
Eur. Phys. J. B (2018) 91: 170
https://doi.org/10.1140/epjb/e2018-90103-0 THE EUROPEAN

PHYSICAL JOURNAL B
Regular Article

Time-dependent generalized Kohn–Sham theory?

Roi Baer1,a and Leeor Kronik2,b

1 Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem,
Jerusalem 91904, Israel

2 Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel

Received 28 February 2018 / Received in final form 23 May 2018
Published online 23 July 2018
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Abstract. Generalized Kohn–Sham (GKS) theory extends the realm of density functional theory (DFT) by
providing a rigorous basis for non-multiplicative potentials, the use of which is outside original Kohn–Sham
theory. GKS theory is of increasing importance as it underlies commonly used approximations, notably
(conventional or range-separated) hybrid functionals and meta-generalized-gradient-approximation (meta-
GGA) functionals. While this approach is often extended in practice to time-dependent DFT (TDDFT),
the theoretical foundation for this extension has been lacking, because the Runge–Gross theorem and the
van Leeuwen theorem that serve as the basis of TDDFT have not been generalized to non-multiplicative
potentials. Here, we provide the necessary generalization. Specifically, we show that with one simple but
non-trivial additional caveat – upholding the continuity equation in the GKS electron gas – the Runge–Gross
and van Leeuwen theorems apply to time-dependent GKS theory. We also discuss how this is manifested
in common GKS-based approximations.

1 Introduction

Density functional theory (DFT) [1–6] is a powerful and
versatile first-principles approach to the many-electron
problem, in which the electron density, rather than the
many-electron wave function, plays the central role. The
fundamental tenet of DFT is the Hohenberg–Kohn theo-
rem [7], which establishes a mapping between the time-
independent external potential of the system and its
ground-state electron density. This means that all the
information pertaining to system properties is already
encoded in the electron density, a physically accessible
object that is far more simple than the many-electron
wave function. DFT is inherently a ground-state the-
ory, but fortunately an extension to time-dependent
many-electron systems, known as time-dependent DFT
(TDDFT) [8,9], has been established rigorously. The
central tenet of TDDFT is the Runge–Gross theorem
[10], which proves a similar mapping between the time-
dependent external potential of the system and its time-
dependent electron density, i.e., it shows that (given
an initial condition) the time-dependent electron density

? Contribution to the Topical Issue “Special issue in honor
of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira,
A. Rubio, and M.A.L. Marques.

a e-mail: roi.baer@huji.ac.il
b e-mail: leeor.kronik@weizmann.ac.il

again contains all information with respect to the sys-
tem properties. While slower to develop owing to both
conceptual and computational challenges, TDDFT has
also proven to be a first-principles approach of great value.

Both DFT and TDDFT are exact in principle, but
nearly always approximate in practice, because the
required “mapping” between the external potential and
the electron density is only approximately known, except
in very special cases. Originally, the overwhelming
majority of practical DFT applications were based on
the Kohn–Sham (KS) construct. In this approach, the
Hohenberg–Kohn theorem is utilized to show that the
ground state of the physical interacting-electron system
can be mapped into the ground state of a system of
fictitious non-interacting electrons that are subject to a
common multiplicative external potential, such that the
fictitious system has the same ground-state density as the
real one. The mapping potential is a functional of the
density and the mapping is expressed in the form:[
−∇

2

2
+vext(r)+vH([n]; r)+vxc([n]; r)

]
ϕk(r)=εkϕk(r),

(1)
where εk and ϕk(r) are KS eigenvalues and eigen-
states, respectively, n(r) =

∑
k |ϕk(r)|2 is the electron

density (with the summation extending over occupied
states only), vext is the external potential, vH – the
Hartree potential – treats electrostatic interactions, and
vxc – the exchange-correlation potential – accounts
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for all many-body interactions beyond electrostatics.
For simplicity, spin unpolarized notation and atomic
units (e = m = ~ = 1) are used throughout. Equation (1)
constitutes a nonlinear eigenvalue problem, requiring a
self-consistent solution for the charge density n(r).

In most cases, the dependence of vxc on the electron
density is not known and needs to be approximated. Rel-
atively simple approximations for vxc rely on the electron
density explicitly. Specifically, in the local density approx-
imation (LDA), vxc is a simple function of the density; In
the generalized-gradient approximation (GGA) family of
functionals, vxc is a function of the density and its gra-
dient. However, more advanced classes of approximation
rely on orbital-dependent functionals [11], i.e., expressions
that depend explicitly on the KS orbitals. Notable exam-
ples are meta-GGA (MGGA) functionals, which use the
kinetic energy density,

τ(r) =
∑
k

1

2
|∇ϕk(r)|2, (2)

or hybrid functionals, which rely on Fock exchange inte-
grals.

Use of orbital-dependent functionals triggers an imme-
diate and serious difficulty: The exchange-correlation
potential, vxc, is defined within KS theory as the func-
tional derivative of the exchange-correlation energy, Exc,
with respect to the density, i.e., vxc = δExc/δn. But how
is this derivative to be evaluated if Exc is an orbital-
dependent functional? One possibility is to think of the
KS orbitals as being themselves functionals of the den-
sity. Exc is then an implicit density functional and vxc
can be evaluated by using chain-rule variational calculus
to take the implicit functional derivative, which leads to
an integro-differential equation known as the optimized
effective potential (OEP) equation [11–13]. The advan-
tage of this procedure is that it is rigorously within KS
theory, but the disadvantage is that it is computationally
difficult. Therefore, from the very early days of orbital-
dependent functionals most work proceeded by taking
functional derivatives of Exc directly with respect to the
orbitals [14,15]. This procedure is clearly unsupported by
KS theory and therefore at first glance appears to be no
more than an uncontrolled approximation to it. However,
Seidl et al. showed that in some cases this procedure can
be rigorously justified within DFT by resorting to a gen-
eralized Kohn–Sham (GKS) theory, presented in detail
in the next Section, in which the many-electron prob-
lem is mapped into a partially-interacting electron gas
[16]. Furthermore, it is now well established that the GKS
framework provides for greater flexibility that holds some
advantages over the original KS theory, especially in the
context of spectroscopy [17].

The time-dependent extension of equation (1) can be
straightforwardly written in the form: [10][
−∇

2

2
+ vext(r, t) + vH([n]; r, t) + vxc([n]; r, t)

]
ϕk(r, t)

= i
∂

∂t
ϕk(r, t). (3)

Unlike in the time-independent case, the exchange-
correlation potential is now generally a complicated func-
tional of the density dependence on both space and time,
as well as of the initial state of both the interacting
and the non-interacting system (with some assumptions,
e.g., that the density is non-zero almost everywhere) [18].
The uniqueness of the time-dependent Kohn–Sham poten-
tial is guaranteed by the Runge–Gross Theorem. Beyond
uniqueness, van Leeuwen [19] later showed that, under
some assumptions on the initial and boundary condi-
tions, the time-dependent Kohn–Sham potential is in fact
guaranteed to exist.

Usually, one of the above-discussed classes of approx-
imations is employed also within TDDFT, using the
additional assumption (known as the adiabatic approx-
imation) that the exchange-correlation at a given time
only depends on the electron density at that time. As in
the time-independent theory, this can in principle be done
within KS theory using, e.g., OEP procedures [20,21]. But
here too, the more simple use within TDDFT of non-
multiplicative potentials, whose form has been inherited
from orbital-based derivatives in the ground state, has
become increasingly popular and successful – see., e.g., ref-
erences [17,22–30]. However, whereas for the ground-state
this is justified by the above-mentioned generalization of
KS theory [16], to the best of our knowledge no such gen-
eralization has been offered for either the Runge–Gross
theorem or the van Leeuwen theorem. This is an untenable
situation because it leaves an entire field of applica-
tions without proper theoretical foundations. Specifically,
without the Runge–Gross theorem and the van Leeuwen
theorem it remains unknown whether a unique time-
dependent potential can indeed be mapped to a unique
electron density and one does not know if reproduction
of the time-dependent electron density suffices to retain
the system information. Here, we remedy this problem by
proving the missing generalization, based on the identi-
fication of appropriate conditions for its validity. We do
so by providing a succinct overview of ground-state GKS
theory, followed by its extension to the time-dependent
case and discussion of important consequences for specific
GKS maps.

2 Time-independent generalized
Kohn–Sham theory

2.1 Formalism

We start our analysis by providing a short synopsis of
GKS theory, based on the seminal work of Seidl et al. [16]
(to which the reader is referred for complete details). In
keeping with the spirit of the original proof, we shall not
dwell on questions of existence, i.e., we will assume all
relevant densities to be physically realizable.

As mentioned above, KS theory maps a many-electron
system into a non-interacting electron system that yields
the same ground state density. In GKS theory, one maps
the real system to a partially interacting model system,
but one that can still be represented by a single Slater
determinant. Such an alternate mapping is achieved in
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practice by defining an energy functional of the Slater
determinant, S[Φ], or equivalently of the orbitals that
comprise it, S[{ϕj}], and an associated energy den-
sity functional, F s[n], obtained from the slater determi-
nant that minimizes S[·] while yielding a density n(r),
i.e.,

F s[n] ≡ min
{ϕj}→n(r)

S[{ϕj}]. (4)

The minimizing orbitals, {ϕj}, comprise the model system
and play a role similar to those of KS orbitals. According
to the Hohenberg-Kohn theorem, [7] the total energy, Etot,
can be expressed as a sum of the potential energy owing to
the external potential, vext(r), in the form

∫
vext(r)n(r)dr,

and an energy contribution that is a universal functional
of the density, FHK[n]. We can then define a “remain-
der energy” functional, Rs[n], by the difference between
FHK[n] and F s[n], which naturally depends on the ini-
tial choice of S[·]. The total energy is then trivially
given by:

Etot = minn

{∫
vext(r)n(r)dr + F s[n] +Rs[n]

}
. (5)

Minimizing over all densities using the orbitals that gen-
erate them, subject to the constraint that they integrate
to the density n(r), leads directly to the generalized KS
equation:(

ÔS [{ϕj}] + vext(r) + vR(r)
)
ϕk(r) = εkϕk(r), (6)

where

vR(r) ≡ δRS [n]

δn(r)
(7)

is a multiplicative “remainder potential” and ÔS [{ϕj}]
is a generally non-multiplicative operator, obtained from
the derivation by orbital of S[{ϕj}], which depends on the
choice of S[·], but not on vext(r) or vR(r).

Before closing this sub-section, we define an equivalent
phrasing of GKS theory, which we find below to be useful.
It states that given a density n (r), which is the ground
state density of an interacting system of N electrons, there
exist a unique potential v (r) and corresponding set of
orbitals ϕk (r) (k = 1, . . . , N), which obey an equation of
the general form:

εkϕk (r) =

(
−∇2

2
+ ĝ [ρ] + v (r)

)
ϕk (r) , (8)

such that

n (r, t) =
∑
k

|ϕk (r)|2 . (9)

In the above equations ρ (r, r′) ≡
∑N
k=1 ϕk (r)ϕ∗k (r′),

where the summation is over occupied states is the den-
sity matrix (DM). We define ĝ ≡ ÔS [{ϕj}] +∇2/2 so as
to focus on contributions to the non-multiplicative oper-
ator ÔS [{ϕj}] other than the obvious kinetic energy one,
and further define v(r) ≡ vext(r) + vR(r). Importantly, ĝ
can be viewed as a functional of the DM, ρ (r, r′), cor-
responding to the Slater determinant Φ, rather than the
Slater determinant itself. This is because there is a one-to-
one correspondence (up to an uninteresting phase factor)
between the two.

2.2 Examples of GKS maps

Both the KS and the GKS maps are formally exact, if
the exact potential, vxc(r) or vR(r), is known. However,
whereas there is only one KS map, there exist a mul-
titude (indeed, an infinitude) of GKS maps, depending
on the choice of S[Φ]. The GKS approach and its ver-
satility are best illustrated, then, by considering specific
classes of GKS maps. Here, we elaborate on several such
choices.

One class of GKS maps is obtained if one chooses
S[Φ] to be the kinetic energy of the fictitious system,

i.e., T̂Φ, where T̂ =
∑N
i=1(−∇2

i /2). Straightforward

derivation by orbital then shows that ÔS [{ϕj}] is the
usual single-particle kinetic energy operator, −∇2/2,
i.e., the first term in the KS equation. The “remainder”
potential, vR(r), is then simply the sum of the Hartree
and exchange-correlation terms of the KS equation. In
other words, from this perspective the original KS scheme
is “just” a special case of the GKS approach, obtained
for this specific choice of S[Φ].

A different, more interesting case emerges if one chooses
S[Φ] to be the sum of kinetic energy and Coulomb

repulsion energy of the fictitious system, i.e., T̂ + ŴΦ,
where Ŵ = 1/2

∑
i6=j 1/|ri − rj | [16]. Derivation then

reveals that ÔS [{ϕj}] = −∇2/2 + vH + v̂F , i.e., is the
sum of the single-particle kinetic energy operator and the
Hartree–Fock operator, where

v̂Fϕk(r) = −
∑
j

∫
dr′

ϕj(r)ϕ∗j (r
′)ϕk(r′)

|r− r′|
. (10)

The “remainder” potential, vR(r), can then be interpreted
as a correlation potential. This particular GKS map can
be thought of as a “Hartree–Fock–Kohn–Sham” equation,
which is in principle exact. The original Hartree–Fock
equation, then, is obtained as just another approximation
within DFT, obtained under the rather crude approxima-
tion of vR(r) = 0.

Once Hartree–Fock theory is established as GKS theory,
the road to incorporating hybrid functionals is wide open.
Specifically, the choice S[Φ] = T̂ + aŴΦ, where 0 < a < 1,

leads to ÔS [{ϕj}] = −∇2/2 + avH + av̂F , i.e., the sum of
the single-particle kinetic energy operator, a fraction a
of the Hartree potential, and the same fraction a of the
Fock operator [31]. If vR(r) is approximated as the sum
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of the complementary fraction of the Hartree potential,
the complementary fraction of GGA exchange, and the
full GGA correlation, an approximate GKS equation is
obtained, in the form:[
−∇

2

2
+ vext(r) + vH([n]; r) + av̂F + (1− a)vGGA

x (n]; r)

+vGGA
c (n]; r)

]
ϕk(r) = εkϕk(r), (11)

which is precisely the definition of a conventional hybrid
functional.

To obtain a range-separated hybrid functional, one
can choose S[Φ] = T̂ + ŴLRΦ, where “LR” means that
erf(γ|r − r′|)/|r − r′| is used instead of 1/|r − r′|, i.e.,

Ŵ = 1/2
∑
i6=j 1/|ri − rj | is the long-range Coulomb

repulsion, where γ is a range-separation parameter. This
yields ÔS [{ϕj}] = −∇2/2 + vLRH + v̂LRF [17]. If vR(r) is
then approximated as the sum of the short-range Hartree
potential (designated by ’SR’) that is computed using
erfc(γ|r−r′|)/|r−r′|, short-range GGA exchange, and full
GGA correlation, one obtains the following approximate
GKS equation:[

−∇
2

2
+ vext(r) + vH([n]; r) + v̂LRF + vSR,GGA

x (n]; r)

+vGGA
c (n]; r)

]
ϕk(r) = εkϕk(r), (12)

which is the definition of a simple range-separated hybrid
functional.

Our final example is that of MGGA functionals, in
which the exchange-correlation energy is approximated as

EMGGA
xc [n] =

∫
drfMGGA(n(r),∇n(r), τ(r)), (13)

where τ is the kinetic energy density defined in
equation (2) above and fMGGA is an appropriate energy-
density function. Here too, one rarely takes the functional
derivative of equation (13) with respect to the electron
density, as one should in KS theory, owing to the compli-
cations associated with the dependence on τ . Instead, one
usually derives equation (13) by orbital, as first suggested
by Neumann et al. [15]. The MGGA potential operator
obtained that way can be expressed as

v̂MGGA = vGGA + v̂τ . (14)

The first term is a multiplicative potential arising from
explicit derivation of fMGGA with respect to n, taking
∇n into account, exactly as done in a GGA functional.
The second term is a non-multiplicative operator arising
from explicit derivation of fMGGA with respect to τ and
is given by

v̂τ = −1

2
∇µ(r)∇, (15)

where µ(r) = ∂fMGGA/∂τ . Owing to the non-
multiplicative nature of v̂τ , using equation (14) clearly
violates KS theory. However, it can be justified within
GKS theory by choosing

S[Φ] = T̂Φ+ EMGGA
xc [Φ]. (16)

The first term in equation (16) is the expectation value
of the kinetic energy in the Slater determinant, as before,
and the second term is the MGGA energy expression of
equation (13), now viewed as a functional of Φ because
both n and τ only depend on the single-electron orbitals
ϕi that comprise the Slater determinant Φ. ÔS [{ϕj}]
is immediately obtained as the sum of single-particle
kinetic energy operator and the potential operator of
equation (14). If the remainder potential is approximated
to be the Hartree potential, the standard MGGA equation
is obtained, in the form

[
−∇

2

2
+ vext(r) + vH[n]; r) + V GGA([n]; r) + v̂τ

]
ϕk(r)

= εkϕk(r). (17)

Thus, the choice of energy functional S[·] made in
equation (16) is perhaps not as elegant as in the previous
examples, as it cannot generally be expressed solely as an
expectation value of a many-body operator on a Slater
determinant, but is nevertheless well-defined and pro-
vides a rigorous GKS foundation for the MGGA potential
derivation of Neumann et al. [15].

We note that additional GKS maps of practical impor-
tance can be obtained simply by combining some of the
S[Φ] choices presented above. For example, combining
S[Φ] corresponding to a fraction of Coulomb repulsion
with S[Φ] corresponding to a (possibly different) fraction
of long-range Coulomb repulsion will lead to a more gen-
eral form of a range-separated hybrid functional, e.g., that
given in reference [32]. Combining S[Φ] corresponding to
a fraction of Coulomb repulsion with the complementary
fraction of S[Φ] corresponding to MGGA will result in an
MGGA-hybrid functional, e.g., those given in references
[33,34].

Before closing this sub-section, we note that all the
special cases studied here use “functional ingredients”
that are easily alternatively phrased in terms of the
density matrix (DM) as per equation (8) above. The
electron density n is just the diagonal of the DM;
Fock integrals as in equation (10) obviously involve the
DM; and the kinetic energy density τ can be found
using

τ(r) =
1

2
lim
r→r′

∇r∇r′ρ (r, r′)

≡ 1

2
[∇r∇r′ρ (r, r′)]r=r′ . (18)
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3 Time-Dependent Generalized Kohn–Sham
theory

3.1 Preliminaries

As mentioned in the introduction, time-independent
KS or GKS theory relies on the variational principle,
which cannot be used in the time-dependent case. The
Runge–Gross theorem [10] broke through this barrier by
proving that the single-particle potential leads to a given
v-representabie density that is uniquely determined. This
was achieved by showing a one-to-one mapping between
both quantities and the paramagnetic current density,
defined below. However, the Runge–Gross theorem only
considered multiplicative potentials and therefore only
applies to KS theory.

Formal proof aside, naively if one wishes to use the for-
malism of equation (8) in time-dependent problem, the
following “TD-GKS” equation can be phrased as:

iϕ̇k (r, t) = ĥr (t)ϕk (r.t)

=

(
−∇2

2
+ ĝ [ρ (t)] + v (r, t)

)
ϕk (r, t) ,(19)

where v (r, t) is a given real time-dependent external
potential, φk (r, t) are time-dependent GKS orbitals that
obey the standard integrability boundary conditions (suf-
ficiently rapid decay as r → ∞), for which the time-

dependent GKS Hamiltonian ĥr (t) is Hermitean. The
occupied orbitals obey an initial condition of being equal
to a set of N orthonormal wave-functions:

ϕk (r, t = 0) = ϕ0
k (r) . (20)

The time-dependent DM is defined as

ρ (r, r′, t) =
N∑
k=1

ϕk (r, t)ϕ∗k (r′, t) . (21)

Note that the operator ĝ [ρ (t)] is “inherited” from the
ground-state formalism as is and therefore does not intro-
duce “memory effects”, i.e., does not depend on the
history of the DM. Because the Hamiltonian is Hermitean
the GKS orbitals remain orthonormal in time and the DM
obeys the idempotency condition at each time t:

∫
ρ (r, r′, t) ρ (r′, r′′, t) d3r′ = ρ (r, r′′, t) . (22)

Furthermore, the diagonal of the DM is the time-
dependent particle density

n (r, t) = ρ (r, r, t) =
N∑
k=1

|ϕk (r, t)|2 (23)

for which the following condition holds at all times t:∫
n (r, t) d3r′ = N. (24)

Lastly, we can define the paramagnetic current density in
the usual way, as

jP (r, t) ≡ Im
N∑
k=1

ϕ∗k (r, t)∇ϕk (r, t) , (25)

which can also be expressed in terms of the DM:

jP (r, t) = Im [∇ρ (r, r′, t)]r=r′ . (26)

In order to use equation (19) and its associated defi-
nitions on a rigorous basis, rather than as a naive and
unproven extension of the time-independent case, we must
address the question of the uniqueness of the potential
v (r, t) given the time-dependent density n (r, t), as well
as its initial state ϕk (r, t = 0). We now show that this
question is not trivial and in need of detailed proof and
discussion.

3.2 The generalized Runge–Gross Theorem

Consider the evolution of the density in time-dependent
GKS, given by equation (19), starting from the same
initial state but under the influence of two different time-
dependent potentials, v1 (r, t) and v2 (r, t), which differ
by more than a time-dependent spatial constant. The
question before us is whether the corresponding densi-
ties n1 (r, t) and n2 (r, t) can still be the same. In other
words, the question is whether the mapping from poten-
tials v (r, t) to densities n (r, t) is invertible. Following the
logic of the proof of the original Runge–Gross theorem, we
use the paramagnetic current density to show that even
when time has only evolved infinitesimally, the answer is
yes.

As a first step, we assume that both potentials are
Taylor expandable as a function of t around t = 0. We
consider differences between the two evolving systems,
which we denote by δ, i.e., we consider potential differ-
ences δv ≡ v2−v1, density matrix differences δρ = ρ2−ρ1,
etc. We then claim that the TD-GKS equation shares the
following property with the Schrödinger equation: If there

exists an integer m ≥ 0, such that ∂j

∂tj (δv (r, t))t=0 is a

spatial constant for j = 1, . . .m−1 while ∂m

∂tm (δv (r, t))t=0

is not a spatial constant, then
(
∂(m+1)

∂t(m+1) δjP (r, t)
)
t=0

is
non-zero.

The proof of this Lemma is based on induction. Let
us first consider the case m = 0. To compute the first
time-derivative of the current, we note that by deriving
equation (21) while using equation (19) we obtain:

∂

∂t
ρ (r, r′, t) = i

(
ĥr (t)− ĥr′ (t)

)
ρ (r, r′, t) . (27)
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Furthermore the initial condition

δρ (r, r′, t = 0) = 0, (28)

means that δn (t = 0) = 0 and therefore:

δĥr (0) = δv (r, 0) . (29)

Hence(
∂

∂t
δρ (r, r′, t)

)
t=0

= i (δv (r, 0)− δv (r′, 0)) ρ (r, r′, 0)

(30)
Using equation (26), the time derivative of the current
density difference at t = 0 is then:

∂

∂t
(δjP (r, t))t=0 = n (r, 0)∇δv (r, 0) . (31)

Hence, if ∇δv (r, 0) 6= 0, i.e. δv (r, 0) 6= c (0), then
∂
∂t (δjP (r, t))t=0 6= 0 and the proof for m = 0 is con-
cluded.

Let us now assume that m = 1, i.e., (δv (r, t))t=0 =

c(0) but ∂
∂t (δv (r, t))t=0 6= c′(0). Under these assumptions

δv (r, 0)− δv (r′, 0) = 0 and therefore

δĥr (0) = δĥr′ (0) . (32)

From equation (30)(
∂

∂t
δρ (r, r′, t)

)
t=0

= 0, (33)

which leads to (
∂

∂t
δĝ [ρ (t)]

)
t=0

= 0, (34)

from which necessarily(
∂

∂t
δĥr (t)

)
t=0

= (δv̇ (r, t))t=0 . (35)

This now allows us to consider the next derivative of the
DM:

∂2

∂t2
ρ (r, r′, t) = i

(
˙̂
hr (t)− ˙̂

hr′ (t)
)
ρ (r, r′, t)

+i
(
ĥr (t)− ĥr′ (t)

)
ρ̇ (r, r′, t) , (36)

from which, using equations (28), (32), and (33) we deduce
that the DM difference at t = 0 obeys(
∂2

∂t2
δρ (r, r′, t)

)
t=0

= i (δv̇ (r, 0)− δv̇ (r′, 0)) ρ (r, r′, 0) .

(37)

Hence, from equation (19) the second derivative of the
current density difference is:

∂2

∂t2
δjP (r, t)t=0 = (∇rδv̇ (r, 0))n (r, 0) (38)

and thus ∂2

∂t2 (δjP (r, t))t=0 6= 0. The lemma is then fully
proven by induction as follows. If we assume that the
potential difference is non-zero only in the mth derivative
∂m

∂tm δv (r, t) then

∂j

∂tj
δĥr (0) = 0, j = 0, 1, . . . ,m− 1 (39)

and

∂j

∂tj
δρ (r, r′, 0) = 0, j = 0, 1, . . . ,m. (40)

The corresponding derivatives of ĝ are then also zero and
therefore(

∂m

∂tm
δĥr (t)

)
t=0

=

(
∂m

∂tm
δv (r, t)

)
t=0

6= 0. (41)

It is then a matter of straightforward calculus to show
that(

∂m+1

∂tm+1
δρ (r, r′, t)

)
t=0

= i

(
∂m

∂tm
δv (r, t)− ∂m

∂tm
δv (r′, t)

)
t=0

ρ (r, r′, 0) ,

(42)

from which the current density difference:

∂m+1

∂tm+1
δjP (r, t)t=0 =

(
∇r

∂m

∂tm
δv (r, 0)

)
n (r, 0) , (43)

must be different than zero. This concludes the proof.
In the original Runge–Gross theorem, the second step

is to show that if
(
∂(m+1)

∂t(m+1) δjP (r, t)
)
t=0

is not zero every-

where then
(
∂(m+2)

∂t(m+2) δn (r, t)
)
t=0

is not zero everywhere

either. We examine this statement in the GKS context by
taking the first derivative of the time-dependent density.
Using equations (23) and (19) we then obtain:

∂n (r, t)

∂t
= −∇ · jP (r, t) + 2Im (ĝr [ρ (t)] ρ (r, r′, t))r=r′ .

(44)

If the second term on the right hand of the above
equation is zero, the usual continuity equation is valid.
The original proof of Runge and Gross for the relation

between
(
∂(m+1)

∂t(m+1) δjP (r, t)
)
t=0

and
(
∂(m+2)

∂t(m+2) δn (r, t)
)
t=0

[10] can then be used as is and is not repeated here.
Our two-step generalization of the Runge–Gross theo-
rem is then complete, because overall if vi (r, t) i = 1, 2
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are two Taylor expandable potentials, leading through
equations (19)–(23) to the same density to all orders in
the Taylor expansion, i.e. vi (r, t) → n (r, t), then nec-
essarily δv (r, t) ≡ v1 (r, t) − v2 (r, t) = c (t) where c(t)
is a purely time-dependent function. However, equation
(44) reveals an important caveat, because in general,
Im (ĝr [ρ (t)] ρ (r, r′, t))r=r′ is not necessarily zero and
therefore TD-GKS theory will not necessarily obey a the
generalized Runge–Gross theorem. Naturally, mappings
that cause additional terms to appear in the continuity
equation also cause difficulties in the physical interpreta-
tion of single-particle currents and at the very least require
a different definition of the paramagnetic current, if at all
possible.

3.3 The generalized van Leeuwen theorem

By proving the generalization of the Runge–Gross theo-
rem to time-dependent GKS theory, we have established
the uniqueness of the GKS remainder potential, per a
given choice of the GKS map. However, we have not estab-
lished existence, i.e., whether a GKS remainder potential,
reproducing the time-dependent density of the original
system, can at all be found. Here, we achieve this goal
for time-dependent GKS theory by generalizing the van
Leeuwen theorem, [19] which (as mentioned in the intro-
duction) has established existence for time-dependent KS
theory.

Van Leeuwen’s proof starts by noting that the conti-
nuity equation is valid for both the original many-body
system and the fictitious system that reproduces its den-
sity. As noted above, if the continuity equation is not
obeyed the Runge–Gross theorem is not necessarily valid.
Therefore, we shall continue to assume here that the con-
tinuity equation is obeyed for the time-dependent GKS
system. Van Leeuwen’s original proof then proceeds by
considering the time-derivative of the current, given as
the expectation value of the commutator of the current
density operator with the Hamiltonian:

∂

∂t
jα (r, t) = −n (r, t)

∂

∂rα
v (r, t)

−i
〈
Ψ (t)

∣∣∣[ĵα, T̂ + Ŵ
]∣∣∣Ψ (t)

〉
, (45)

where α = x, y, z, v (r, t) is the one-electron potential,

T̂ and Ŵ are the many-electron kinetic energy and
Coulomb repulsion operators, respectively, and Ψ is the
time-dependent many-electron wave function. Combining
this equation with the continuity equation, an equation
for the second derivative of the density is obtained:

∂2

∂t2
n (r, t) = ∇ · [n (r, t)∇v (r, t)] + q (r, t) , (46)

where

q (r, t) = i
∂

∂rα

〈
Ψ (t)

∣∣∣[Ĵα (r) , T̂ + Ŵ
]∣∣∣Ψ (t)

〉
. (47)

If one then considers a system with different many-
body operators, V ′ and W ′, corresponding to one-
electron and two-electron interactions, such that the same
time-dependent density is obtained, then an analogous
equation (46) is valid also for the new system in the form:

∂2

∂t2
n (r, t) = ∇ · [n (r, t)∇v′ (r, t)] + q′ (r, t) , (48)

where the prime indicates quantities of the new system. By
subtracting equation (48) from equation (46) we obtain:

∇ · [n (r, t)∇ω (r, t)] = ζ (r, t) (49)

where ω(r, t) = v (r, t) − v′ (r, t) and ζ (r, t) = q (r, t) −
q′ (r, t). Assuming that the initial state of both systems is
such that they share the same density and time-derivative
of the density, and assuming that ω(r, t) vanishes at
infinity, equation (49) can be shown to be a Sturm–
Liouville problem possessing a unique solution for ω(r, t).
This means that given the time-dependent one-electron
potential in one system, the time-dependent one-electron
potential in the other one exists and can be found.

In the GKS approach, the original many-electron prob-
lem is mapped to a system that does not possess a
two-body term but instead possesses a non-multiplicative
one-body potential term, as in equation (8). This change
in the form of the Hamiltonian modifies the form of
the commutator of the current density operator with the
Hamiltonian. Therefore equations (45)–(47) need to be
reformulated for the GKS system. Straightforward algebra
shows them to be given by:

∂

∂t
jα (r, t) = −n (r, t)

∂

∂rα
vR (r, t)

−i
〈
Ψ (t)

∣∣∣[ĵα, T̂ + Ĝ
]∣∣∣Ψ (t)

〉
, (50)

∂2

∂t2
n (r, t) = ∇ · [n (r, t)∇vR (r, t)] + q′ (r, t) , (51)

and

q′ (r, t) = i
∂

∂rα

〈
Φ (t)

∣∣∣[Ĵα (r) , T̂ + Ĝ
]∣∣∣Φ (t)

〉
, (52)

where, as before, vR is the remainder potential and Φ is
the Slater-determinant of GKS theory, and Ĝ is the many-
body operator corresponding to the non-multiplicative
single-electron operator ĝ [ρ]. With these modified expres-
sions for the GKS system, equation (49) is still obtained
and therefore the existence of its solution is still guaran-
teed under the same, reasonably mild assumptions. Thus,
as long as the continuity equation is obeyed in the GKS
system, the van Leeuwen theorem is applicable, and the
time-dependent remainder potential of GKS theory is not
only guaranteed to be unique (up to a time-dependent
constant) but also to exist.
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3.4 Implications to special GKS maps

We conclude our presentation of time-dependent GKS the-
ory by revisiting the special GKS schemes surveyed in
Section 2.2 above and examining whether the caveat posed
by equation (44) and the van Leeuwen theorem, namely
the continuity equation, is of concern in practice.

Clearly, in the special case that is the original KS sys-
tem a non-interacting electron gas is obtained and the
continuity equation is trivially obeyed. For a GKS map
based on a ĝr [ρ] that involves exchange integrals we find
that:

Im (ĝr [ρ (t)] ρ (r, r′))r=r′ = Im

∫
dr′′
|ρ (r, r′′)|2

|r − r′′|
= 0.

(53)
This result is easily generalized to a range-separated
exchange integral. Therefore, for the important classes
of the Hartree–Fock–Kohn–Sham equation, global hybrid
functionals, and range-separated hybrid functionals, the
continuity equation is obeyed and the generalized Runge–
Gross and van Leeuwen theorems are satisfied.

Time-dependent MGGA theory is a more complicated
case. It has already been pointed out [35,36] that the
construction of a time-dependent MGGA equation based
on the non-multiplicative potential of equation (14) leads
to an equation that is neither gauge-invariant nor obey-
ing the continuity equation. In the present formalism,
this means that the second term in equation (44) is
not identically zero. Therefore a further disadvantage
of straightforward generalization of MGGA expressions
into time-dependent DFT is that it is not protected by
the generalized Runge–Gross theorem. Fortunately, using
approaches inspired by time-dependent current–density
functional theory [37], this can be remedied by replac-
ing the kinetic energy density τ of equation (2) by the
expression [35,36]:

τ(r)− |jP (r, t)|2

2n (r, t)
, (54)

in all MGGA expressions. Thus, the caveat posed by
equation (44) is not at all hypothetical. Its violation indi-
cates difficulties in the definition of the paramagnetic
current, [38,39] the resolution of which leads to further
development and additional insights [40].

4 Conclusions

In conclusion, we have presented time-dependent gener-
alized Kohn–Sham theory. We started by explaining that
GKS theory is the rigorous basis for the use of non multi-
plicative potentials within DFT, as is the common practice
with (conventional or range-separated) hybrid functionals
or with meta-generalized-gradient-approximation (meta-
GGA) functionals. Furthermore, we explicitly showed how
these important classes of approximations can be derived
from GKS considerations. We then provided a rigorous
basis for time-dependent GKS theory. This was accom-
plished by showing that the Runge–Gross theorem and

the van Leeuwen theorem, which serve as the basis of
time-dependent KS theory, apply to GKS theory too if
an important caveat – upholding the continuity equation
in the GKS electron gas – is met. We showed that this
condition is not always obeyed in common GKS schemes
and discussed it as a practical means of assessing and/or
improving time-dependent GKS-based approximations.
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