. In this case there is a



014705-8 Baer, Lopata, and Neuhauser
1.2 1
: (a) Yeovee
1 '
>
=1
F0.38 1
< ]
s ]
0.6 7
oW ]
o i
204 7
= ]
202 1
5 ]
0- T T LI N S B S B DR B S B B B B B R
-6 -4 2 0 2 4 6
Energy

J. Chem. Phys. 126, 014705 (2007)

e
() ==

= = e =
EN =) [} —_ \S]
AR R | Ll

Cumulative Probability
(=]
o

(=]

Energy

FIG. 7. (Color online) The transmission probability through (a) single and (b) multiple barriers.

smaller band of transmittance, but the analysis is not as
straightforward.

We move on to consider step barriers of finite extent.
The bandwidth scaling of Eq. (3.2) or (3.4) is an important
tool for understanding and estimating the effects of finite
square barriers similar to the one shown in the inset of Fig. 7.
Consider, for example, the transmission probability through
such a barrier of width 6R’ (where R=1 and R'=1.5), as
shown in the inset of Fig. 7. The transmission is substantially
nonzero only in an interval of energy very similar in width to
the interval for a semi-infinite wire [Fig. 6(c)]. Thus the
width is easily predicted by the scaling of Eq. (3.4), even for
a relatively thin barrier. Note that the shape of the transmis-
sion is difficult to predict exactly. The width of the barrier
determines the number of resonance peaks. In the present
case, the transmission curve has five sharp peaks correspond-
ing to the five sites of the barrier.

From the discussion above, it may seem that the w=0
component is able to penetrate just about any barrier. How-
ever, this is not true in general. Indeed, interference through
multiple barriers creates alternating energy bands of reflected
and transmitted waves. In Fig. 7(b) we see the formation of
such bands in the transmission function through four equally
spaced barriers. Each barrier is formed by increasing the
spacing from R to 1.5R. The distance between two consecu-
tive barriers is 12R. This latter width determines the number
of energy bands [Eq. (12)], while the number of peaks in
each band is equal to the total number of barriers minus 1.
Thus, if the number of barriers is increased indefinitely, the
transmitting bands will form continua, roughly equal in
width to band barriers shown in Fig. 7(b). The w=0 waves
are within the total reflection band in this example.

Acceleration of wave packets

In order to create and manipulate wave packets, we need
to be able to control their momentum (wave vector) and
velocity. This can be done by creating a slope, i.e., a gradual
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decrease or increase in grid spacing. For example, consider
longitudinal waves in an infinite array with the spacing be-
tween consecutive nanoparticles given by

e+ p -0
— 7 4
p,=Ry 1+ 7 (3.7)
1, n=<20.

Here, R is the initial spacing (taken as 1 in our units) and g
is the rate of change of the spacing p,. 7 determines the
minimal spacing and is typically much smaller than 1 (%R is
actually the diameter of the nanoparticle and R is initially
much larger than 7R). When g is positive, the spacing grows
down the positive direction, and when it is negative, the
distance between nanoparticles progressively becomes
smaller. In Fig. 8 we show the velocity and acceleration ex-
pectation values as functions of time for a longitudinal wave
packet of initial group velocity of 3.88 at several values of g.
Initially, the wave packet starts in the negative n part [see Eq.
(3.7)] where the spacing between nanoparticles is constant.
As it moves into the region of varying spacing, the wave
packets starts to “feel” the attraction or repulsion forces, and
its velocity expectation value changes accordingly. The ini-
tial velocity value of 3.88 corresponds to Rky=0.46m, the
wave vector for which ka:O. Choosing this value makes the
semiclassical analysis in the Appendix considerably easier.
This semiclassical analysis can explain the short-time quan-
tum behavior shown in Fig. 8. We obtain the following ex-
pression for the group velocity as a function of time:

1 1 5 f "dt (3.8)
—_— = + 8 - . .
V(1) v,(0) 0 p(0)

This seems to fit well the quantal calculations for small 7. For
negative g the semiclassical analysis predicts that the veloc-
ity will diverge to infinity at some finite critical time for
which the right hand side of Eq. (3.8) vanishes. In the quan-

tal calculations we do not find a divergence but a strongly
increasing acceleration as time proceeds.
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FIG. 8. (Color online) Wave packet calculation as discussed in the text, showing the velocity (left) and acceleration (right) as a function of time for several
values of the parameter g in an array with nanodot positions as given by Eq. (3.7). The initial wave vector is k=0.467r and 7=0.1 was used.

Longitudinal-transverse conversion

In the previous subsection, we concentrated on straight
wires which due to their intrinsic cylindrical symmetry do
not couple the transverse and longitudinal modes. We now
want to look at more complicated cases, where part of this
symmetry is removed. A device that can help manipulate the
polarity (whether longitudinal of transverse) of the waves is
extremely important. One simple way to do this, as we saw
in the section on devices for plasmonics, is to put a nanodot
near a waveguide. Such a construct, we saw, will cause the
reflected waves to change polarity. We now investigate this
issue further and show that there exist energy intervals where
the waves are purely longitudinal and cannot be converted.
On the other hand, in other intervals such a conversion has
an efficiency which can exceed 50%..

Consider first the example in the section on wave packet
analysis, namely, scattering through a barrier. The energy
resolved calculation shows clearly what we saw also in the
wave packet calculation (see Fig. 2). We first analyze the
scattering of the vertical waves, since they do not couple to
the other types of polarization waves in this planar system.
Analytically, we consider one limit—when D is very large.
In this case, the added nanodot will be coupled only weakly
to the system, and so only the waves with zero energy will be
affected (since the energy of a single dot is w=0). Thus we
need only consider three states of the waves traveling from
left to right ¢p=e™*0", from right to left ¢, =e 0" (where
Rky=0.467 is the wave vector corresponding to zero energy,
see Fig. 3), and the wave s, localized on the additional site.

The Hamiltonian matrix of this 3 X3 system is of the form
00 ¢

0 O c|,where c is a real constant depending on D and k,
c c O

1
D

cos kn
((Rn)2+D2)3/2

+22

n=1

c=& (3.9)

This system has three nondegenerate eigenvalues (0 and
+12c¢) and therefore its three stationary wave functions nec-
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essarily have no flux associated with them, ¢y=(1/ \E)(wL
— ) and b.=(1/2) () + ¢R)i(1/\e’5)z,//D. This means that
there is always total reflection, as each wave going to the
right must be accompanied by a wave moving to the left with
the same probability. This situation prevails only in the limit
where D is so large that only the above three states need to
be considered. When D is finite, other nearby states are also
necessary and the analysis becomes gradually invalid; i.e.,
scattering states can be formed.

Now consider what happens when we allow for longitu-
dinal and transverse waves which can be coupled by the
outstanding nanoparticle. Again, consider the large D limit,
and now there are four waves i , and % ,, where « takes
two values, L and T, indicating whether the wave is longitu-
dinal or transverse. The excitation on the outstanding nano-
particle also has two polarization modes, so this time the
Hamiltonian is reduced to a six-dimensional matrix and has
the following structure:

0000 f 1
0000 1 g
0 7 0000 f 1
H=| . =y , (3.10)
70 0000 I g
f1f1 00
1 g1 g 00

where v, f, and g depend on D and k. 7is a 4 X2 coupling
matrix. We now analyze what eigenvalues can such a Hamil-
tonian admit. First, write down the eigenvalue equation as

0 7
£ 0 X)) =EX). (3.11)
Multiplying by H from the left, we obtain
0 5
i (X)) =EXX). (3.12)
0 77

So we need to look for eigenvalues of 77, which is a 4 X 4
matrix. But this matrix must have two zero eigenvalues be-
cause 7 has a rank deficiency of 2. By numerically checking,
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FIG. 9. (Color online) The scattering amplitudes through an infinite nanowaveguide with a single offset nanodot barrier. The barrier types are shown in the

insets.

it is evident that the two other eigenvalues are in general
nonzero, are different from each other, and are shared by 7T
We thus conclude that the w=0 eigenvalue is doubly degen-
erate, a situation which facilitates current carrying eigen-
states. This allows nonreflecting solutions.

These analytical results serve to explain the behavior of
the scattering properties but are, of course, very limited in
their scope. We thus now show some results obtained by
actually solving the scattering problem in a numerically ex-
act way. These illustrate the rich properties of the dipolar
waves, even in simple systems as considered here. In Fig. 9,
we show the transmission through a barrier we discussed
above. We see that there is a wide energy range where only
longitudinal waves can exist, and these are usually transmit-
ted through the wire unchanged, except at an antiresonance
which may occur near the threshold for producing other po-
larizations. Once in the energy range where transverse waves
can exist, an impinging longitudinal wave is transmitted as a
longitudinal wave with probability of 20%-70% (mostly
around 50%) depending on the energy. It can be transmitted
as a transverse wave, although this has low probability, or it
can be reflected as a transverse wavewith probability close to
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50% as well. If the impinging wave is transverse, it may
have a large probability to go through as a transverse wave
or be reflected as a longitudinal wave. This is a similar result
to the time-dependent calculation.

The vertical waves cannot change their character be-
cause they are not coupled to the transverse or longitudinal
waves. When D is larger they will exhibit a strong reflec-
tance at w=0. In Fig. 9 we see that even when D=1 this is
the behavior.

An interesting question is how to increase the efficiency
of the conversion of waves from longitudinal to transverse
(or the other way around). One way would be to use inter-
ference again, but this time constructive. Indeed, if we place
two dots spaced by 4R at a distance D=1 from the wire, as in
the inset of Fig. 9(c), we obtain increased conversion prob-
abilities. We indeed see that at energies in a wide interval
around w=-0.8 the reflective conversion probability exceeds
80%. Changing the spacing between the two nanodots to 4.3
serves to increase the efficiency of conversion further to well
above 90%. It is interesting to note that the conversion in the
forward direction is increased as well (around w=0) by this
scheme. Narrow resonances allow transmission of transverse
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FIG. 10. (Color online) The probabilities of transmission and reflection in corners.

waves with high efficiency in this setup. Another way of
placing the two dots is in an antisymmetric manner, as shown
in the inset of Fig. 9(d). This changes the energy interval at
which the increased conversion frequencies are seen.

Corners and Intersections

An important issue is the ability of waveguides to bend

almost do not reflect at all from such a corner (except near
the threshold). The efficiency of conversion from longitudi-
nal to transverse as the wave is transmitted goes down to
about 50%. The probability for the transverse wave to take
the corner unchanged in character goes up to about 40%.
Interestingly, the probability to be reflected with change in
character is exactly equal to that for transmitting longitudinal
waves without change of character.

the direction of the traveling waves. Intuitively, it is clear
that a simple right angle corner will change the polarity of
the light if it is transverse or longitudinal. Figure 10(a) ex-
amines the scattering ensued by such a corner. It is seen that
vertical waves suffer very little reflection (typically consid-
erably less than 10%). Longitudinal waves, on the other
hand, are transmitted with considerable probability (around
70%), but during this, they are converted to transverse
waves, as would be expected. Transverse waves can take the
corner and stay transverse more easily than longitudinal
waves do. Finally, there is about 20% chance that the re-
flected wave will change character from longitudinal to
transverse and vice versa.

SUMMARY AND DISCUSSION

We have described a scattering framework for analyzing
the dynamics of polariton waves in wires and associated
structures. Using the analytical and numerical methods so
developed, we have studied several simple systems. Some of
the results are simple enough to be explained using the ana-
lytical model and additional reasonable assumptions. Some
of the results require more elaborate and accurate numerical

methods.

The LSPP waves exhibit a rich variety of properties,

When the corner angle is decreased to say 45°, as shown
in Fig. 10(b), some properties change. The vertical waves
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which may be useful for future scientific developments and
perhaps technological advances. By selecting energy ranges
or geometries, we can isolate types of waves; for example,
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longitudinal waves are the only waves that can exist at high
and low energies. In the planar structures we considered,
vertical waves are essentially decoupled from the two polar-
ization waves and enjoy unique properties, such as the ability
to take sharp turns with small reflectance. In the energy re-
gion where both transverse and longitudinal waves can co-
exist, the fact that they move in opposing direction for a
given wave vector strongly dominates many of the properties
we saw, especially those related to reflection and
longitudinal-transverse conversion probability.

Future work must address important issues such as dis-
order and decoherence. Disorder in these systems will cause
reduced transmission across finite barriers because of local-
ization. Decoherence or dephasing is an important process in
silver nanoparticles. Because the principal decoherence
processes are localized in the nanoparticles, we expect that
its principal effect on the wave dynamics is reducing the
amplitudes of the waves. The energy lost by the coherent
LSPP waves will eventually funnel into heating up the nano-
particles.
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APPENDIX: SEMICLASSICAL ACCELERATION

We discuss here the dynamics on an array where the dots
become progressively more condensed. Equation (3.7) de-
scribes a linear condensation, the rate of which is determined
by a parameter g. When a wave packet of wave vector k and
energy w=awy(R) passes through such a lattice, assuming g is
small so R does not change appreciably over the width of the
wave packet, we can estimate the acceleration as follows.
The energy must be preserved, so as the spacing p, (we shall
drop the subscript n where it causes no confusion) changes
by dp, the principal wave must respond by a corresponding
change in ok so that the energy stays, as it must, constant.
Thus, the condition 0=w(p+ dp,k+ Sk)— w(p,k), from which
follows

1 ﬂwk

__5 R
v, dp P

Ok =— (A1)
where v,(p, k) =dw/ Jk is the group velocity. Using Eq. (2.15)
we can show that

dJap =3 +u.k

A2
P P (A2)

The change in k and p result in a change in group velocity,

v v
5vg=45p+45k. (A3)
ap ok
Taking the derivative of Eq. (A2) with respect to k,
1% k-2
P _ T 20 (A4)
dp mp

where w=(dv,/ dk)~! is the effective mass. Combining Egs.
(A1) and (A2) in Eq. (A3), and using Eq. (A4), we find
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S0, = —(ﬂ - 2ug> 3. (AS)

p\pv,

Now, from Eq. (3.7) the rate of change of p is proportional to
the speed at which the lattice is transversed (here, we neglect
7, which is assumed very small),

Pn = Polt = gPy1t = 8U,. (A6)
Thus, combining with Eq. (A5) the acceleration is
d 3w
5 =~v%p=&(—k—20). (A7)
g 8
dp p \Hug

Since w, is a constant of motion, let us apply this result to
the simplest case, that for which w=0. Then we have

. 2g 2
U,=— —U,.
8 p 8

(A8)

It is evident, as is intuitively clear, that since p is positive the
acceleration is positive for negative g and vice versa. Now,
to further understand this equation, let us integrate it, obtain-
ing for the group velocity

1 L, f " dt (A9)
— = +2g | —.
v,(t)  v,(0) o p(1)
For g>0 (i.e., the spacing grows as the wave packet ad-
vances) the integral in Eq. (A9) will converge as t—o to

some value 1/w so the velocity will decrease until it con-
verges to a finite final value,

. (0)
lim v, (1) = T:(b)gTww <p,(0), g>0. (A10)

Let us compare the result of Eq. (A9) with the quantal wave
packet calculation of Fig. 8. Using the values g=0.001, v,
=3.8, and p=1 in Eq. (A8), we find ¢,=-0.03 which is in-
deed the value seen in Fig. 8 as the initial acceleration after
leaving the constant p zone (at about 7=5). While at short
times Eq. (A8) is validated by the calculation, it is not vali-
dated at long times, where we do not see the velocity being
stabilized. Our semiclassical analysis does not take into ac-
count the reflection (increased broadening) of the wave
packet, which causes the expectation value to drop beyond
the limit given in Eq. (A10).

Next, consider the case of g<<0. At short time, using the
value g=-0.001 will give v,=0.03 which is again verified by
the quantal calculation shown in Fig. 8. At larger ¢ the model
predicts a catastrophic divergence: the velocity will grow and
eventually diverge to infinity at a finite critical time ¢,, for
which the right hand side of Eq. (A9) vanishes. In the quan-
tal calculation a similar behavior is indeed seen. It is seen as
a rapid divergence of the velocity and acceleration as time
proceeds. For example, at g=0.01 (not shown in Fig. 8) the
velocity grows from 3.8 to 15 within ten units of time.
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