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Abstract
We review density functional theory (DFT) within the Kohn-Sham (KS)
and the generalized KS (GKS) frameworks from a theoretical perspective
for both time-independent and time-dependent problems. We focus on the
use of range-separated hybrids within a GKS approach as a practical remedy
for dealing with the deleterious long-range self-repulsion plaguing many
approximate implementations of DFT. This technique enables DFT to be
widely relevant in new realms such as charge transfer, radical cation dimers,
and Rydberg excitations. Emphasis is put on a new concept of system-specific
range-parameter tuning, which introduces predictive power in applications
considered until recently too difficult for DFT.
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Density functional
theory (DFT):
a framework for the
electronic structure of
matter; the key
element is the electron
density, not the wave
function

Kohn-Sham (KS)
method: an approach
to apply DFT to
electrons in a physical
system by mapping it
onto a system of
noninteracting
particles with the same
density

Generalized
Kohn-Sham (GKS)
method: an approach
to apply DFT to
electrons in a physical
system by mapping it
onto a GKS system of
particles obeying
orbital nonlinear
Schrödinger equations

TDDFT: time-
dependent density
functional theory

Range-separated
hybrid (RSH):
a certain type of
correction built into
local density
approximation that
eliminates the
dominant (1/r)
offending part of the
spurious long-range
self-repulsion

MP: minimum
principle

INTRODUCTION

“To love practice without theory is like the sailor who boards ship without rudder and compass and is
forever uncertain where he may cast.” (Leonardo da Vinci, Notebook I, ca. 1490)

Leonardo’s compass is indeed a simple and small device offering useful accuracy for reliable
navigation in the turmoil of the oceans; quantum chemical methods based on density functional
theory (DFT) (1–5) are approaching such a status. They are handy, relatively fast, and usefully
accurate; they are intuitive and easy to interpret. Their impact on a broad variety of scientific
fields, such as chemistry, condensed matter physics, and biology, is large and accelerating (6–11).
Most of the impact of DFT has been delivered using the Kohn-Sham (KS) (12) and generalized
KS (GKS) (13) orbital approaches, although orbital-less DFT is steadily developing (14–16).
Whereas DFT applications are mostly used for the ground electronic state, an exceptionally
successful offspring, the time-dependent DFT (TDDFT) (17, 18), enables access to excited states
and dynamical electronic processes, such as molecular spectroscopy and photochemistry, intense
lasers, and molecular electronics (19–34).

Despite this general success, the usual KS approximations go astray in some applications,
producing qualitatively wrong predictions due to spurious self-repulsion. This has been seen in
DFT (35–37) and TDDFT (38, 39). Although sophisticated methods in KS theory can be used for
treating self-repulsion (40–42), an alternative and successful approach is the use of GKS theory
combined with range-separated hybrids (RSHs) (43–47). Recent developments show that RSHs
enable general, robust, consistent, and accurate remedies for self-repulsion (48–54).

This review presents an (arguably) systematic and rigorous way for RSHs as a DFT and a
TDDFT. We focus on a relatively new notion, namely the ab initio–motivated tuning of the range
parameter and its importance for gaining predictive power in many types of calculations; several
theoretical and computational results are included for demonstration.

HYBRID APPROACHES IN DENSITY FUNCTIONAL THEORY

A Generalized Kohn-Sham Approach to Density Functional Theory

In this section, we describe the GKS approach with which we formulate RSHs as DFT approxi-
mations. The GKS concept (13) is extremely flexible, and there are many possibilities for its use;
here we single out a natural but by no means canonical thread and for simplicity refer to it as our
GKS approach.

Let us consider a system of N electrons in a molecule with clamped nuclei [the Born-
Oppenheimer (BO) approximation]. The Hamiltonian for the electrons is Ĥ = T̂ + Û + V̂ ,
where T̂ = ∑N

n=1 (− 1
2 ∇2

n ) is the kinetic energy, Û = 1
2

∑N
n �=m ( 1

rnm
) is the electron-electron repul-

sion potential energy, and V̂ = ∫
v(r)n̂(r)d 3r is the potential energy of attraction to the nuclear

charges (or other external potential fields), where n̂(r) = ∑N
n=1 δ(r − r̂n) is the electron density

operator. We may write the electronic ground-state energy as a minimum principle (MP),

Egs [v, N] = min
�→N

[
〈�| Ĥ |�〉

]
, (1)

searching over all normalized, antisymmetric N-electron wave functions �. The minimizing
wave function in Equation 1 is excruciatingly complicated, and the KS-DFT was introduced
by Hohenberg & Kohn (55) and Kohn & Sham (12) to avoid direct reference to it. Levy (56)
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Correlation energy
(EC): the difference
between the physical
energy and the
KS/GKS energy

generalized their work by breaking the minimum procedure in Equation 1 into two stages:

Egs [v, N] = min
n→N

[
min
�→n

[〈�| T̂ + Û |�〉] +
∫

n (r) v (r) d 3r
]

. (2)

Here � → n means that the search is over all wave functions for which 〈�| n̂ (r) |�〉 = n (r), and
n → N means that the search is over all (positive) density functions for which

∫
n (r) d 3r = N.

The inner minimum on the right-hand side defines a universal density functional,

F [n] = min
�→n

[〈�| T̂ + Û |�〉], (3)

where the minimizing wave function is denoted �∗, and with it

Egs [v, N] = min
n→N

[
F [n] +

∫
n (r) v (r) d 3r

]
. (4)

The functional F [n] is fantastically complicated, and we have no direct access to it; thus for
practical calculations, it is beneficial to also define a simpler quantity, in which the minimum
search is limited to N-electron Slater wave functions � (antisymmetric combinations of products
of N single-electron spin orbitals):

FS [n] = min
�→n

[〈�| T̂ + Û |�〉], (5)

where the minimizing Slater wave function is denoted �∗. The difference between the two func-
tionals is the correlation energy (12):

EGKS
C [n] = F [n] − FS [n] . (6)

Because of the simple structure of Slater wave functions, FS [n] is readily accessible; thus, EGK S
C [n]

encapsulates the entire immensity of the electronic-structure problem, and it is this functional for
which approximations must be crafted under DFT. Because FS involves a minimum search on a
limited space, F ≤ FS, so EGKS

C [n] is always negative. One can now write the energy as

Egs [v, N] = min
n→N

[
FS [n] +

∫
n (r) v (r) d 3r + EGKS

C [n]
]

. (7)

Under several conditions described in Reference 13, we may replace this MP by

Egs [v, N] = min
�→N

[〈�| Ĥ |�〉 + EGKS
C [n�]], (8)

searching over all normalized Slater wave functions of N orbitals,�, and n� (r) = 〈�| n̂ (r) |�〉 is
the corresponding electron density. This MP yields �∗ as the minimizing Slater wave function.
The two MPs (Equations 3 and 8) give the exact ground-state energy, and their minimizing wave
functions have the same density:

〈�∗| n̂ (r) |�∗〉 = 〈�∗| n̂ (r) |�∗〉 . (9)

For applications, the MP in Equation 8 is written in terms of N orthonormal spin orbitals φ j (r, s j )
( j = 1, . . . , N ),1 with 〈�|T̂|�〉 = ∑N

j=1 〈φ j | − 1
2 ∇2|φ j 〉, 〈�|Û|�〉 = EH[n{φ j }]+EGKS

X [{φ j }], where
n{φ j }(r) = ∑N

j=1 |φ j (r)|2, EH[n] = 1
2

∫∫ n(r)n(r′)
|r−r′| d 3rd 3r ′ is the Hartree energy, and

EGKS
X [{φ j }] = −1

2

∫ ∫ ∣∣∣∑ j φ j (r)φ j (r′)
∣∣∣2

|r − r′| d 3rd 3r ′ (10)

1For simplicity, we henceforth allow each electron to be in its own spatial spin orbital φ j (r) of preassigned z component of
spin s j (up or down). Integrals involving two orbitals are zero if the spins of the two orbitals are not the same.
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XC: exchange
correlation

HF: Hartree-Fock

is the orbital exchange. It is convenient to define the sum of exchange and correlation ener-
gies as the exchange-correlation (XC) orbital functional, EGKS

XC [{φ j }] = EGKS
X [{φ j }] + EGKS

C [n{φ j }].
The MP of Equation 8 thus becomes a search for N normalized spin orbitals. Lagrange’s min-
imum theory, with multipliers ε j to impose the normalization, produces the following GKS
equations: (

−1
2
∇2 + v (r) + vH (r)

)
φ j (r) + K̂ Xφ j (r) + vGKS

C (r) φ j (r) = ε j φ j (r) , (11)

where

K̂ Xφ j (r) = δEGKS
X

δφ j (r)
= −

N∑
k=1

[
φk (r)

∫
φk (r′) φ j (r′)

|r − r′| d 3r ′
]

, vGKS
C (r) = δEGKS

C

δn (r)
. (12)

The forms of the exchange functional and operator are identical to those appearing in Hartree-
Fock (HF) theory.

In contrast to GKS, the XC energy in the KS approach is not an orbital functional, but a
density functional: EKS

XC = EKS
X + EKS

C = F − TS − EH , where TS [n] and EKS
X [n] are the kinetic

and exchange energies, respectively, of a noninteracting electron system having the density n (r)
(the so-called KS system); by the Hohenberg-Kohn theorem, the KS system is uniquely defined.
In terms of this, the Lagrange method yields the KS equations(

−1
2
∇2 + v (r) + vH (r) + vX (r) + vC (r)

)
φ j (r) = ε j φ j (r) , (13)

where vl (r) = δEKS
l

δnl (r) , l = H, X, and C .
As we discuss below, the asymptotic (r → ∞) form of the potentials for finite systems is an

important guide to constructing approximations, and it can be shown that to leading order in r−1

KS: vX (r) → −1
r

; vC (r) → v∞
C − r · ↔

α · r
2r6

,

GKS: K̂ Xφ j (r) → vX (r) φ j (r) ; vGKS
C (r) → vKS

C (r) , (14)

where ↔
α is the polarizability tensor of the ionized system, and v∞

C is an arbitrary constant, which
we take as zero (57, 58). Clearly, in both approaches the asymptotic form of the XC potential is
dominated by the exchange −1/r behavior.

The Hamiltonian in both the KS and GKS equations (Equations 13 and 11, respectively) is
Hermitean, so the orbitals φ j in each case are orthogonal. It is customary to index orbitals with
ascending energies: · · · ≤ ε j ≤ ε j+1 ≤ · · · ( j = 1, 2, . . .). Usually, only the first N orbitals are
needed (12), and these are the occupied orbitals; all other orbitals are unoccupied. Other orbital
occupation rules are sometimes appropriate (see 59).

Both the KS and our GKS lead to the same ground-state density and energy, but the or-
bitals φ j (r) and the orbital energies ε j are generally different, as are the Slater wave functions.
In most KS approaches, one approximates each of the functionals EKS

X [n] and EKS
C [n] aiming

at a good estimate of their sum EKS
XC [n] (although exact-exchange methods exist; see 60–62);

in our GKS approach, we think of exchange as exact (Equation 10), whereas all other terms
and approximations are loosely thought of as correlation energy. One should note that the dif-
ference between the KS and GKS XC energies is that of the kinetic energies: EKS

XC − EGKS
XC =

〈�∗| T̂ |�∗〉 − TS [n]; this quantity is positive because 〈�| T̂ |�〉 ≥ TS [n] for any � → n (2). Thus,
the GKS system has higher kinetic energy than that of the KS system, whereas its XC energy is
lower.
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HEG: homogeneous
electron gas

Local density
approximation
(LDA): an
approximate
expression for the
correlation energy
based on quantities
and concepts taken
from the HEG

Ionization potential
(IP) theorem: the
energy needed to
remove an electron
from a system of N
electrons (to infinity)
is equal exactly to the
HOMO energy in the
KS and GKS
descriptions of this
same system

Derivative
discontinuity: the
difference between the
gap in the physical
system and that in the
KS/GKS system

Some Constraints on the Kohn-Sham/Generalized Kohn-Sham Approaches

Most KS approaches construct approximations for EKS
XC [n] using the great body of formal and

numerical information existing for the infinite homogeneous electron gas (HEG); this leads to
the local density approximation (LDA), as discussed below, as well as to various semilocal density
approximations. A different source of information concerns the asymptotic long-range form of
the XC potentials of finite systems (given in Equation 14) and the corresponding properties of
the orbitals and density. In a system of M interacting electrons, the density decays as n (r) ≈
e−2

√
2 IP(M) r , where IP(M) is the ionization potential (and all quantities are in atomic units) (63,

64). In HF theory, n (r) ≈ e−2
√

−2εM(M) r (58), where εM (M) is the orbital energy of the highest
occupied molecular orbital (HOMO). The arguments of Reference 58 hold for GKS as well.
Because the physical and GKS systems have the same electron density (Equation 9), we find, by
equating the density decay constants (57, 65),

−εM (M) = IP (M) ≡ Egs (M − 1) − Egs (M) . (15)

[For improved readability, we replace the notation Egs [v, N] by Egs (N).] This important relation
is the IP theorem connecting GKS quantities related to different charge states of the system. In
HF theory, −εM(M ) is not the exact ionization energy, but in GKS the presence of correlation
allows Equation 15 to hold exactly.

To obtain further information on the energy and DFT orbital energies, we follow Reference
65 and consider a generalization of the MP in Equation 8 to noninteger electron numbers N =
M + ω, where M is an integer and 0 ≤ ω ≤ 1. The search for a minimum is now over mixed-state
density matrices, each comprising wave functions with M and M + 1 electrons. In this case, N is
the ensemble average of the number of electrons, and it is imposed on the ensemble MP (66) by a
Lagrange multiplier. The resulting minimum energy Egs (N) is the linear average of the pure-state
integer-number energies (65):

Egs (N) = Egs (M + 1) ω + Egs (M) (1 − ω) . (16)

The slope E ′
gs (N) is the chemical potential μ, and one finds by differentiation

−μ (M + ω) = Egs (M) − Egs (M + 1) ≡ EA (M) ,

−μ (M − ω) = Egs (M − 1) − Egs (M) ≡ IP (M) .
(17)

The difference in the slope below M and above it is called the fundamental gap: 	μ ≡ μ(M + ω) −
μ(M − ω). Note that the right-hand side of Equation 17 as well as the fundamental gap are both
independent of ω. By a generalization of a theorem due to Janak (67), the left slope of Egs also obeys
E ′

gs (M − δω) = εM(M ) (where δω is infinitesimal). This shows that the IP theorem (Equation 15)
is a direct consequence of the second line of Equation 17. Furthermore, naively using Janak’s
theory for M + δω, we find μ(M + δω) = ε(M)M+1. Thus, the fundamental gap seems to give
	μ = ε(M)M+1 − ε (M)M. These arguments suggest that the fundamental gap 	μ is equal to the
GKS (or KS) HOMO-LUMO gap 	μGK S = ε(M)M+1 −ε(M)M. Surprisingly, however, this result
is wrong! In fact, exact KS calculations on small systems indicate that 	μKS < 	μ. This paradox
is a result of the flawed use of Janak’s theorem, which implicitly assumed that the correlation
potential, when going through an integer number of electrons (from M − δω to M + δω), is
left unchanged. In fact, when an infinitesimal amount of electron charge moves the number of
electrons from slightly below an integer to slightly above it, this potential must jump by a finite
constant called the derivative discontinuity; anything different than a constant would violate the
HK theorem (13), which demands uniqueness of the potential up to a constant. Because the gap
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Long-range
self-repulsion: the
spurious energy
incurred by
incomplete
cancellation of the
long-range Hartree
energy by an
approximate exchange
energy functional

in terms of orbital energies is obtained by combining Equations 15 and 17,

	μ = ε (M + 1)M+1 − ε (M)M, (18)

we find the following relation between the fundamental and GKS gaps:

	μ = 	μGK S + ε (M + 1)M+1 − ε (M)M+1, (19)

showing that the derivative discontinuity is the difference between the HOMO energy of the
M + 1 electron system and the LUMO energy of the M electron system.

Local Density Approximation in our Generalized Kohn-Sham Eyes

Our GKS equations (Equation 11) can be used to find the approximate ground-state energy and
density of any electronic system based on the availability of simple and effective approximations for
EC , for which the LDA is the cornerstone approach (12). The LDA originates from approximating
the sum of the XC energy by local (Thomas-Fermi type) energy expressions:

EKS
XC [n] ≈ E LDA−K S

XC [n] =
∫

εHEG
X (n (r)) n (r) d 3r +

∫
εHEG

C (n (r)) n (r) d 3r, (20)

where εHEG
X (n) and εHEG

C (n) are the exchange and correlation energies per electron in a HEG,
respectively. εHEG

X (n) is evaluated by an analytical expression, whereas for εHEG
C (n), simple ap-

proximate expressions exist (68–70). By construction, Equation 20 holds exactly for homogeneous
densities. For the inhomogeneous case, the integrals over nεl (n) are crude approximations to
El [n] (l = X,C). However, the X and C errors tend to cancel when added (3), so the sum is often a
useful approximation to EKS

XC [n] = EKS
X [n] + EKS

C [n]. The KS equations (Equation 13) using the
LDA functionals are

−1
2
∇2φ j (r) + (

v (r) + vH (r) + v
K S,LDA
X (n (r)) + v

K S,LDA
C (n (r))

)
φ j (r) = ε j φ j (r) , (21)

with

vH [n] (r) =
∫

n (r′)
|r − r′|d 3r ′, v

K S,LDA
l (n) = (

nεHEG
l (n)

)′
, l = X, C, (22)

as the Hartree and LDA exchange and correlation potentials. From the above discussion, the KS-
LDA XC potential v

K S,LDA
XC (r) = v

K S,LDA
X (n (r)) + v

K S,LDA
C (n (r)) still has the wrong asymptotic

form as it decays exponentially with r → ∞ instead of as −r−1 as demanded by Equation 14. We
can see this also by rewriting Equation 20 in a GKS way as follows:

ELDA−GKS
XC

[{
φ j

}] = EGKS
X

[{
φ j

}] +
∫

εHEG
C (n (r)) n (r) d 3r

+
[∫

εHEG
X (n (r)) n (r) d 3r − EGKS

X

[{
φ j

}]]
. (23)

The first term on the right-hand side gives the asymptotic potential required by Equation 14.
If we think of the last three terms on the right as a kind of correlation energy, we find that the
correlation-energy functional gradient acts, for r → ∞, as a repulsive 1/r Coulomb potential in
stark contradiction to the condition for vGKS

C (r) in Equation 14. We demonstrate the spurious
behavior of the potentials in LDA in Figure 1; some grossly incorrect predictions of electronic
structure and dynamics by LDA are attributed to it (37, 41, 71–76).

A similar analysis can be made for the generalized gradients approximation (GGA) and other
semilocal functionals that use expressions of the form

∫
gX/C (n (r) , |∇n (r)|) d 3r (77–79). Within

GGA, attempts to enforce the −1/r dependency into vs l
XC led to significantly improved functionals

(79), but the asymptotic form of the potential was still spurious (80).
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Figure 1
(a) The Kohn-Sham local density approximation (KS LDA) potential tail and two average generalized
Kohn-Sham/Baer-Neuhauser-Livshits (GKS/BNL) potential tails for the Ar atom (located at r = 0). The
−1/r Coulomb potential tail is also shown. (b) The KS LDA potential and average GKS/BNL potentials of a
F. . .H system (14a0 apart) along the internuclear axis.

Scaled hybrid (SH):
a certain type of
correction built into
LDA or GGA that
mitigates the spurious
long-range self-
repulsion

Scaled Hybrids

The scaled-hybrid (SH) approach (81–83) helps to mitigate the spurious self-repulsion appearing
in the square brackets of Equation 23 by scaling that term, multiplying it by a factor 0 < γ < 1:

ESH−LDA
XC

[{
φ j

}] = EGKS
X

[{
φ j

}] +
∫

εHEG
C (n (r)) n (r) d 3r

+ γ

[∫
εHEG

X (n (r)) n (r) d 3r − EGKS
X

[{
φ j

}]]
. (24)

We can think of the last three terms in Equation 24 as a kind of correlation energy and again find
that it has the wrong asymptotic energy gradient at large r , namely the self-repulsive γ

r potential.
A benefit of the SH approach over LDA is that this repulsive potential is reduced by the scaling
factor γ . Obviously, a similar treatment applies using semilocal functionals.

The scaling parameter γ is determined semiempirically, by calibrating to known molecular
atomization energies, IPs, proton affinities, and total atomic energies. The semiempirical pro-
cedure places the recommended value of γ between 0.5 and 0.8 (81, 84). Some applications of
this approach determine γ from theoretical arguments (82, 85). The SH approach spawned sev-
eral successful functionals (83, 85–87), especially for the prediction of the ground-state potential
surface near its minima (bond lengths, atomization energies, vibrational frequencies). We note,
however, that the residual self-repulsion still leads to well-known failures of this method, as shown
in several examples below.

Range-Separated Hybrids

Another way to mitigate the spurious long-range behavior of LDA (and other semilocal XC-
energy functionals) is to damp the long-range orbital exchange energy term appearing in the
square brackets of the LDA XC energy (Equation 23) complementing it with a matching local
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BNL: Baer-
Neuhauser-Livshits
RSH functional

exchange functional (43, 88). This is the RSH approach, and it leads to the following XC functional:

E RSH−GK S
XC

[{
φ j

}] = EGKS
X

[{
φ j

}]+
∫

ε
γ

C (n (r)) n (r) d 3r+
[∫

ε
γ−HEG
X (n (r)) n (r) d 3r − Eγ

X

[{
φ j

}]]
,

(25)
where Eγ

X is the following orbital exchange functional,

Eγ

X

[{
φ j

}] = −1
2

∫ ∫ ∣∣∣∣∣
∑

j

φ j (r)φ j (r′)

∣∣∣∣∣
2

yγ

(∣∣r − r′∣∣) d 3rd 3r ′, (26)

corresponding to a short-range, screened, electron interaction, for example, the Yukawa kernel (47,
89) yγ (r) = e−γ r

r or the erfc kernel (44, 88) yγ (r) = erfc(γ r)
r . The complementary local exchange

energy ε
γ−HEG
X (n) is given in Reference 90 for the Yukawa kernel and in Reference 44 for the

erfc kernel, and the choice ε
γ

C (n) = εHEG
C (n) yields a functional fully consistent with the HEG.

Comparing Equation 25 to Equation 23, it is evident that the long-range Coulomb repulsion
energy in the square brackets of the latter is missing in the former; i.e., the RSH XC potentials
display the correct −1/r attractive form, as required by Equation 14.

The RSH-GKS equations resulting from minimization of the energy functional (Equation 11)
are (

−1
2
∇2 + v (r) + vH (r) + v

γ

X (r) + v
γ

C (r)
)

φ j (r) + K̂ γ

Xφ j (r) = ε j φ j (r) , (27)

with

K̂ γ

Xφ j (r) = δEγ

X

δφ j (r)
= −

N∑
k=1

[φk(r)
∫

φk(r′)φ j (r′) ȳγ (
∣∣r − r′∣∣)d 3r ′]

v
γ

l (n) = (εγ

l (n)n)′ l = X, C, (28)

where ȳγ (r) = 1
r − yγ (r) is the complementary interaction. We can observe the long-range effects

of the RSH approach by inspecting the average potential (see the sidebar for a definition) and
comparing it to the total (KS) potential of the LDA, as seen in Figure 1 for the Ar atom and
for the F. . .H system along the internuclear axis. We choose the Baer-Neuhauser-Livshits (BNL)
(47, 52) form of the RSH (see below for more details on its structure). The KS/LDA potentials
are tighter near their respective nuclei and decay faster to zero when vacuum is approached,
whereas the GKS/ BNL average potential decays slowly as −1/r. In the figure we repeat the RSH
calculation with a different value of γ (for the Ar atom) and find this affects only the potential near

THE AVERAGE POTENTIAL

The GKS equation contains orbital operators, such as K̂ X, that are not local potentials, as in KS theory. It may be
useful to describe these in terms of an approximate average potential vavg (r). Starting from the set of converged RSH
orbitals, φ j (r) j = 1, . . . , N, the vavg (r) and the effective orbital energies ε j are determined by requiring minimal
deviance from local Schrödinger equations. Thus, one defines the deviance |Dj 〉 = (ε j − [− 1

2 ∇2 + vavg ])|φ j 〉 and
minimizes L[vavg , {ε j }] = ∑N

j=1 〈Dj | Dj 〉, which results in the simultaneous equations

vavg (r) = 1
n (r)

N∑
j=1

φ j (r)
(

ε j + 1
2
∇2

)
φ j (r), ε j = 〈

φ j
∣∣ vavg + 1

2
∇2

∣∣φ j
〉
,

where ε j and vavg (r) are determined up to a common j-independent constant. For orbitals coming from a molecular
GKS, this constant can be chosen so that εN is equal to the GKS HOMO energy. This should yield vavg (r)
approaching zero as r → 0.
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the nucleus, but the asymptotic form is the same. The GKS/BNL asymptotic behavior is correct
because it is in accord with Equation 14 (for overall neutral systems); furthermore, we found
that KS/LDA predicts the separated atoms partially charged (F−0.2. . .H+0.2), whereas GKS/BNL
correctly predicts neutral atoms.

RSHs have also been realized using semilocal functionals (44, 46–53). In most implementations,
γ is determined as a universal constant as for the scaling parameter in SHs. The issue of tuning
γ on a system-specific basis is one focus of the present review and has not been widely addressed
(but see Reference 91 for novel generalizations).

Generalized Kohn-Sham Approach to Time-Dependent
Density Functional Theory

In time-dependent problems, molecular electrons are subject to time-dependent fields (e.g., laser
pulses) described by external potentials v (r, t), and the Hamiltonian of the system is Ĥ (t) =
T̂ + Û + V̂ (t), where V̂ (t) = ∑

m v (rm, t). TDDFT focuses on the space-time density n (r, t) and
allows the construction of a TDKS scheme, replacing the correlated time-dependent wave function
by a time-dependent Slater wave function obeying a time-dependent Schrödinger equation with
a TDKS potential without electron-electron interaction.

The basic theorem, by Runge & Gross (17), shows that such a construction is unique. More
precisely, given the initial (t = 0) state �0, if v1 (r, t) and v2 (r, t) are two potentials inducing the
same n (r, t), then they differ by at most a purely time-dependent function c(t). This is also true for a
system of noninteracting electrons, the KS system: Starting from a Slater wave function �0 (having
the same initial density and current density as �0), there is a unique (up to a purely time-dependent
constant) potential vTDKS (r, t), which produces the time-dependent density n (r, t). This leads to
the definition of a time-dependent exchange-correlation (TDXC) potential (17, 92):

vTDKS (r, t) = v (r, t) + vH [n (t)] (r) + vTDXC [�0, �0, n] (r, t) , (29)

where n (r, t) = ∑N
j=1

∣∣φ j (r, t)
∣∣2, and the time-dependent Schrödinger equation for the KS system

is

i φ̇k (r, t) =
(

−1
2
∇2 + vTDKS (r, t)

)
φk (r, t) . (30)

There is no rigorous route for constructing approximations for the universal TDXC potential.
One guideline, appropriate when �0 and �0 are ground states with the same initial density, is
the adiabatic theorem of quantum mechanics from which one deduces that for a slowly varying
density n (t), the effective potential is the instantaneous ground-state potential:

vTDKS [n] (r, t) = vKS [n (t)] (r) . (31)

Using Equation 29, we find vTDXC [n] (r, t) = vXC [n (t)] (r). In the adiabatic approximation, this
ansatz is used even when the density changes rapidly. Numerical (93) and theoretical (94) in-
dications show that this approach can be reliable even for strongly nonadiabatic situations. In
actual applications, one further approximates vXC [n] by their LDA, semilocal, or various SH re-
placements. Despite these uncontrolled approximations, surprisingly good results for excitation
energies in many systems are found (21, 95–102). One possible reason for this is that within the
adiabatic approximation Equation 30 is derivable from a stationary principle of the action

Sad [�] =
∫ Tf

0

{
〈� (t)| i

∂

∂t
− Ĥ (t) |� (t)〉 − EKS

C

[
n�(t)

]}
dt. (32)

Such a property guarantees the 0-XC force condition and Galilean invariance (108). Terms of
TDXC potentials beyond the adiabatic approach (103) are usually called memory effects (104) and
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are especially important for double excitations (105) and fast electron dephasing in metals (106).
The inclusion of memory is next to impossible with local TDXC approximations to TDDFT
because Galilean invariance and the 0-force conditions cannot be imposed (107–109) as there is
no stationary principle for nonadiabatic functionals in TDDFT (110). These problems prompted
KS-like developments within time-dependent current-density functionals (109, 111, 112), metric
or deformation tensor functionals (106, 113–116), and potential-adaptation methods (117, 118).

Another problem with adiabatic semilocal functionals within TDKS theory is that they predict
too low excitation energies for long-range charge-transfer excitations (CTEs) (38, 45, 52, 119,
120). We explain and expand on this problem below and show that the application of RSHs within
TDGKS can mitigate the problems considerably.

We now discuss the TDGKS equations as a TDDFT approach. The TDGKS equations we
consider are of the form

i φ̇k (r, t) =
(

−1
2
∇2 + vTDGK S (r, t) + Ŵ

[{
φ j

}])
φk (r, t) , (33)

where Ŵ = Ĵ + K̂ , and the orbital operators are given by

Ĵ
[{

φ j
}]

f (r) =
(∫

n
(
r′, t

)
j [n (t)]

(∣∣r − r′∣∣) d 3r ′
)

f (r) ,

K̂
[{

φ j
}]

f (r) = −
N∑

k=1

[
φk (r)

∫
φk

(
r′) f

(
r′) k [n (t)]

(∣∣r − r′∣∣) d 3r ′
]
. (34)

Here j [n] (r) and k [n] (r) can be any potential density functionals, not necessarily Coulomb.
Obviously, this includes SH, RSH, and HF functionals. The TDKS equations were justified by the
application of the Runge-Gross theorem to noninteracting electrons, but the TDGKS equations
are of a different form, and a different proof is needed. It indeed is possible to prove that for a given
initial set of orthonormal orbitals φk (r, 0) (k = 1, . . . , N), if the potential vTDGK S (r, t) generates
a TD density n (r, t) through the TDGKS equation (Equation 33), and if it is Taylor expandable,
then it is unique up to a time-dependent constant c (t). The proof closely follows the standard
Runge-Gross proof but relies on an additional (readily proven) lemma: that time propagation
according to Equation 33 leads to a density and current density that obey the continuity relation.

The vTDGK S (r, t) potential can now be approximated as follows:

vTDGKS (r, t) = v (r, t) + vH (r, t) + vHYB
TDXC (r, t) , (35)

where vH (r, t) is the instantaneous Hartree potential (Equation 22), and the XC-Hyb potential
vHYB

TDXC (r, t) is a local or semilocal adiabatic functional of the density. An attractive property of
the TDGKS equations is that they can be derived from a stationary action principle, similar to
Equation 32. Furthermore, the TDGKS equations include memory effects through the time-
dependent phases of the orbitals in the W term. However, these memory effects do not come in
the first-order response of the approach. We show below that the application of RSHs (as part of
Ŵ ) within the TDGKS equations has several advantages over local adiabatic KS approaches.

Orbital functionals can be inserted into TDKS through time-dependent optimized effective
potential methods (42, 121). Numerically, this approach is extremely demanding, and the time-
dependent Krieger-Li-Iafrate approach was developed and used in some applications (42, 122,
123). This, however, violates the 0-XC force condition (118, 124).

AB INITIO–MOTIVATED TUNING OF THE RANGE PARAMETER γ

We now discuss the parameter γ in SHs and RSHs. Our analysis sidesteps the adiabatic connection
theorem in other works (81, 125–127). The correlation-energy functional was defined as the
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difference between two expectation values of the operator T̂ + Û (Equation 6). It can also be writ-
ten as a difference of two expectation values of a purely potential operator Ŷγ = 1

2

∑
n �=m yγ (rnm),

where yγ (r) is a potential having the following basic properties: It converges to a Coulomb repul-
sion at large r, and it is everywhere repulsive:

lim
γ→0

yγ (r) = 1
r
, lim

γ→∞
yγ (r) = 0, yγ (r) > 0, y ′

γ (r) < 0. (36)

To be specific, we consider generic functions of the following type:

yγ (r) = e−γ r

r
RSH-Yuk,

yγ (r) = erfc (γ r)
r

RSH-erfc,

yγ (r) = 1
1 + γ a0

1
r

SH. (37)

We note the following inequalities:

lim
γ→0

[〈�∗| Ŷγ |�∗〉 − 〈�∗| Ŷγ |�∗〉] = 〈�∗| Û |�∗〉 − 〈�∗| Û |�∗〉 = EC − TC ≤ EC ,

lim
γ→∞

[〈�∗| Ŷγ |�∗〉 − 〈�∗| Ŷγ |�∗〉] = 0 ≥ EC . (38)

The first is true because TC = 〈�∗| T̂ |�∗〉 − 〈�∗| T̂ |�∗〉 is nonnegative (128) and the second
because EC is nonpositive. These two inequalities suggest that there always exists a γ for which
the correlation energy is exactly equal to the difference of the expectation values:

EC [n] = 〈�∗| Ŷγ |�∗〉 − 〈�∗| Ŷγ |�∗〉 . (39)

This definition of γ stresses its density dependence. One can use Equation 39 to compute the
value of γ for the HEG, using the pair distribution function, for which good parameterizations
are available (129). For the SH, it is possible to obtain an analytical expression,

γ (n) = 1 − 3n
(
ln

[−εHEG
C (n)

])′
, (40)

while for RSHs the results are computed numerically.

0.01

0.1

1

10

100

RSH-Yuk

RSH-erfc

SH

0.01 0.1 1 10

γ 
(a

0
–

1
)

r
s

Figure 2
The value of γ in the homogeneous electron gas as a function of the density parameter rS = (3/4πn)1/3α−1

0
for the range-separated hybrid (RSH) and scaled-hybrid (SH) interactions.
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The resulting dependency of γ on the HEG density is shown in Figure 2 for the three
functions of Equation 37. At large densities, εC is dominated by kinetic energy correlation, so
the value of γ is large (reducing potential energy correlation), whereas for small densities, it
is the potential energy correlations that are important so γ is small. One noticeable feature in
Figure 2 is the relatively mild change in γ in the SH when compared to both RSHs. In the
range 1 < rs < 10, corresponding to the chemically significant valence densities, γ changes by
approximately a factor of 2 in the SH and by more than a factor of 10 in the RSHs. Clearly, the
correlation energy is more sensitive to γ in RSHs than in SHs, indicating that pretuning γ may be
more important for RSHs than for SHs (although even in the latter this may be important; see 130).

The RSH with any finite value of γ eliminates the important detrimental long-range problems
in local and semilocal correlation-energy functionals. This was shown by Iikura et al. (44) in DFT
and Tawada et al. (45) in TDDFT and has been subsequently confirmed by a series of works (46–
53, 131, 132). In this section we demonstrate that a high level of performance can be achieved if
one treats γ as a system-dependent parameter tuned by ab initio considerations. All examples are
based on the BNL functional described in Reference 52. This functional is given in Equations 25
and 26 with the following choices: (a) yγ

XC (r) is the RSH-erfc function (Equation 37), (b) gγ

X (n) is
the LDA erf-exchange given in Reference 44, and (c) gγ

C (n, |∇n|) = g LY P
C (n, |∇n|)−wgγ

X (n), based
on the Lee-Yang-Parr (LYP) correlation functional (77) and where w = 0.1 is a semiempirical
constant (52).

Because w �= 0, BNL does not retrace the HEG correlation energy for infinite homogeneous
densities, but it does describe important properties of finite systems considerably better than when
w = 0 (52). The examples below show that BNL combined with γ tuning (called BNL∗) yields a
balanced and usefully accurate description of systems that were often considered too difficult for
DFT/TDDFT.

Ionization Potentials

The IP theorem (Equation 15) is an important connection between the N electron and N − 1
electron systems. Conventional DFT functionals and SHs grossly violate this condition, as seen
in Figure 3: B3LYP HOMO energy is typically 70% of experimental vertical IPs. Despite this,
the IPs are well estimated as B3LYP ground-state energy differences Egs (N) − Egs (N − 1) (mean

N
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Figure 3
(a) The experimental vertical ionization energies versus calculated ionization potentials derived from B3LYP
and BNL∗ HOMO energies for an assortment of small molecules. Basis set cc-pVTZ. (b) The values of the
ab initio–motivated tuned range parameter γ used for the BNL∗ calculation. Data based on Reference 52.
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M − 1 N M
N

E
N

EBNL (N, γ)gs

EBNL (M − 1, γ)gs

EBNL (M, γ)gs

Slope = ЄBNL (N, γ)M

(Janak’s theorem)

Average slope = −IP(M)

Figure 4
A schematic energy curve EBNL

M (N, γ ). The dark blue slope at N is εBNL
M (N, γ ) [Janak’s theorem (67)],

whereas the light blue –IP(M) is the average slope.

SCF: self-consistent
field

absolute deviance of ∼5%). For BNL, we can enforce the IP theorem by tuning γ to get

εBNL
N (M, γ ) = EBNL

gs (M, γ ) − EBNL
gs (M − 1, γ ) . (41)

This should be done at some value of N in the range [M − 1, M]. When dealing with properties
of the (integer) M electron system, it is natural to take N = M (52). Equation 41 requires that
the slope of EBNL

gs (N, γ ) as a function of N be equal to the average slope between N = M − 1
and N = M. This is shown in Figure 4, where a schematic curved line representing EBNL

gs (N, γ )
is drawn in the N-E plane connecting the points (M − 1, EBNL

gs (M − 1, γ )) and (M, EBNL
gs (M, γ )).

The slope of this line is ∂ EBNL
gs /∂N. By Janak’s (67) theorem this slope is also equal to the HOMO

energy εBNL
M (N, γ ). The exact Egs (N ) curve must be a straight line (65) connecting the two end

points in Figure 4. There is recent evidence of cases where RSH curves are in fact very close to
straight lines (133).

In Figure 3 we find that γ tuning according to Equation 41 leads to much improved IPs, with
a mean absolute deviance of 2%. We discuss another slope-motivated scheme below.

The γ -tuning procedure has an additional benefit: The occupied orbital energies become
excellent approximations for inner negative IPs (ionization into excited states of the cation). This
connects with long-standing controversies on the meaning of occupied orbital energies in DFT
(60, 134–137). For example, Figure 5 presents the first four IPs of H2O spanning a range of 12
to 30 eV, calculated in two ways:

1. Koopmans’: Set IPk = −εM−k+1, k = 1, 2, . . . , where M is the number of occupied orbitals
and εm is the m-th occupied orbital energy.

2. 	SCF/TD: Compute the first IP (IP1) using a 	SCF procedure [i.e., the difference between
self-consistent field (SCF) KS energies of the cation and the neutral]. Then set IPk =
IP1 + νk−1, (k = 2, 3, . . .), where νk is the cation k-th excitation energy, calculated with
TDDFT (or time-dependent HF).

Two remarkable findings are (a) internal consistency, with the Koopmans’ and 	SCF/TD
methods giving nearly the same result, and (b) close proximity (<3%) to experiment. The B3P86–
30% SH [Becke exchange (79) mixed with 30% exact explicit exchange and Perdew’s 86 corre-
lation (138)] exhibits considerably larger errors of −8% to −20% (Koopmans) and +5 to +7%
(	SCF/TD), whereas HF methods have similar errors with opposite signs. Statistical average of
orbital potentials (SAOP) and exact KS Koopmans approaches (136) give good fits to experiment
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Figure 5
The relative deviance of ionization energy predictions in H2O from the first four experimental
photoelectron ionization potentials (IPs) (139). The predictions are based on the γ -tuned BNL (BNL∗)
range-separated hybrid, Hartree-Fock (HF) approximation, scaled-hybrid (SH) B3P86–30% (Hyb), SAOP
results, and exact Kohn-Sham (KS) occupied orbital energies (the latter two are quoted from Reference 136).
Koopmans’ mean orbital energies are used. 	SCF/TD means that 	SCF is used for the first IP, whereas the
higher IPs are estimated by adding the relevant H2O+ excitation energies calculated using time-dependent
density functional theory.

as well. Similar findings hold also for NH3, CH2O, and HCOOH and several organic molecules;
details and partial theoretical elucidation will be published elsewhere.

Symmetric Radical Cations

One challenging prototype system for DFT methods is the symmetric radical cation dimer A+
2 ,

where A is any neutral molecule. H+
2 is the simplest member of this family. Many chemically

and biologically interesting processes, for example, the photoionization of the water dimer (140),
involve the formation of such cations. Local, semilocal, and SH functionals fail to produce a
reasonable BO potential energy surface (PES) for these molecules. The core of the problem is
the nearly degenerate ground state when the monomer separation on R is large: Because of self-
repulsion, these methods break the degeneracy and predict a unique charge-delocalized ground
state. The uncorrected self-repulsion is dominant at long distances and the resulting PES is
that of two repelling half-charged positive ions: VBO (R) ≈ 2 × EA(M − 1

2 ) + 1
4R , (R → ∞).

When A is an atom, the correct form of the asymptotic PES is the attractive atom-ion potential:
VBO (R) ≈ EA (M) + EA (M − 1) − α(A)e2

2R4 , where α(A) is the polarizability of A.
The application of an RSH to this problem shows that it corrects the main deficiency of

the PES, making it attractive instead of repulsive. However, the potential curve is still spuri-
ous in terms of its asymptotic value and its dependence on R (53, 141). In the asymptote, the relation
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2 × EA
(
M − 1

2

) = EA (M) + EA (M − 1) must hold (a special case of Equation 16). This can be
achieved by tuning the parameter γ so that

1
2

(
EBNL

gs

(
M − 1

2
, γ

)
− EBNL

gs (M − 1, γ )
)

= 1
2

(
EBNL

gs (M, γ ) − EBNL
gs

(
M − 1

2
, γ

))
. (42)

This procedure of γ tuning is different from the method based on the IP theorem, although in
practice both methods give almost identical values of γ . Referring to Figure 4 and Equation 16,
we see that Equation 42 is in effect demanding that the average slope of Egs (N ) in the first half-
interval [M − 1, M − 1

2 ] be equal to the average slope in the second half-interval [M − 1
2 , M].

The value of γ found by the tuning procedure is strongly system-dependent. For H+
2 γ → ∞,

and for He+
2 and Ne+

2 , γ is 1.3a0
−1 and 0.9a0

−1, respectively (141). With the tuned value of
γ , the resulting potential exhibits many characteristics of the exact potential: The molecule-ion
potential, −α(A )/2R4, is indeed obtained at large R; bond energies, bond lengths, and vibrational
frequencies are also improved (141).

Charge Transfer and Barriers

DFT is often well-adapted for describing adsorbates on metals; many oxygen-metal systems do
not exhibit an activation barrier in accordance with KS predictions. However, the O2 + Al (111)
sticking reaction is an exception: Experiments find an activation energy of ∼0.3–0.5 eV (142) in
contrast to the predictions of local and semilocal KS calculations (143). The strong attraction of
O2 to the Al surface probably results from spurious partial electron transfer (similar to the F. . .H
system in Figure 1). One remedy is to impose spin restrictions on the O2 spin density (144),
artificially favoring polarized spin density on the oxygen (electron transfer from the surface to
the oxygen will lower this spin density). To analyze the system further, investigators examined the
O2 + Al5 → O2Al5 reaction using BNL and B3LYP, and indeed the barrier for the reaction is
sensitive to self-repulsion. Figure 6 shows that the barrier predicted by the PBE (78) semilocal
functional was considerably lower than that predicted by B3LYP/SH (84) and lower still than that
predicted by BNL/RSH (145). Removing self-repulsion using RSHs is not practical for infinite
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Figure 6
(a) The O2 + Al5 system. The oxygen molecule approaches along the z coordinate in a perpendicular
configuration. (b) The potential curve for the approaching oxygen molecule along the z coordinate. Figure
taken from Reference 145.
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metal surfaces: The long tail of exact exchange will likely cause spurious depletion of the density
of states at the Fermi level.

Charge-Transfer Excitations

One strength of the TDGKS/RSH approach, as compared to the local/semilocal TDKS methods,
is its ability to qualitatively account for long-range CTEs (45, 51, 52, 120, 132, 146, 147). This
is best analyzed in the TDGKS adiabatic linear-response equations, which can be written in an
eigenvalue form we call the generalized Casida equations (101, 148, 149):∑

j s

(
2Wkq , j s

√
ωqkωs j + ω2

qkδ(qk)(s j )
)

zs j = �2
ALRzqk, (43)

where the indices refer to molecular spin orbitals: q, s ( j, k) are indices of unoccupied (occupied)
molecular spin orbitals; ωqk = εq − εk; the eigenvalue �ALR is the excitation energy; and the
elements of the supermatrix W are given by the double integrals

Wqk,sj =
∫ ∫

d 3rd 3r ′φq (r)φs (r′)

×
[(

1
|r − r′| + f γ

XC (n (r)) δ
(
r − r′)) φk (r) φ j

(
r′) − ȳγ

(∣∣r − r′∣∣) φk
(
r′) φ j (r)

]
, (44)

where f γ

XC (n) = (
v

γ

XC (n)
)′ is the XC kernel. The last term in the square brackets of Equation 44 is

the long-range exchange, which eliminates the long-range self-repulsion in the Hartree term (the
first term in the round parentheses). In long-range CTEs, the molecular spin orbitals are localized
on two distant fragments: For example, φk is the HOMO (of the donor fragment D and of the
entire system) and φq is the LUMO (of the acceptor fragment A and of the entire system as well).
When the distance RDA is large, both the spatial overlap of these molecular spin orbitals and the
exchange interaction become negligible; thus, the excitation energy is equal to the orbital-energy
difference limRDA→∞ �ALR = ωqk. When RDA is large but finite, the exchange term induces an
additional −1

RDA
term, and the adiabatic linear-response excitation energy is

�ALR = εq − εk − 1
RDA

(RDA large). (45)

This result should be compared with Mulliken’s law for CTEs:

� = IP − EA − 1
RDA

(RDA large), (46)

where IP refers to the donor (or the system), and EA is the electron affinity of the acceptor (or
the system). We note that in adiabatic TDKS, the matrix W of Equation 44 does not have the
explicit exchange term. Thus, the Casida equation based on TDKS has no source for the − 1

RDA
dependence required by Mulliken’s law. Taking the difference between the two expressions, noting
that −IP = εk by the IP theorem, we obtain

� − �ALR = −εq − EA(RDA large). (47)

That � is different from �ALR is a fundamental problem of adiabatic linear-response TDDFT
(38, 39, 119), having common roots with the derivative discontinuity of Equation 19. We have
thus identified two separate problems with the application of adiabatic linear response to CTEs
for large RDA as described in Table 1. In TDGKS/RSHs, the self-repulsion problem is overcome
by the long-range explicit exchange terms, and the derivative-discontinuity problem is mitigated
by proper tuning of γ . It is chosen to align as best as possible the donor IP with its HOMO
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Table 1 Problems with adiabatic linear response charge-transfer excitations at a large donor-acceptor distance, their
source, and effects in various approximations

Does the method avoid violation?

Violated condition
Reason for
violation TDKS/local/sl TDGKS/RSH

TDGKS/RSH +

tuning
1 RDA × [�ALR (RDA) − �ALR (∞)] → −1 Self-repulsion NO YES YES
2 �ALR (∞) = I P (D) − E A(A) Derivative

discontinuity
NO NO Largely so

and the electron affinity of the acceptor with the HOMO of anionic acceptor (or, in a slightly
different approach, the LUMO of the neutral acceptor). Reference 150 gives a fuller account of
this approach, along with calculations of CTEs in aromatic-TCNE complexes, showing excellent
results when compared to experiments.

Rydberg Excitations

The local and semilocal TDKS methods cannot describe Rydberg states because of the absence
of the −1/r Coulomb tail in the average potential (see Figure 1). The RSH TDGKS approach
does not suffer from this problem, as was first demonstrated in Reference 45. This was confirmed
using the BNL/TDGKS approach (52), which showed excellent Rydberg excitation energies for
several small molecules. However, the reported results were not good for the Rydberg excitations
of benzene, which gave errors exceeding 0.5 eV (52). We now show that this discrepancy is
remedied by the usual procedure of tuning γ (Equation 41). Figure 7 shows results with BNL
and BNL∗ compared to experiments. The BNL∗ predictions follow all the experimental Rydberg
excitations closely. Even the valence excitations are much improved. Thus, the tuning procedure
is an essential element for achieving reliable quantitative predictions for Rydberg excitations using
TDDTFT.

3
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Low Rydberg Valence

Figure 7
The time-dependent density functional theory valence and low Rydberg vertical excitation energies (eV) of
benzene computed using B3LYP, BNL, and BNL∗ compared to experimental measurements (as taken from
Reference 45). The basis set is daug-cc-pVTZ + an additional diffuse function.
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SUMMARY

This review discusses an approach to DFT that is based on the GKS theory and employs RSHs.
Above we explain why this approach, in an adiabatic time-dependent context, can also be considered
a TDDFT. We focus on the issue of ab initio–motivated schemes for range parameter tuning,
using as guides the IP theorem and fractional electron-number exact results. Through examples
and comparisons to experiment, we demonstrate how the tuning procedures considerably improve
the scope and predictive power of DFT and TDDFT in several key applications.

The field is still open, as there are fundamental problems left unsolved. One pressing issue is
that this approach lacks so-called size consistency: The energy and density of a system A placed
far from a system B are different from the energy of A when it is isolated because γAB can be
different from γA. Although this indeed is a severe problem, we note that the tuning of γ can
also help alleviate size consistency issues in local and semilocal functionals, such as the deleterious
long-range charge sharing between atoms or the spurious energy curve for symmetric radical
cation systems discussed above. An extreme example of the size-consistency problem is seen when
A is a metal: Any γ significantly different from zero might spuriously reduce the metallic density
of states at the Fermi level. Another open subject is the derivative discontinuity that rises in long-
range CTEs. The RSH approach mitigates this problem relative to SHs and local and semilocal
KS methods; this issue requires additional study and testing. Finally, it seems that in TDDFT, any
type of excitation will require a different choice of the γ parameter, and it is not clear at present
how such a parameter can be determined from first principles. From the study of band gaps in
solids, there are indications that the dielectric constant of the various materials is an important
component in determining γ (151).

Despite these open issues, the examples shown here and ongoing research indicate that ab
initio–motivated γ -tuning procedures offer a simple and practical approach for a high-quality
description of the electronic structure of systems often considered too difficult for DFT.

SUMMARY POINTS

1. The RSH correlation energy can be formulated as a difference of interaction energies.
This enables a formal definition of the range parameter (Equation 39).

2. The range parameter in the application of the RSH approach to HEG is more sensitive
to density than the parameter in SHs (Figure 2).

3. Of the two methods discussed for γ tuning based on the slopes of Egs (N) with respect
to electron number N, one is based on the near-integer slope (IP theorem) and the other
on a fractional electron-number slope. Both give nearly identical results.

4. An extended Runge-Gross theorem allows one to view time-dependent hybrid ap-
proaches as legitimate TDDFTs.

5. With regard to the adiabatic linear response for CTEs, in local/semilocal/SH time-
dependent approaches, the dependence of excitation energy on the donor-acceptor
distance is spurious and the asymptotic excitations energies require a derivative-
discontinuity correction. The time-dependent RSH approach fixes the dependency on
distance, but the derivative discontinuity can still be very large unless γ tuning is per-
formed. It is notable that with such tuning the derivative discontinuity comes out very
small.
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6. In the tuned RSH approach, the orbital energies are excellent approximations for inner
IPs. Furthermore they agree well with the time-dependent RSH excitation energies of
the cation (Figure 5).

7. Accurate Rydberg excitation energies are obtained by the tuned RSH approach
(Figure 7).

8. Reaction barriers caused by charge transfer will probably be sensitive to spurious self-
repulsion, as seen for the O2+Ag5 system (Figure 6).
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John J. Tyson and Béla Novák � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 219

ix

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

01
0.

61
:8

5-
10

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

H
eb

re
w

 U
ni

ve
rs

ity
 o

f 
Je

ru
sa

le
m

 o
n 

08
/1

5/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



AR408-FM ARI 25 February 2010 18:1

Electronic Properties of Nonideal Nanotube Materials: Helical
Symmetry Breaking in DNA Hybrids
Slava V. Rotkin � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 241

Molecular Structural Dynamics Probed by Ultrafast X-Ray Absorption
Spectroscopy
Christian Bressler and Majed Chergui � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 263

Statistical Mechanical Concepts in Immunology
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