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A theory for the fluorescence resonance energy transfer (FRET) between a pair of semiconducting
nanocrystal quantum dots is developed. Two types of donor-acceptor couplings for the FRET rate
are described: dipole-dipole (d-d) and the dipole-quadrupole (d-q) couplings. The theory builds on
a simple effective mass model that is used to relate the FRET rate to measureable quantities such as
the nanocrystal size, fundamental gap, effective mass, exciton radius, and optical permittivity. We
discuss the relative contribution to the FRET rate of the different multipole terms, the role of strong
to weak confinement limits, and the effects of nanocrystal sizes. © 2008 American Institute of

Physics. [DOL: 10.1063/1.2913247]

I. INTRODUCTION

The development of novel sensing, imaging, and bio-
logical labeling is an expanding research field in recent
years.lf6 In particular, fluorescence probes are widely used in
single molecule imagingl’2 and spectroscopy,3 and in the de-
tection techniques of proteins, peptides, and enzymesf‘_6
Early studies were based mainly on organic dye molecules as
fluorophores. However, since organic dyes have very broad
emission lines and fast photobleaching, their applications are
quite limited. More recently, semiconductor nanocrystal
quantum dots (QDs) have been suggested as potential
ﬂuorophores.7_14 The nanocrystal QDs exhibit very narrow
emission bands that can be tuned by simply changing the
size or composition of the nanocrystals, thus providing
simple means to control the probe properties. Due to their
brightness (and also low photobleaching), very low light in-
tensity can be used, which is practical for many biological
applications (in particular, for living cells). Furthermore,
their wide absorption band allows simultaneous excitation of
several different probes, providing new directions in fluores-
cence probing.

One of the more common fluorescence techniques for
probing biological systems is based on FRET between a do-
nor and an acceptor.]5 For example, studies based on FRET
have been used to probe structural changes in protein
conformations.’ In principle, FRET is a sensitive tool for
studying the separation between the donor and the acceptor,
providing structural information in real time. In this respect,
semiconductor nanocrystals offer an additional advantage
over organic dyes; their sizes can be tuned and thus different
“rulers” can be used, ranging from several angstroms to sev-
eral nanometers.

There is an important synergism between experiments
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and theory in the study of FRET. At the heart is the mapping
between the experimental measured FRET signal and the dis-
tance between the donor and acceptor. Typically, this is es-
tablished through the FRET efficiency, which is defined as
e '=1+1/kp,, where kp, is the FRET rate and 7 is the fluo-
rescence lifetime. The common approach taken for molecular
donor/acceptor systems is based on Forster resonance energy
transfer theory, where nonradiative energy transfer from an
excited donor molecule to an acceptor molecule takes
place.15 Based on the second order perturbation theory
(Fermi’s golden rule) combined with the lowest order multi-
pole expansion of the transition moments of the donor and
acceptor, Forster showed that the FRET rate depends on the
center-to-center separation between the donor and acceptor
R, and scales as kp, <R,

The application of Forster theory to the case where the
probes involve semiconductor nanocrystal QDs is highly
questionable. As pointed out in Ref. 8, “the Forster theory
treats the donor and acceptor as points in the interaction
space, whereas the nanocrystals have finite size and are rela-
tively large compared to the dye molecules. Nonetheless, this
treatment is the best available for the present scenario.” The
multipole expansion of transition moments is expected to
break down on length scales comparable to nanocrystal size,
exactly the lengths probed by FRET experiments. The
Forster theory has been extended in several different direc-
tions including the case of higher multipoles and short-range
effects (see Ref. 16 and references therein). However, the
application of these modified theories to semiconducting
nanocrystal QDs is still quite limited and involves hard-core
simulations where the simplicity of the Forster theory is lost.

In the present study, we extend the Forster theory to treat
the case where the donor, or acceptor, or both, are semicon-
ductor nanocrystal QDs. Unlike previous work,'""® the
present approach explicitly treats the electronic structure of
the nanocrystals, adopting a simple model based on the ef-
fective mass approximation. This approach does not take into

© 2008 American Institute of Physics
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account electron spin coupling, crystal fields, electron-hole
exchange interactions, and interband couplings. More accu-
rate treatments based on a Luttinger multiband k-p
model'”*” or on a semiempirical atomistic treatment”'*® will
be the subject of future study. Within the simple effective
mass model, we retain the spherical symmetry of the QD and
treat the effects of higher multipoles on the FRET rate.”” >
Both weak and strong confinement limits are discussed. In
the former case, approximate expressions for the distance
dependent FRET rate including dipole and quadrupole tran-
sition moments are derived. Examples are given for realistic
model parameters of CdSe nanocrystals.

Il. RESONANT ENERGY TRANSFER THEORY

It can be shown that static electric fields exhibit relation-
ships which are also correct for propagating waves with the
modification that the static dielectric constants are replaced
with the corresponding frequency dependent functions.” In
the treatment below, we adopt this approach and describe the
energy transfer processes using an analysis of dipole
/quadrupole-dipole coupling calculated on the basis of elec-
trostatics of dielectric materials. One must, however, be care-
ful about the meaning of the dielectric constants, which must
be replaced by the real part of the corresponding optical per-
mittivity, given by the square of the refractive indices.” ™ In
what follows, we will encounter several different permittivity
constants. We will define each of them as we go.

Consider a donor and acceptor in a medium of real op-
tical permittivity g,,. The rate of energy transfer from donor
to acceptor in FRET theory is given by the Fermi golden rule
expression:

2ar
Wp oa= 72 p()|Vy2S(E;, - E)). (2.1)
if

Here, i)=|05) is the initial state, where the donor is in an
excited state & and the acceptor is in the ground state O,
and |f)=|0a) is the final state where the excitation was trans-
ferred to the acceptor at state a. 5(El-—Ef) ensures conserva-
tion of energy between initial and final states, and p(i) is the
probability of having the initial state |i0). In the above, Viris
the matrix element of the electromagnetic coupling
between the states, which can be expressed as a multipole
expansion around central points of the donor and acceptor
separated by a vector R,
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FIG. 1. (Color online) A sketch of the transitions dipoles between donor
(small dot) and acceptor (large dot). R is directed taken along the z axis.

>
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where d°=(0|er,|8) is the n Cartesian component of the do-
nor transition dipole moment (F is the position vector of an
electron) and ©° is the n,m component of the transition
quadrupole moment (n,m=x,y,z). Similar definitions apply
for the acceptor (with §— «). Einstein summation conven-
tion is used.

The two lowest order terms of V;; considered in this
work are the dipole-dipole (d-d) and dipole-quadrupole (d-q)
terms. The dipole-dipole coupling matrix element is given by

i _ R*d°-d%) -3(d’°-R)(d*- R)
o =

! £,k

S ja

= ?(cos 0,5— 3 cos Os5cos 6,),
Sm

(2.3)

where 6,5 is the angle between the transition dipole moments
and 646,) is the angle between d°(d®) and R (see sketch in
Fig. 1). Similarly, for the dipole-quadrupole interaction,

Vit

{RX(d°- R)r®*+2d°- - R)

~5(d®-R)(R- ©%-R)}

3d°0*
= H(sm 0ssin 26, cos(ps— d,)

+cos 051 -3 cos’ 6,)). (2.4)

The second equality in Eq. (2.4) assumes that the transition
quadrupole moment is a spherically symmetric tensor given
by

. 1 . . 1 .
sin? 0, cos® ¢, 5 sin® 6, sin 2¢p, 3 sin 26, cos ¢,

= 1 . . . .
©*=0° 5 sin? 6,sin2¢, sin® ,sin’ @,

1 . 1 . .
5 8in26,cos ¢, 5 sin26,sin ¢,
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Similarly to the dipole case, the transition quadrupole mo-
ment is written as a spherical quantity and a canonical angu-
lar dependence, depending on 6, and ¢,. Similar expressions
exist also for quadrupole-dipole coupling and other terms not
described here. The contribution of these terms to the FRET
rate can be neglected, as will be discussed below.

The treatment above neglects frequency dependent po-
larization effects inside the QD. This can be accounted for by
the real part of the optical permittivity eqp of the QD which
is different from that of the surrounding medium. In Appen-
dix A, we show by using an analysis based on the electro-
statics that the effect can be approximately accounted for by
multiplying each €-order term in the multipole expansion by
a local field factor,

2¢+1
(SQD,D/A/Sm + 1)€ +1 .

fepia= (2.6)

The resulting expressions for the interaction energy
[Egs. (A5) and (A6)] are exact in the limit of R>Rqp, (see
Appendix A for a proof). For smaller separations, there are
corrections to this scheme, which involve dipole-induced di-
pole interactions with leading terms proportional to R™%. We
neglect such high order terms which, in general, are expected
to be smaller. For typical solvents, g,, is between 1 and 2 at
optical frequencies, while for typical semiconductors,”* £0D
= 10. For this case, f; and f, are both nearly equal and have
values of between 41-1 and %

In most applications of FRET, it is custom to perform an
average of the FRET rate over the angles (65 6,, ¢s and
¢,). This is a consequence of the fact that the sample is
heterogeneous or in some cases due to a long time self-
averaging mechanism. The details are given in Appendix B.
For the dipole-dipole and dipole-quadrupole rates, we obtain
the following:

227 fipfia

Woia=3het ko 2 PO =0,
2.7)
W%‘iA—ét,fo‘;f“E (OO S(e - e,

The sum over a(8) runs over all states of the acceptor
(donor). Decomposing the S-function as

Ses—e,) = f e —¢g,)0es—€)de. (2.8)

We arrive at the final expressions for the FRET rates, given
in terms of spectral overlap integrals

~ 477_ fZ sz
A= e 1R61 4 Dyip(8)Agip(€)de,
(2.9)
- 87Tf Df
ngA he 72 1R82A fDdip(s)Aquad(s)dS’

111

where the emission (D) and absorption (A) spectral functions
are
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Dyyp(e) = Ep(é)d Se-ey),

Agp(e) = 2 d2dle — e,), (2.10)

Aquad(s) = 2 1215(8 - 8a)~

As expected, the dependence of the FRET rates on the dis-
tance between donor and acceptor is different for the dipole-
dipole and dipole-quadrupole interactions. When R is large
compared to the particle sizes, the dipole-dipole term domi-
nates the overall FRET rate. The situation becomes more
complicated when R is comparable to the system sizes,
where a close examination of the spectral functions is re-
quired, as discussed below in Sec. I'V.

The FRET rate is essentially an overlap between the
spectral functions of the donor and acceptor. To make con-
nection with measurable quantities, we note that the spectral
functions are related to the absorption cross sections and the
normalized emission spectra:27

w\’4
(C) 3Ddlp(ﬁw)

Eem(w)

2mcT

(2m)°N,
ST Pp
3000 In 10 ¢ ar®@);

(2m)*N, (w)3
== TA (2 4 (hw),
6000 In 10\ ¢ ) Aauaa)

Adip-abs(a)) (21 l)

Aquad—abs( (1))

where the normalized spectrum obeys

27chﬁem(27rc17)d17=l (2.12)

and 7 is the inverse wavelength. For an isolated transition at
v, a relation between the radiative relaxation time 7 and the
integrated dipole spectral function can be obtained,

l ¢D J _Dd]p(ﬁw

where ¢p is the quantum yield and 7, is the total lifetime of
the donor excited state. The radiative lifetime is also
connected to the transition dipole moment

2 b dp

B™y (2 )’

(2.13)

(2.14)

In terms of these experimental measureable quantities, the
FRET rates are given by

2 dpC f Df _ _ _dv
ngA 3 TDDS; 1R61 A fDem(ZWCV)Adip»abs(zﬂ-CV):,
(2 15)
C
wie, =205 9f finfas f D 2CPA g dbs(zwcv)
TDSm R?
where
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- 9000 In 10
KT okgk2N,

The dipole-dipole term in Eq. (2.15) is the Forster formula.'®
One of the fundamental consequences of Eq. (2.15) is that
one can take inhomogeneous effects into account simply by
using the inhomogeneous broadened spectra of the donor
and acceptor.

k=17,9. (2.16)

lll. EFFECTIVE MASS MODEL

To calculate the FRET rate given by Eq. (2.15), one
requires the transition multipole moments and the energy
spectrum of the donor and acceptor as input. Here, we adopt
the effective mass model to describe these quantities for the
nanocrystal QDs. This model does not describe the excitonic
fine structure and, in particular, the bright and dark states;19
however, it captures some of the spectral features of
nanocrystals35*40 and facilitates the analysis of size depen-
dence and other parameters. A more realistic treatment of the
electronic structure based on a Luttinger multiband k-p
model'*? or on a semiempirical atomistic treatment”'2® will
be used for calculating the FRET rate of nanocrystals in a
future publication.

A. The electron-hole wave functions and energies

We consider a two band (valence and conductance) sys-
tem. The eigenfunctions of the holes and electrons are writ-
ten as a product of an envelope function ¢, ,(r) and a lattice
periodic function uy (r):

en(r) = gy (r)uy(r),
3.1
(Pe(r) = ¢e(r)uC(r) .

The envelope functions are the zero order eigenfunctions of
the electron-hole pair Hamiltonian

ﬁ2 2 2

A h
H=- Vg - V% + Vconf(revrh) - °
2m, 2my,

k)

8%D|re —I
(3.2)

where m, (m,,) is the electron (hole) effective mass and sgD
is the static dielectric constant of the nanocrystal. Note that
8(())13 is a different quantity from the real part of the optical
permittivity of the QD mentioned above (gqp). The last term
in the right hand side is the perturbation term. For a spherical
quantum dot, the confinement potential is taken as O inside
the dot and o outside. The orthonormal envelope functions
are then zero outside of the dot, and inside it are given by

¢nlm(r) = Nn,lil("n,lL) Ylm(ev ¢)’ r< RQD7 (33)
Rqp

where Y,,(6, ) is a spherical harmonics function, j,(x) is a
spherical Bessel function with k,; its nth zero, Rqp is the
nanocrystal radius, and N, ;=\2/R%(j,(x))~" is the normal-
ization constant. In this model, the envelope functions for the
hole and the electron are identical (since «,; is independent
of the effective mass). This form neglects the electron-hole
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pair interaction, which is included to first order in the
energies only, given by35_37

2 2,2
h23, Tk 1.8

2 2 0 :
Zm(,RQD thRQD SQDRQD

Eill,n/l/ :Eg+ (34)

Here, E, is the bulk band gap and the last term represents the
electron-hole interaction to first order, assuming spherical
symmetric wave functions for both the electron and the hole.

B. The transition moments

To calculate the transition multipoles, we mention two
properties of the integrals concerning the envelope
and lattice periodic functions,

<¢e| ¢h>space = QE (]5;,(1' + L) d’e(r + L) B
L

(3.5)
<uC|uV>cell =0.

The first approximation is a result of the slow variations of
the envelope functions on a scale of '3, where () is the
volume of a unit cell. The second equality is a property of
the Bloch functions in the bulk.

Using Eq. (3.5), the transition dipole moment d is given
by the product of the envelope overlap and the unit cell bulk
transition dipole,

d=e f eu(r)re,(r)d’r
all space

~ <¢h|¢e>6fﬂ uy(r)ruc(r)d’r. (3.6)

Within the simple effective mass model and infinite confine-
ment potential, the overlap between the electron and hole
wave functions is {¢,| ¢,)= 6, since ¢, and ¢, are indepen-
dent of the effective mass of the electron and hole. This
implies that dipole allowed transitions occur only when
n=n', I[=l', and m=m’, ie., from the ground state to
18,-1S,, 1P,-1P,, etc. In this case,

e
d~= 5<uV|r|uC>Qaeh=de‘eh’ (37)

where dj is the bulk transition dipole moment. The transition
dipole moment is essentially equal to the transition dipole
moment of the bulk unit cell and is independent of the size of
the nanocrystal QD.30

We note in passing that for a finite confinement
potential,41 or when the electron and hole interactions are
treated exactly,38 or for a more elaborate model,19’42’43 one
needs to calculate the envelope overlap which may depend
on the nanocrystal’s effective masses and size.

The quadrupole transition moment involves the bilinear

product 0 =err’, which is given by the integral
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O)e=e2 | ¢r+Luy(r)(r +L)(r+ L) ¢,
L JO
X (r+L)uc(r)d’r. (3.8)

It decomposes into four contributions:
(6= % J Bl + Lueer’ g (x + Lyuc(r)d'r
+ eEL) f . &0 + L)uy(r)LrT ¢ (r + L)uc(r)d’r
+ e% fn &u(r + L)uy(r)rL7 ¢, (r + L)u(r)d’r

+eX LL” f &u(r + L)uy(r) ,(r + L)uc(r)dr.
L Q
(3.9)

The first term involves the unit cell transition quadrupole
which does not depend on the QD size and, is therefore,
neglected. The last term involves the overlap of the conduc-
tion and valence lattice periodic functions and is thus zero.
Finally, the second and third terms evaluate to

e(0), = dpd?, +d,,,d5,

env

(3.10)

where djg is defined in Eq. (3.7), d.,, is proportional to the
QD radius and is given by

denv=e<¢e|r|¢h>‘ (311)
As far as we know, the integral in Eq. (3.11) has no exact
analytical solution despite its apparent simplicity. For the z
component of the envelope dipole, we found that only states
with m=m’ and [=[’" = 1 are allowed. Furthermore, numeri-
cally, it is found that states with n=n" and n=n'=*1 have
significantly higher envelope transition moment than other
combinations. Thus, a reasonable approximation for the z
component envelope transition moment is given by (see
Appendix C for further details)

2

2
+ F;rlal—l,l’<5n,n’ + gan’,rﬁl)} .

(3.12)

Rop) 2
<¢h,nlm|z|¢e,n’l’m’> = L{FHl&Hl,l’(&n,n’ + ggn’,n—l)

Similar results can be obtained for the x and y components
with m=m' * 1.

C. The absorption spectral functions

Incorporating the energy levels given by Eq. (3.4) and
the selection rules for the dipole transition [Eq. (3.7)] into
Eq. (2.10) the dipole spectral function is then given by30
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Wi 1.8¢?
Agple) =d >, 5(Eg + L

- - 20+ 1),
2uRy  EdnRop 8)( )

nl

(3.13)

where u is the reduced electron-hole effective mass
(,U,‘1=m;l+m;]).

In the weak confinement limit (Rgp>>ag, where
ag=Ti*eqp/ pe® is the Bohr radius for the electron-hole
pailr),3 we can replace the sum by an integral over the
continuous spectrum of a particle in a large sphere to obtain

dy2u \/2M< 1.8¢ )
Agp(e) = Z=ZRI\ 75| £ - Eg+
dlp(s) 3 ﬁz QD hZ € 8 8gDRQD

(weak confinement). (3.14)

This result shows that the dipole spectral function scales
approximately as RgD where a=2.5-3, which is consistent
with the experimental observation for absorption spectrum of
nanocrystals QDs. %

In many situations, the case of the strong confinement is
more relevant as the discrete nature of the exciton states
becomes important. In this limit, one is required to perform
the sum given by Eq. (2.10) to calculate the dipole spectral
function. Often, only very few exciton states lie within the
relevant energy range and thus the sum can be represented by
a small number of terms. To better represent the spectrum in
this strong confinement limit, we include a line broadening
of the o-functions by a Lorentzian proﬁle:,46

1
8(e) — — Im

s (3.15)
T e—in

where 7 is the line broadening parameter. The actual value of
the broadening parameter depends on the type of measure-
ment one makes. A reasonable value for a line broadening
is* 547 p=0.15 eV.

In Fig. 2, we plot the dipole absorption spectrum as
given by the combination of Egs. (2.11) and (3.13) of a CdSe
nanocrystal in the strong (upper panel, Rop=2 nm) and weak
(lower panel, Rop=5 nm) confinement limits. In the strong
confinement limit, we find that the lowest transition observed
is to the 1§,-1§, exciton state at 2.5 eV, followed by the
transition to the 1P,-1P,, state at 3.3 eV. In the lower panel
of Fig. 2, we compare the exact numerical result given by
Eq. (3.13) to the weak confinement limit approximation of
Eq. (3.14). For the relevant energy regime, the approxima-
tion captures the essential behavior of the spectrum.

The quadrupole spectral function is obtained by incorpo-
rating the energy levels given by Eq. (3.4) and the selection
rules for the quadrupole transition given by Eq. (3.10) into
Eq. (2.10). For simplicity, we consider only the zz compo-
nent of the quadrupole moment. Using Eq. (3.10) with
Eq. (3.12), we obtain the following equations after some
algebra:
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1x10°

5x10°

() / cm

8 %107 [~

dip-abs

A

1x10° [~

Y

FIG. 2. The dipole absorption cross section of a 2 nm (upper panel) and
5 nm (lower panel) CdSe nanocrystal. Effective masses (in atomic units):
m,=0.13 and m,=0.45, E,=1.7 eV, 7=1 ns (dg=20 D), and 80QD=10. The
broadening parameter is 7=0.05 eV. The dashed line in the lower panel is
the weak confinement approximation given by Eq. (3.14) combined with
Eq. (2.11).

1
Aquale) = g(RQDdB)ZE I+ 1){ SAE!*Y _g)
nl
4 n(l+1) nl
+ 55(AE(V!+1)Z - 8) + 5(AEn(Z+l) — 8)
4 (n+1)1
+ 55(AE,‘(]+1)—8) N (316)

where

2 2
182 # ( VG + Koy
soQDRQD Z,uRéD I+vy

AE" =E, - ) (3.17)

8
and y=m,/m,,. In deriving Eq. (3.16), we have also used the
relations Einz_,Ffmle and Eﬁnz_lF(ZHDm:H 1/3.

In the weak confinement limit, we assume that the sepa-
ration between quadrupole allowed transitions is small and
thus the broadened &-functions in Eq. (3.16) are nearly over-
lapping. This leads to a simplified expression for the
quadrupole spectrum given by

Agquaa(e) = (Ropdp)® > (1+ 1) SAEY — ¢)
nl

(weak confinement).
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0— 3 5 6

4
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FIG. 3. The quadrupole absorption cross section of a 2 nm (upper panel)
and 5 nm (lower panel) CdSe nanocrystal. Effective masses (in atomic
units): m,=0.13 and m,=0.45, E,=1.7 eV, and sOQD: 10. The broadening
parameter is 7=0.15 eV. The dashed line in the lower panel is the weak
confinement approximation given by Eq. (3.14) combined with Eq. (2.11).

In Fig. 3, we plot the quadrupole absorption spectrum as
given by the combination of Egs. (2.11) and (3.16) for the
same CdSe nanocrystal described above. In the strong con-
finement limit, we find that the lowest transition observed is
to the 15,-1P;, exciton state at 2.7 eV, followed by the tran-
sition to the 1P,-1S), exciton state at 3.1 eV and another
transition to the 1P,-1D,, exciton state at 3.5 eV. The weak
confinement limit shown in the lower panel of Fig. 3 is also
compared to the approximate result given by Eq. (3.18).

In the weak confinement limit, we find that the quadru-
pole oscillator strength is much larger than the corresponding
dipole oscillator strength and is QD-size dependent. This can
be attributed to the different way the matrix elements depend
on the QD radius, Rqp. The dipole transition moment is pro-
portional to the overlap of the envelope functions, which is
independent of Rqp, while the transition quadrupole moment
is proportional to the envelope transition dipole d.,, [see
Eq. (3.12)] which scales linearly with Rqop. The absorption
spectra depend on the square of these transition moments
and, therefore, the quadrupole transition elements are larger
by about a factor of RZQD.

IV. FRET RATE BETWEEN QUANTUM DOTS

Explicit expressions for the FRET rate between QDs,
involving the d-d and d-q contributions can be derived now.
The donor-related quantities will be denoted by index D and
those of the acceptor by A. The radii of the QDs are Rqp;
(i=D,A), respectively, and the average diameter is
D=Rgp s+Rqp,p- The donor emits from the lowest excitonic
state in this model, which is the 15,-1S; exciton with energy
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e
2upR: 5 €20 Ropp
MpRop,p  €Qp.pfrQD.D

1.8¢%

hCEO,D=Eg,D+ (41)

For FRET, this requires that the lowest excitonic states of the
acceptor are of lower energy than those of the donor. We
further assume that the emission spectrum of the donor is
relatively narrow around this transition. From Eq. (2.15), we
can obtain

- 2( bp )(277)3C7f%,nf%,/4 Agip-ans(27TCV) p)

3 e2V0p D1 + r/D)®

b=473 (27 p)°
(4.2)
where r is the distance from the surface of the donor to the
surface of the acceptor. Note that in our model, the quantity
¢p/ 7p(27V p)? is independent of the QD size [Eq. (2.14)].
In the strong confinement, we use Eq. (3.13) combined
with Eq. (2.11) for the acceptor to obtain the FRET rate. In
the weak confinement limit, for the acceptor (Rgp 4> ag,
where az=h2e{p, 4/ pae® is the Bohr radius for the electron-
hole pair of the acceptor), we use equation (3.14) and obtain

3
RQDA
DS(1 + r/D)°®

wid 2 ( ¢ >uAd§Af% ot

3 TD(27T1_/O,D)3 hzsi

2 1.8¢2
X \/#(hciop —Eg 5+ 0—) . (4.3)
h 8QD,ARQD,A

In the case where the two QDs differ only with respect to the
size, one can simplify the above equation. The square root
becomes \/772/R(23D’D +2u,1.8¢%/ ﬁzsgD(RélD’D—Ra),A).
Assuming that one can neglect the second term relative to
the confinement term, we find it is equal to 7/ Rgp p, so that

wid - %( ép ) T IU'AdIZR,Af %Df %,A RE)}D,DR%D,A
D—A= 2,2 6 6
3 fie;, D°(1+r/D)
(4.4)

(277 p)°

Finally, we obtain the FRET rate in the weak confinement
limit when the two QDs are made of the same material
(but possibly different radii)

a2 ( o )Wﬂ‘ Rop.pRopa
D—A— — 3 2 6 6
3 TD(ZWVO,D) 4h8mD (l + r/D)

(same material). (4.5)
We now consider the FRET rate due to dipole-quadrupole
coupling using the same assumptions as for the dipole-dipole
coupling for the donor. From Eq. (2.15), we can obtain

¢D ) C‘)f%,Df%,A Aquad—abs(z'n-c 770,D) (46)

Yy
p=a ( 27, DY1+rD)®

TpVo.p

In the strong confinement limit, the quadrupole absorption
cross section is given in Egs. (2.11) and (3.16). Simplifica-
tion can be obtained if the acceptor is weakly confined. Then,
Eq. (3.18) can be used to obtain

RIGHTSE LI MN iy

Theory of resonance energy transfer involving nanocrystals

J. Chem. Phys. 128, 184710 (2008)

FRET Rate (ns™)

FIG. 4. (Color online) The FRET rate for coupling two CdSe QDs,
Rgp =3 nm (upper panel), Rop 4=5 nm (lower panel), and Rqp p=2 nm.
The optical permittivity of the medium is g,=1 and that of the dots is
sQD:sgD: 10. The total (red), dipole-dipole (green), and dipole-quadrupole
(blue) FRET rates are shown. The remaining parameters are the same as in
Fig. 2. In the lower panel, we show the exact result (solid) and the weak
confinement approximation (dashed) for each case.

Wf;_qA _ 4< bp ) /u‘Af%,Df%,Adlzi R?)D,A

TV p/ 42m)>*h%e;, DY(1+ /D)

2MA< B 1.8¢%
X \/— hevgp—Egpa+ 5
h? ¢ 80QD,ARQD,A

I wn

As analyzed for the dipole-dipole term, when the two QDs
are made of the same material with different sizes, Eq. (4.7)
becomes

Wi = 4( - )2 Tif1f3 Rop.oRopa
DoAR I @apyp)’) 16fie? DXL+ riD)?

(same material). (4.8)

V. APPLICATIONS

We now discuss the specific applications of the theory
developed above. We calculate the FRET rate in the usual
dipole-dipole approximation and then consider the correction
due to dipole-quadrupole coupling. Furthermore, within the
simple effective mass approximation adopted here for the
nanocrystal electronic structure, the fluorescence from
ground excitonic state is quadrupole forbidden (dipole al-
lowed), and thus, the quadrupole energy transition is only
considered for the nanocrystal acceptor.

In Fig. 4, we plot the FRET rate between two CdSe QDs
in the strong and weak confinement limits for the acceptor
QD. We observe that in both cases even at contact the con-
tribution of the dipole-dipole (d-d) term is larger than that of
the dipole-quadrupole (d-g) term. However, the latter is not
negligible at contact and decays faster as the separation r is
increased. In the results shown here, we assumed that the
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FIG. 5. The d-d (solid) and d-q (dashed) contributions to the FRET rate
between a pair of CdSe QDs at contact limit as a function of the acceptor
radius for two donor sizes: 5 nm (top) and 2 nm (bottom). The remaining
parameters are the same as in Fig. 4.

optical permittivity of the surrounding medium is g,=1. ¢,
affects the FRET rate mostly as a scaling factor (8;12) as
evident from Egs. (4.4) and (4.6), although there is also a
weak dependence of f; on ¢,,.

The dependence of the FRET rates on the size of the
QDs at the contact limit (the two QDs are nearly touching) is
studied in Fig. 5 (note that the acceptor radius must be larger
than that of the donor in order for the donor emission line to
overlap the absorption spectrum of the acceptor). The most
important features are as follows: (a) The d-d contribution to
the FRET rate [Eq. (4.2)] is larger than the d-g term
[Eq. (4.8)] for all cases studied. (b) The FRET rate sharply
decreases as the donor size increases since the separation
between the QD centers, about which the multipole expan-
sion is carried out, increases.

As the size of the acceptor increases, the contribution of
the d-d term becomes comparable to the d-g term. This can
be analyzed within the weak confinement limit where one
can derive a simple relation between the d-d and the d-g
contributions to the rate [see Egs. (4.5) and (4.8)],

D__[,IA _£<28QD+38m)2(D+r>2 5.1)
D_L{A 25 SQD + 28)71 RQD,A ' '

This ratio weakly depends on &g, and more pronouncedly on
the radii of the two QDs. It does not depend on the band gap
nor on the effective masses of the QDs. Thus, the ratio is
expected to be a universal quantity. Analyzing this relation,
we observe that at contact, the ratio varies between % (when
€,>>¢€qp) and close to 1 (when &,,< gqp) for a large accep-
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FIG. 6. The d-d (solid) and d-q (dashed) FRET rates as a function of the
acceptor mass ratio y,=m,/m,. Right panels are for Ryp4=3 nm and left
panels are for Rop4=5 nm. In the lower panels, we keep m, ,=0.13 and
vary my 4. In the upper panels, we keep m; ,=0.45 and vary m,,. The
remaining parameters are identical to those shown in Fig. 4 for QD separa-
tion r=0 nm.

tor, indeed, as observed in Fig. 5. In addition, as the separa-
tion r is increased, we find from Eq. (5.1) that the d-d term
becomes more dominant.

An interesting feature of small QDs is the existence of a
structure in the d-d and d-q contributions to the FRET rate as
a function of the acceptor size. The peaks correspond to reso-
nances between the emission lines of the donor and absorp-
tion lines of the acceptor, whose positions vary with the QD
size. The structure is washed out as the acceptor approaches
its weak confinement limit due to the larger density of states
at energies corresponding to the emitting donor. As can be
seen in the figure, the structure is considerably more pro-
nounced in the d-d than in the d-¢g contributions. This can be
traced to the more structured dipole absorption spectra
(Fig. 2) compared to that of the quadrupole (Fig. 3).

In Fig. 6, we study the effect of the electron and hole
mass ratios of the acceptor on the FRET rate. Physically, this
parameter is not adjustable (although one can affect it by
changing the QD material). However, it is instructive to de-
termine the way it can potentially affect the rate. The results
shown in Fig. 6 are for CdSe nanocrystals with fictitious
electron and hole masses. We modify the mass ratio by either
changing m, 4 holding m, 4 fixed or vice versa. The effective
mass changes in each of the two cases, according to the
following formula:

1 1
M4

Mp=m =M . (5.2)
1+ 7y,
When the electron mass is kept constant, the increase in y,
causes a decrease in the effective mass and the FRET rate
decreases (because the density of states decreases due to in-
creased confinement). When the mass of the hole is held
constant, the effective mass increases with the growing vy,,
and the FRET rate grows. Comparing the results, we find that
the overall FRET rate is larger when the electron mass is
varied. This is due to the fact that the corresponding mass of
the hole is relatively large, giving rise to smaller confinement
effects. While for the case that the hole mass is varied, the
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FIG. 7. The d-d (solid) and d-q (dashed) FRET rates for the coupling
between two CdSe QDs with Rqp, p=2 nm and the acceptor size is variable.
The linewidth parameter for computing the absorption spectrum is
7=0.05 eV. The remaining parameters are the same as in Fig. 2.

corresponding electron mass is small, and thus, due to the
quantum confinement, very few transitions overlap the donor
emission line. Comparing the results for different acceptor
sizes, we find that when the acceptor QD is small, the FRET
rate is characterized by a resonant structure, signifying once
again the resonances between the emission line and the ab-
sorption. As the effective mass is varied, different absorption
lines of the acceptor enter the emission window of the donor.

An interesting question is whether the d-d contribution
to the FRET rate is always larger than the d-g contribution.
Since the selection rules for absorption within the dipole and
quadrupole approximations are different, one can envision a
situation where the donor emission line aligns with a d-g
allowed transition and much less so with a d-d allowed one
for a certain acceptor size. For realistic broadenings, this
does not usually happen. However, this becomes possible if
one considers much narrower absorption linewidths, a situa-
tion that might be achievable when appropriate size selection
and surface control are achieved. In Fig. 7, we show an ex-
ample of such occurrence. We considered two CdSe QDs
with a donor of 2 nm radius. When the width parameter is
small enough, namely, 7=0.05 eV in Eq. (3.15) is used, we
find that with acceptor sizes around a relatively narrow re-
gion slightly above 2 nm, the d-g contribution exceeds that
of the d-d contribution. We can explain the behavior seen in
the figure as follows. When the two dots are of the same size
(2 nm) the d-d contribution is large because both have the
1S,-1S,, exciton transition in full resonance. However, as the
acceptor size grows, its 15,-1S), exciton line sharply falls in
energy and out of resonance with that of the donor. As a
result, the d-d coupling significantly diminishes. As the size
of the acceptor grows further, its 1S5,-1P,, exciton line also
lowers and eventually enters into resonance with that of the
donor 1S5,-1S,, line. This causes a strong d-g coupling which
can slightly exceed that of the d-d coupling, as seen in the
figure.

Vil. SUMMARY AND DISCUSSION

In this article, we have studied the FRET rate between a
pair of semiconducting nanocrystal QDs. We considered two
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types of donor-acceptor couplings for the FRET rate: the
dipole-dipole (d-d) and the dipole-quadrupole (d-g) cou-
pling. Using an extended Forster theory given by Eq. (2.15),
we derived equations for the d-d [Eq. (4.2)] and d-q
[Eq. (4.6)] FRET rate between QDs as a function of their
separation. This was derived assuming that the donor emis-
sion line is narrow. All one needs to know in order to use
these equations is the size of the QDs, the dipole and quad-
rupole absorption spectra of the acceptor, the radiative life-
time and the lowest exciton energy of the donor, the optical
permittivity of the QDs, and the optical permittivity of the
surrounding medium.

In order to use these equations in a theoretical setting,
we have adopted the effective mass model to derive expres-
sions for the measureable quantities as a function of the QD
distance and in terms of their physical properties (size, fun-
damental gap, effective mass, exciton radius, and optical per-
mittivity). This allowed us to delineate the various factors
that govern the FRET rate. We have also considered the
weak confinement limit, where the expressions can be further
simplified and the FRET rates are given by Eq. (4.5) (d-d
contribution) and Eq. (4.8) (d-g contribution). Our major
conclusions are summarized as follows.

(1) The d-d contribution to the FRET rate decays as R~
(where R is the QD center-center separation) and is
almost always larger than that of the d-g contribution
which decays faster (decays as R~%). Nevertheless, the
latter is not negligible at short QD separations and must
be taken into account for a quantitative description.

(2) The difference in the scaling of the d-d and d-q contri-
butions to the FRET rate is quite difficult to experimen-
tally detect. Thus, in many cases, an “effective” d-d
term can be used to describe the overall FRET rate.

(3) In certain cases, when the spectral lines are narrow, the
d-q contribution to the FRET rate may become even
larger than the d-d contribution for certain QD sizes.
This effect is due to sharp resonances.

(4) In small QDs (size small compared to their exciton
Bohr radius), we find a strong dependence of the FRET
rate on the size. This is caused by the sensitivity of the
spectral overlaps to the confinement.

(5) The effect of the optical permittivity of the dots is rela-
tively weak compared to the effect of the dielectric me-
dium of the surrounding on the FRET rate.

(6) The effective masses can affect the FRET rates consid-
erably mainly by changing the density of states (i.e., the
spectral overlap).

We believe that the results presented in this work pro-
vide a qualitative picture of the FRET behavior of nanocrys-
tal QDs. Future work will attempt to extend the theory in
several directions so that more quantitative features can be
addressed. More accurate treatments of the electronic struc-
ture can be used, such as the finite confining potential, in-
cluding more than two bands and coupling between the dif-
ferent bands, etc. In addition, we will employ an atomistic
description of the QD electronic structure based on a semi-
empirical method.
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APPENDIX A: LOCAL FIELD CORRECTION FACTOR

In this appendix, we describe the electrostatics of charge
distribution moments in dielectric spheres. As mentioned
above, the final result can be used for describing electromag-
netic couplings for energy transfer processes by replacing the
dielectric constants with optical permittivityél*33

Let us consider a point charge g located at position s
inside a sphere (QD) of dielectric constant eqp, of radius Rqp
surrounded by a medium of dielectric constant ,,. At the end
of the analysis, one has to replace the dielectric constants
with the corresponding optical permittivity. The electric
potential at position r outside of the QD is?

°° ¢
V(r;s) = i( 1 12 gz(i) P(cos ‘9))» (A1)

+
€QD |1‘_S| T¢=0
where
(€+1)<8@—1>
8m
ge="7 —\ - (A2)
€<Q+1>+1
Sm

This potential includes a Coulomb term and a correction
term, which account for &,,# eqp. By expanding the Cou-
lomb term in a multipole series, 1/|r—s|=(q/r)=7_,(s/r)*
P(cos 6), and by combining it with the correction series

i ¢
V(r;s) = iE f1<8_m)<§) Py(cos 0), > Rgp.

Eml =0 \EQD
(A3)

The effect of the QD is to augment the €th pole by a local
field factor

20+ 1

x+D€+1° (A4)

fex) =
Interestingly, aside from the requirement that r>Rgp, the
result [Eq. (A3)] is not dependent explicitly on the size of the
QD. Now consider a dipole (£=1), a quadrupole (£=2), or
any multipole of order ¢ located at the center of the QD. It is
easily seen that Eq. (A3) implies that outside the dot, the
electric potential field is that of a multipole ¢ in a homoge-
neous medium ¢g,,. The effect of the QD is solely in screen-
ing (or descreening) the multipole moment by the field factor
fe(eqgp/ &,,). This result simplifies considerably the treatment
of the screening effects.

Now consider the case where we have two dipoles inside
two different QDs (with dielectric constants eqp ; and gqp ,)
embedded in a medium of dielectric constant g,,. In prin-
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ciple, one must solve the corresponding Poisson equation
with the proper boundary conditions. The discussion above,
however, suggests the following reasonable and simple ap-
proximation: the only effect of the dielectric constant is in its
screening of the corresponding multipoles. Thus, under this
approximation, the dipole-dipole coupling [Eq. (2.3)] needs
only to be multiplied by the two local field factors,

Vir— Vifi(eqp.i/€m)f1(eqp o/ €m) - (AS5)

As for the dipole-quadrupole coupling [Eq. (2.4)], the same
reasoning leads to

Vie— Vifaeqpi/e)f2(eqpo/€) - (A6)

We now show that this approximation is exact in the limit of
large separation R between the two QDs. We discuss the
dipole-dipole case; a similar argumentation holds for the
dipole-quadrupole interaction. The dipole d; of the first QD
creates an electric field derived from the potential in
Eq. (A3),

Em )i<3(d1~R)R—d1R2

RS ), r>RQD'

(A7)

E(R) =f1<
€QD,1/ €m

When R is much larger than the radius of the second QD, we
may assume that the field generated by the first QD is homo-
geneous in the vicinity of the second QD. Then, the potential
inside the second QD is given by48

& ER) - (r+R).

A8
8QD,2/8m + 2 ( )

q)inQDz(r) =-

Therefore, the energy of a dipole d, placed at the center of
the second QD is

V&4(R) = - ER)-d
(R) can /o + 2 (R)-d,

£, £,
:f1< )fl( >
€QD,1 €QD,2

X((dl -d,)R*-3(d, - R)(d, - R))
stS

(A9)

which is the result given by Eq. (2.3) multiplied by

Sm 8m
(2 )
€QD,1 €QD,2

APPENDIX B: ORIENTATION AVERAGING

Averaging of the FRET rate over random orientations
requires computing the average of the square of the coupling
matrix |Vy|% For the dipole-dipole coupling, we have, using
Eq. (2.3),

<|Vf’f_d|2> = C{(cos 6,5— 3 cos 6, cos 05%)
= C{(cos? 6,,5) — 6{cos B,,5c0s 8, cos b5
+9(cos? 0,)(cos> 0}, (B1)

where C=(d’%d%/¢,,R?)*. Using the following averages,
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(sin ) = 7—7,

1 (cos B)=0, {(cos> ¢)= %, (sin® ¢p) = %,

(sin? ) = %, (cos? O) = %, {cos* 0) = é (sin®26) = %

(B2)
we obtain
(cos? O,5) = %, (cos B,5c08 6, cos O = é, (B3)
and thus evaluate
2 dﬁda 2
Vi = —( ) : B4
WiP=3\5 e (B4)

As for averaging the dipole-quadrupole interaction in
Eq. (2.4), using the same reasoning and Egs. (B2), it is
straightforward to obtain

Soya\ 2
Qvitpy= (222

g, R*

(B5)

APPENDIX C: THE ENVELOPE TRANSITION DIPOLE
MOMENT

We consider the envelope transition dipole moment

<¢h,nlm|z|¢e,n’l’m’>

Rap 5. ro\. r
=Ny N,y PN Ky i\ Kurar g dr
0 QD QD

Xj sin 6d6d ¢ cos 6Y,,(60,d)Y1,,(6, P), (C1)
where
No= \/Z(i ()" ()
nl— R3 +1\K

is the normalization constant. Moreover, the spherical
harmonics are

1 .
Y,,(0,¢) = 4 | ——=P]'(cos 6)e™?,
27N,

Im

(C3)
_ 2 (l+m)!
m= ol 1(l-m)!”

where P}'(x) are the associated Legendre functions. The
angular part gives the selection rules, [—I'*1
and m—m' = 1. For the z component, the m=m’' condition
prevails, and using the following relation between Legendre
functions,49

(+1=m)P" (x) + (1 +m)P", = (21 + )xP",

1 (C4)

] Jn
TJ P;"(x)Pl,(x)dx= oy,
VNlle’m -1

we obtain after some algebra

RIGHTSE LI MN iy

Theory of resonance energy transfer involving nanocrystals

J. Chem. Phys. 128, 184710 (2008)

1
f dxxP;”(x)P;’f(x) = F;r’lal+1,l’ + F;H(SMIH, (CS)
-1

where

o _ \/( (I+m)(l—m) )
"N+ nei-1)°

For the radial part

Rap r r
3. .
Nn,an’,l’f r ]l Kn,l ]1/ KnI,ZI dr
0 Rqp Rqp

2Rqp oy .
= - f X (Ko )i (K prx)dx
]I+1(Knl)]1’+l(Kn'l') 0

(Co)

R 3, n'=nl"=1*1
z% 2, n'=nF LlI'=1%+1 (C7)

0, otherwise.

The last part of the expression is an approximation to the
exact numerical result. We find that elements with [n—n’|
> 1 are smaller by an order of magnitude or more and can be
neglected.
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