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Time-dependent (TD) density functional theory (TDDFT) promises a numerically tractable account of
many-body electron dynamics provided good simple approximations are developed for the exchange-
correlation (XC) potential functional (XCPF). The theory is usually applied within the adiabatic XCPF
approximation, appropriate for slowly varying TD driving fields. As the frequency and strength of these
fields grows, it is widely held that memory effects kick in and the eligibility of the adiabatic XCPF approx-
imation deteriorates irreversibly. We point out, however, that when a finite system of electrons in its
ground-state is gradually exposed to a very a high-frequency and eventually ultra-strong homogeneous
electric field, the adiabatic XCPF approximation is in fact rigorously applicable. This result shows that adi-
abatic XCPF has a larger scope of applicability than previously suspected and in this sense is compliant
with recent numerical findings by Thiele et al. [M. Thiele, E.K.U. Gross, S. Kümmel, Phys. Rev. Lett. 100
(2008) 153004] of negligible memory effects in strong-field double ionization.

� 2009 Elsevier B.V. All rights reserved.
Time-dependent density functional theory (TDDFT) is an in-
principle exact approach to the quantum dynamics of electrons un-
der time-dependent fields [1,2]. So far, the theory is very successful
in many cases where the adiabatic-linear-response limit holds.
These are small excitations over the ground state and the theory
draws upon the ground-state density functional theory [3] and in
particular the static exchange-correlation potential functional
(XCPF) [4]. In strong fields and faster processes the time-dependent
exchange-correlation potential at time t should depend also on the
density at previous times t0 < t, an effect referred to as ‘‘memory”
[5]. It is then expected that ‘‘memory effects” must dominate or
at least be important and cannot be neglected. Even in linear re-
sponse memory effects may be important, especially when static
correlation effects are dominant [6]. While several works have re-
cently been published on the deployment of memory with TDDFT
or time-dependent current-density functional theory (TDCDFT)
[5,7–16] there is not yet available reliable and generally satisfying
exchange-correlation potential functionals with memory. As part
of the effort to develop new approaches, relatively simple model
systems have been used to reveal some of the properties of the ex-
act time-dependent XC potential [17–19]. A somewhat surprising
result emerged from these studies: memory effects were seen to
be small or even negligible in a certain range of fast and non-per-
turbative cases. Another surprising result, seen in many linear re-
sponse calculations using the adiabatic local density
approximation [20] is that the calculated high-frequency photo-
ll rights reserved.
absorption spectra is impressively accurate when compared to
experiment, considerably more than in the visible and UV range
(see for example results on different systems in Refs. [11,20,21]).

The purpose of this letter is to show that the adiabatic approx-
imation is in fact of greater generality and has a broader range of
applicability than previously suspected. We show that for electrons
in finite (molecular) systems, evolving in time under the influence
of a high-frequency homogeneous classical electric-field~EðtÞ (which
can also be strong) the adiabatic approximation is valid. The
oscillating electric field takes the following form: ~EðtÞ ¼
x2 me

e XðtÞðpx cosxt; py sin xt; 0Þ, where x is the frequency, ~p is a
polarization vector (assumed in the x–y plane for simplicity) and
the ratio me/e between electron mass and charge is inserted for la-
ter convenience. We assume that the field is zero for negative
times, so it is turned on slowly starting at t = 0, as described by
the ramp envelop x2X(t). The field ~E is usually applied as a strong
laser pulse propagating in the z direction, in which case one must
assume eligibility of the dipole approximation.

The electrons in the molecular system start from their ground
state wgsðf~rgÞ, where f~rg � f~r1r1; . . . ;~rNrNg is shorthand notation
for the position ~ri and spin ri coordinates of the N electrons in
the system. The Schrödinger equation is i�h _wðf~rg; tÞ ¼
ðbF þ bV ðtÞÞwðf~rg; tÞ where bF ¼Pj � �h2

2me
r2

j

� �
þ 1=2

P
k – j

j
~rj�~rkj j is the

sum of kinetic energy and the potential energy of electron–elec-
tron repulsion, j = e2(4pe0)�1 and e0 is the vacuum permeability.
The external potential can be written as: bV ðtÞ ¼ R vð~r; tÞn̂ð~rÞd3r,
where n̂ð~rÞ ¼

P
jdð~r �~rjÞ is the number-density operator and:

vð~r; tÞ ¼ vNð~rÞ � e~EðtÞ �~r; ð1Þ
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with vNð~rÞ the potential of the external force on the electrons (orig-
inating from the static nuclei, for example). The TD Kohn–Sham
procedure replaces the interacting electron system by a ‘‘non-inter-
acting” one, namely the wave function is replaced by a time-depen-
dent Slater determinant that evolves in time starting from the
Kohn–Sham ground-state determinant. The basic relation between
the interacting and non-interacting systems is that both have the
same density nð~r; tÞ for all times. This serves to define uniquely
the potential exerted on the non-interacting system, written as [1]:

vsð~r; tÞ ¼ vð~r; tÞ þ vH½nðtÞ�ð~rÞ þ vXC ½n�ð~r; tÞ; ð2Þ

where the vH½nðtÞ�ð~rÞ ¼ j
R

nð~r0; tÞ=j~r �~r0jd3r is the Hartree potential
and vXC ½n�ð~r; tÞ is the universal, exact yet forever elusive XCPF. The
central issue in TDDFT is the developments of useful approxima-
tions for the XCPF. The adiabatic approximation is extremely popu-
lar and consists of plugging the instantaneous density into the
ground-state XCPF (assuming v-representability):

vad
XC ½n�ð~r; tÞ ¼ vgs

XC ½nðtÞ�ð~rÞ ð3Þ

Can the drastic approximation in Eq. (3) be expected to work ex-
actly for high frequencies and strong fields? One case where it cer-
tainly does is that of electrons in a harmonic trap (‘‘Hooke’s atom”).
This can be readily proved using the Harmonic potential theorem
[22] and Galilean covariance of the exact exchange correlation po-
tential functional [23]. But the harmonic potential is a very special
case and the question lingers for more general circumstances.

In order to set the stage for our argument, we move from the
laboratory frame to the acceleration-frame, the rest frame of an
electron subject to the given electric field. The trajectory ~xðtÞ of
such an electron in laboratory-frame adheres to €~xðtÞ ¼ � e

me
~EðtÞ.

The initial conditions of the trajectory are chosen so as to have
the accelerated observer not move on the average (with respect
to the rest frame). Furthermore, we may redefine the origin so as
to have ~xð0Þ ¼ 0. In this so-called Kramers–Henneberger (KH)
frame [24,25] the Schrödinger equation becomes:

i�h _wKHðf~rg; tÞ ¼ ½bF þ bV KHðtÞ�wKHðf~rg; tÞ ð4Þ

where bV KH ¼
R

vKHð~r; tÞn̂ð~rÞd3r and vKHð~r; tÞ ¼ vNð~r þ~xðtÞÞ. The wave
functions in the rest- and accelerated-frames must relate through:

wðf~rg; tÞ ¼ eihðf~rg;tÞwKHðfð~r �~xðtÞÞg; tÞ ð5Þ

where hðf~rg; tÞ is a space-time-dependent phase ensuring particle
conservation in the acceleration frame. We may take
wKHðf~rg; 0Þ ¼ eihðf~rg; 0Þwgsðf~rgÞ as an initial condition just as in the
rest-frame. This entire procedure is exact as only a change of frame
of reference was made. Note that the expectation value of the elec-
tron number-density in the rest-frame nð~r; tÞ is related to that seen
in the accelerated-frame by:

nð~r; tÞ ¼ nKHð~r �~xðtÞ; tÞ ð6Þ

Let us now discuss the case of a high-frequency electric field. In par-
ticular, consider a finite x and make an approximation which be-
comes exact as x is increased to infinity. The field envelope X(t)
changes slowly on the time scale of 2px�1, thus the Newtonian tra-
jectory can be approximated by:

~xðtÞ ¼ XðtÞðpx cos xt;py sin xt; 0Þ ð7Þ

(One may verify this by double differentiation, neglecting terms of
order x�1 _X=XÞ. This approximation becomes exact when x ?1
while X(t) is left unchanged. It is clear that in this limit the electric
field ~E which is proportional to x2X grows to infinity as well. Thus
we are now looking at the high-frequency strong-field limit.

The next step is to introduce a ‘‘slow” time variable t0 in addition
to the fast ‘‘time”. The idea, based on the t � t0 formalism [26] and
was raised in Ref. [27]. This leads to a t � t0 Hamiltonian in the KH
frame of the form bHðt0Þ ¼ bF þ bV 2ðt; t0Þ � i�h @
@t where t is now consid-

ered a dynamical variable and bV 2 is a two-time potential:bV 2ðt; t0Þ ¼
R

v2ð~r; t; t0Þn̂ð~rÞd3r and:

v2ð~r; t; t0Þ ¼ vNð~r þ Xðt0Þðpx cos xt;py sin xt; 0ÞÞ ð8Þ

It is possible to show that the t � t0 wave Wðf~rg; t; t0Þ function start-
ing at Wðf~rg; t; 0Þ ¼ wKHðf~rg; 0Þ and evolving under the SE
i�h@t0Wðt; t0Þ ¼ bHðt0ÞWðt; t0Þ will produce the physical wave function
through the relation wKHðf~rg; t0Þ ¼ Wðf~rg; t0; t0Þ. The potential is
periodic in t and therefore, can be expanded as a Fourier series:
v2ð~r; t; t0Þ ¼

P
m~vmð~r; t0Þeimxt where:

~vmð~r; t0Þ ¼
1

2p

Z 2p

0
e�imh � vNð~r þ Xðt0Þðpx cos h;py sin h;0ÞÞdh: ð9Þ

Using a Floquet approach (in Ref. [27] a detailed derivation is given)
it is possible to show that at high-frequency these potential terms
with m – 0 have a negligible effect on the wave function and
Wðf~rg; t; t0Þ becomes independent of t (apart from a phase factor).
As a consequence, we find a great simplification in that the high-fre-
quency limit wKHðf~rg; t0Þ obeys the following SE:

i�h
@

@t0
wKHðf~rg; t0Þ ¼ ðbF þ bV 0ðt0ÞÞwKHðf~rg; t0Þ; ð10Þ

where bV 0ðt0Þ ¼
R

~v0ð~r; t0Þn̂ð~rÞd3r. This equation is a generalization of
the adiabatic theory of ionization stabilization [28]. It is clear from
Eq. (9), that ~v0ð~r; t0Þ is an instantaneous fast-time-average of the KH
potential.

We ended up with a Schrödinger equation (Eq. (10)) having a
new ‘‘averaged” potential without high-frequency. Still, the rate of
change of the potential can be large: X(t) can change very fast rel-
ative to the electron motion in the KH frame while it changes
slowly relative to the laser frequency.

We now discuss the applicability of the adiabatic XCPF of Eq.
(3). Consider first the limit of very slowly varying envelop X(t)
(henceforth we replace t

0
by t for simpler notation). According to

the adiabatic theorem applied to Eq. (10) wKHð~r; tÞ is (up to a
time-dependent phase) the instantaneous ground-state of the
averaged KH Hamiltonian bH0ðtÞ ¼ bF þ bV 0ðtÞ. The instantaneous
ground-state density nKHð~r; tÞ is thus uniquely mapped to the KH
potential v0ð~r; tÞ, in the Hohenberg–Kohn way (i.e. as a ground-
state mapping) [3]. In parallel, the same density can be considered
the ground-state density of non-interacting particles. These non-
interacting electrons are subject to a unique slowly varying exter-
nal potential:

vs;KHð~r; tÞ ¼ v0ð~r; tÞ þ vH½nKHðtÞ�ð~rÞ þ vgs
XC ½nKHðtÞ�ð~rÞ ð11Þ

And a time-dependent determinantal wave function can be deter-
mined from the TD Schrödinger equation for orbitals:

i�h _ujð~r; tÞ ¼ � �h2

2me
r2 þ vs;KH½nKHðtÞ�ð~r; tÞ

" #
ujð~r; tÞ: ð12Þ

But these are just the TDKS equations in the KH frame, provided we
make the identification:

vXC ½nKH�ð~r; tÞ ¼ vgs
XC ½nKHðtÞ�ð~rÞ: ð13Þ

According to the Runge–Gross theorem, this identification is unique
(up to a purely time dependent function). Furthermore, due to static
[29] and dynamic [23] Galilean covariance:

vXC ½n�ð~r þ~xðtÞ; tÞ ¼ vXC ½nKH�ð~r; tÞ
vgs

XC ½nðtÞ�ð~r þ~xðtÞÞ ¼ vgs
XC ½nKHðtÞ�ð~rÞ

ð14Þ

Eq. (13) will hold also when nKH(t) is replaced by n(t) thus we obtain
finally:

vXC ½n�ð~r; tÞ ¼ vgs
XC ½nðtÞ�ð~r; tÞ ð15Þ
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This shows that when using the TDKS method, with a infinitely-
slowly ramp, at high frequency, one can safely use vgs

XC ½nðtÞ�ð~rÞ in-
stead of the general vXC ½n�ð~r; tÞ and get the exact result.

Now, let us consider what this result means for developing
approximations to TDDFT. First, in the infinitely slow ramp limit
the result may indicate that approximate DFT XCPFs can be based
on the adiabatic XCPFs. For example, the local density approxima-
tion potential vLDA

XC ðnð~rÞÞ could be a reasonable approximation to ex-
act vgs

XC ½n�ð~rÞ in Eq. (11) and so may yield a good approximation to
the high frequency response of the system. Indeed, as indicated
above there are many numerical examples showing that adiabatic
LDA linear response calculations provide excellent photoabsorp-
tion cross sections when compared to experiments in the high fre-
quency limit, often a much better approximation than in the visible
and ultraviolet frequency range [11,20,21]. The present develop-
ment explains this rather surprising result.

Summarizing, we have shown that the adiabatic XCPF approxi-
mation is valid not only in the static limit but also on the opposite
extreme, when a highly oscillatory (and not necessarily weak) elec-
tric-field is operative. This result shows that adiabatic XCPF has a
larger scope of applicability than previously suspected and in this
sense is compliant with recent numerical findings by Thiele et al.
[19] who found negligible memory effects in strong-field double
ionization of a 1-dimensional 2-electron system interacting with
a linearly polarized short laser pulse [19].

When an infinitely long ramp is used our results are in compli-
ance with those of Tokatly and Ullrich [30,31] who found negligible
non-adiabatic effects for high-frequency perturbations of the
homogeneous electron gas and related systems.

Our method involved Floquet states which do not by them-
selves conform to a Hohenberg–Kohn [3] principle [32]. This is
not a problem in our case since our approach relies on the Hohen-
berg–Kohn theorem only at t = 0, where the interacting and non-
interacting systems are in their respective ground-states. At t > 0
the Runge–Gross theorem [1] is invoked guaranteeing a unique
time-dependent potential.

An interesting question remains unanswered: does this conclu-
sion hold for other types of high frequency perturbations? One
case, of physical significance, is in high-frequency laser pulses,
for which the dipole-approximation may cease to be justified, since
the wave length drops when the frequency increases (however,
pretty high frequencies can be reached before the dipole approxi-
mation ceases to be eligible).

While we are not able to answer all questions at present, it is
very comforting to find that the adiabatic XCPF approximation
has an exact high-frequency strong-field limit. This fact may assist
in developing new approaches, based on the adiabatic approxima-
tion for strong laser fields and intermediate frequencies. Further-
more, we find that improvement of approximate ground state
XCPFs is an important step towards improved TDXCPFs.

We gratefully acknowledge support of this research by the US-
Israel Binational Science Foundation (BSF).
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