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ABSTRACT: A recently introduced molecular junction, for
which the gate acts as an on/off switch for intrajunction
electron transfer between localized donor and acceptor sites is
studied. We demonstrate that a Landauer + density functional
(DFT) approach is fundamentally flawed for describing the
electronic conductance in this system. By comparing the
Landauer + DFT conductance to that predicted by the
Redfield quantum master equations, we point out several
effects that cannot be explained by the former approach. The
molecular junction is unique in the small number of
conductance channels and their sharp response to the gate.

I. INTRODUCTION

In a recent paper,1 two of us presented a molecular junction in
which confinement and Coulomb effects are pronounced and
controlled by well-understood physical principles. A schematic
depiction of the system is given in Figure 1, describing a
benzene-malononitrile (MN) acceptor displaced by a vertical
distance z ̅ with respect to the trans-polyacetylene (PA) donor.

The energy gap Eg for intramolecular electron transfer thus
becomes dependent on the gate field Ez: Eg(Ez) = I − A − ezE̅z,
where e is the electron charge and I and A are the ionization
and affinity energies, respectively (see caption of Figure 1). A
sufficiently strong gate field, beyond a critical value Ez*, will
induce electron transfer from donor to acceptor, allowing
sensitive control over the electronic properties of the junction.
Our previous analysis of this junction1 was carried out using a

generalized Kohn−Sham (GKS) density functional theory
(DFT) where the molecular electronic wave function is
mapped onto a wave function of noninteracting electrons
having identical single electron density. It is common to use the
conductance of the noninteracting system as an approximation
for the conductance of the interacting system2−5 using the
Landauer equation6 which assumes that the population of states
on the molecule does not affect its transmission probability.
There are two problems usually associated with such an
approach. One has to do with the missing derivative
discontinuities and self-interaction energies appearing in most
applications of DFT that use local or hybrid approximations
causing the orbital energies to deviate significantly from the
ionization potentials, the so-called quasiparticle energies.7,8 We
deal with this problem by using a range-separated hybrid where
a first-principles tuning of the range parameter mitigates the
missing derivative discontinuities and aligns the orbital and
quasiparticle energies.9−11 The second problem has to do with
how to reconcile the fact that the Landauer theory assumes that
electron transmission is insensitive to the population with the
fact that for interacting electrons they have a strong effect (for
example, in the Coulomb blockade regime). Here we rely on
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Figure 1. Schematic depiction of the molecular junction in ref 1: two
thiol-terminated trans-polyacetylene (PA) segments (SH − (HC =
CH−)4) acting as meta substituents on the aromatic ring of a benzene-
molononitrile (MN) molecule. The gate potential V0, the gate bias VG,
and the source drain bias VSD are adjustable. The PAs are electron
donors determining the ionization potential of the molecule
(I ∼ 6.2 eV). The MN is an electron acceptor, endowing the molecule
with electron affinity A ∼ 1.2 eV. DFT calculations showed that a gate
field beyond a critical value of Ez* = 0.63 V/Å inspires spontaneous
electron transfer from donor (PA) to acceptor (MN).
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the KS/GKS Hamiltonian to take the nonequilibrium
population effects into account, while the conductance itself
is still “noninteracting”. Such methodology is a common
approach with Coulomb blockade problems which has been
described using unrestricted spin DFT.12

In our previous work, we found additional issues which as we
now show cannot be solved, even approximately within the
DFT + Landauer approach. The Landauer differential
conductance channels of the junction closely follow the
location of two orbital energies ε↑ and ε↓ corresponding to
the orbital ψA on the acceptor site of the molecule. These
orbital energies change continuously as the gate field Ez
increases. However, a discontinuity occurs passing through
the critical gate field Ez* where ε↑ drops in energy below the
HOMO energy εH of the molecule (thus ψA gets filled by a
spin-↑ electron), and the orbital energy ε↓ increases in energy
due to onsite Coulomb repulsion (see schematic orbital
energies in the left part of Figure 2). Thus, there are two

qualitatively different GKS Hamiltonians, one corresponding to
the small gate field, Ez < Ez*, and the other corresponding to the
high gate field, Ez > Ez*. Because the placement of orbital
energies corresponds to quasi-particle energies, as long as Ez is
very different from Ez* and bias is not too large, it may be
argued that one of these two GKS-DFT Hamiltonians can serve
as a basis for computing the conductance using Landauer’s
theory. Each GKS Hamiltonian represents a different non-
equilibrium population with respect to the applied gate field. If,
however, we wish to study the conductance of the junction at
gate fields close to the critical gate Ez* both conductance
patterns stemming from the two Hamiltonians are expected to
appear simultaneously, and four conductance peaks will
necessarily show up in the right part of Figure 2: two peaks
corresponding to the nonequilibrium electronic state at Ez < Ez*
and two corresponding to that at Ez > Ez*. Clearly, there is no
single KS/GKS Hamiltonian that can describe such a
conductance pattern because the energy levels of such a
single-electron Hamiltonian have only two orbital energies
associated with ψA and will therefore always miss two out of the
four conductance channels appearing in Figure 2.
In view of this limitation, this paper departs from DFT and

analyzes the conductance of the molecule using a double
quantum dot model, with parameters based on the GKS-DFT
results. The model is described in section II. We first analyze
(section III) the dependence of the eigenenergies on the gate

potential assuming no external bias is involved. We explain why
a KS/GKS approach will reproduce only this picture, which
does not take into account the full nonequilibrium population
of molecular states. Next we discuss the full nonequilibrium
treatment (section IV). There are several ways for calculating
the conductance in the Hubbard model where a non-
equilibrium distribution of molecular states is present, for
example, real-time perturbation theory,13−16 generalized
quantum master equation schemes,17−21 nonequilibrium
quasiparticles,22−28 and Hubbard Green functions.29−33 We
base our treatment on one of the simplest approaches,
appropriate for weak molecule−lead coupling, namely, the
Redfield and Lindblad quantum master equation formula-
tions.34−39 We discuss the resulting conductance patterns in
view of the simpler but wrong KS/GKS picture. The results are
summarized in section V.

II. HUBBARD MODEL OF THE JUNCTION
Our model assumes that only frontier orbitals are active in the
junction. From the DFT calculation, we find that the HOMO
and HOMO-1 orbitals, located on the left and right PA strands,
respectively, are almost degenerate. We further found that these
orbitals do not contribute to the conductance (because of an
interference effect associated with the benzene ring1), and their
primary effect is to act as electron donors. For this reason, we
consider only one of these orbitals in our model (QD2 in
Figure 3) and do not couple it directly to the leads.

From the DFT calculation we find that the LUMO orbital
has a dual role: it acts both as an electron acceptor from the
donor and as a direct channel for conductance. We thus model
it as a quantum dot (QD1) which is coupled to the leads with
coupling parameter Γ. These two QDs form our model for the
junction, which we describe now in detail with model
parameters summarized in Table 1. The 2QD Hubbard
Hamiltonian for the junction is

∑ ∑ ∑̂ = ε ̂ + ̂ ̂ + + ̂ ̂
σ
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where a ̂iσ† (a ̂iσ) are the electron creation (annihilation)
operators for QD I spin σ (i = 1,2 and ↑,↓). nîσ = aîσ

† aîσ is
the spin-dependent occupation of QD i, and n ̂i = nî↑ + n̂i↓ is the
number of electrons on the QD. The first term in ĤHub
describes the single particle site energies, where εi is the orbital

Figure 2. Left: Schematic depiction of the DFT orbital energies for
two gate fields: (1) Ez < Ez* where the orbital energies are degenerate
in energy (ε↑ = ε↓) and (2) Ez > Ez* where the orbital energies become
spin dependent and split ε↑ < ε↓. Right: schematic depiction of the
conductivity as a function of source-drain bias for Ez ≈ Ez* where the
four channels can coexist in the nonequilibrium conducting mix state
but no single particle Hamiltonian can describe two spin polarized
conduction channels using just a one spin polarized orbital.

Figure 3. Schematic diagram of the double quantum-dot model. QD1
represents the LUMO (localized on the MN acceptor) and QD2 the
HOMO (localized on the PA donor) of the molecule. The two
quantum dots couple to each other, but only QD1 is directly coupled
to the source and drain because of a destructive interference effect.
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energy of an electron in QD i where the orbital energies are
gate-field dependent

ε = ε −E ez E( )i z i i z
0

(2)

where Ez is the gate field in direction z and zi is the vertical
position of QDi. ε1

0 is taken as the LUMO energy of the
molecule. Since QD2 holds in the molecular ground state two
electrons, ε2

0 is the energy to put the first electron on QD2; i.e.,
it is the HOMO energies of the molecular cation. Due to the
vertical displacement of the acceptor relative to the donor, the
gate field controls the orbital energy difference ε1 − ε2. It is
possible to fix the energy of ε2 so that only ε1 is gate-field
dependent (in the model we do this by taking z2 = 0 in eq 2).
As for the dipole moment, ez1, we take its value from ref 1 as
5.1 eÅ. Achieving this in a laboratory setup (as in Figure 1)
requires careful tuning of the metallic potentials.40

The second term in Ĥhub couples QD1 to QD2 using the
hopping parameter t which enables the charge transfer between
QD1 and QD2. The small overlap between HOMO and
LUMO in this system dictates a small value of t, and we employ
t = 0.001 eV as a representative value of such weak coupling.
Note that this weak coupling does not have a significant effect
on the physical results discussed in the paper.
The third term in Ĥhub is the on-site Hubbard repulsion

determined by the parameters Ui. The value of U1 is equal to
the difference between the spin-up and spin-down LUMO
energies in the GKS/BNL* calculations (see ref 1). The value
of U2 fulfills the equation

ε = ε +UHOMO
2
0

2 (3)

where εHOMO and ε2
0 are the DFT/BNL* HOMO energy of the

neutral and cation molecule, respectively.
In ref 1 we found that the long-range interaction between the

electron on QD1 and the hole on QD2 formed by
intramolecular charge transfer is an important energy scale.
To consider this effect, we add to the Hubbard Hamiltonian
intersite Coulomb interaction terms, forming the molecular
junction Hamiltonian

μ̂ = ̂ + − ̂ − ̂ − ̂H H E U q n q n N( ) ( )( )zM Hub 12 1 1 2 2 (4)

where for convenience of discussion we include in ĤM the
chemical potential of the leads μ, and N̂ = Σi=1

2 n ̂i is the number
of electrons on the molecule. The parameters qi are the positive
charges on each quantum dot. Under zero bias and gate, the

donor site QD2 is electrically neutral, and since it represents
the molecular HOMO it holds two active electrons and thus
also has a static (“nuclear”) charge of q2 = 2. The acceptor site
QD1 is also electrically neutral at zero bias, and since it
represents the molecular LUMO it holds no active electrons
and thus has a static charge of q1 = 0.
The left/right leads are modeled by noninteracting electron

Hamiltonians HL/R = Σk,σεkcL̂/R,kσ
† cL̂/R,kσ, where cL̂/R,kσ

† (cL̂/R,kσ)
are the creation (annihilation) operators and εk the orbital
energies or quasiparticle energies in the leads. QD1 is coupled
to the leads via the term Σk,σ(Vka1σ

+ cL/R,kσ + HC) with Vk being
the coupling parameters. We are interested in this work in the
weak molecule−electrode coupling limit, thus the escape rate
ΓL/R(ε) = 2πΣk|Vk|

2δ(ε − εk) is assumed energy independent
and taken as ΓL/R = 0.0005 eV, which is considerably smaller
than the value of the hopping parameter t and the temperature.
We now discuss the energy levels of the Hamiltonian of eq 4

assuming t→ 0, henceforth called the “diabatic” limit. The state
occupations n1 and n2 are good quantum numbers, and the
energies can be labeled as (n1n2). Some are shown in the top
panel of Figure 4 as a function of the gate field Ez. At low gate
fields the ground state is (02), but as Ez grows, the charge-
transfer state (11) descends in energy (due to the dependence
of ε1 on Ez, see eq 2) and crosses (02) to become the ground
state of the system once Ez > Ez*, where Ez* = 0.63 V/Å is the
critical gate field mentioned in the Introduction. Two other
low-lying states are plotted: one is the positively charged (01)
state, with energy not dependent on Ez (since n1 = 0), and the
second is the negatively charged state (12) with energy
descending with Ez.

III. CONDUCTANCE ASSUMING EQUILIBRIUM
POPULATION OF MOLECULAR STATES

In equilibrium at low temperature, the junction is in its ground
state, and conductance channels are formed by a transition to
low-lying states which differ from the ground state by an
electron or by a hole. Assuming a symmetric potential drop
across the junction, the source−drain potential difference VSD
required for a transition (n1n2) → (n3n4) is

= Δ →V E n n n n e2 ( )/SD 1 2 3 4 (5)

In Figure 4 (bottom), we plot the “transition channels”
obeying this relation as a function of the gate field Ez. At Ez <
Ez*, the blue shaded region, the ground state is (02), and the
possible transitions are to states (12) requiring energy 2ΔE(02
→ 12) and to (01) requiring energy 2ΔE(02 → 01) (see red
and black solid lines in the blue shaded region of Figure 4
(bottom)). For Ez > Ez*, the pink shaded region, the ground
state becomes (11), and the possible transitions are to state
(01) requiring energy 2ΔE(11 → 01) or to state (12) requiring
2ΔE(11→ 12) (see red and black solid lines in the pink shaded
region of Figure 4 (bottom)). The two remaining transition
channels, (11 → 21) and (11 → 10), are not considered since
they appear at much higher energies.
In the diabatic limit (t → 0), the transport of charge through

QD2 is not possible since this dot is decoupled from the leads.
Therefore, of the four channels described above, only two,
those involving a change in n1, actually conduct. These two
channels are colored red in Figure 4 (bottom). When Ez < Ez*,
the electron conductance channel (02 → 12) is operative as
(02) is the ground state. Similarly, when Ez > Ez* only (11 →
01) is active as (11) is the ground state. These considerations

Table 1. Energetic Parameters of the Many-Body Model,
Equation 4

parameter value (eV) explanation

μ −5.1 Fermi level of gold
εHOMO −6.2 from DFT calculation
εLUMO −1.2 from DFT calculation
ε2
0 −7.8 εHOMO of PA+ (from DFT)
ε1
0 −1.2 εLUMO

U1 4.5 α − β splitting in DFT
U2 1.6 U2 = εHOMO − ε1

0

U12 1.8 DFT exciton binding energy
Γ1L = Γ1R 0.0005 see text for explanation
t 0.001 see text for explanation
q1 0 see text for explanation
q2 2 see text for explanation
kBT 0.001
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allow us to deduce the position of the expected differential
conductance peaks as a function of gate field Ez and source−
drain bias VSD shown in Figure 5. It is not surprising that this
conductance map is similar to that reported in ref 1 which was
obtained by using the KS/GKS DFT−Landauer approach. The
KS/GKS DFT Hamiltonian is also essentially a “hostage” of the
ground state; as we explained above it cannot account for the
second low-lying state because of a lack of orbitals. Therefore,
for each gate field it can only have one active channel
corresponding to the ground state of the molecule. The
“missing” orbital is seen in Figure 5 as a dotted line.

IV. EFFECT OF NONEQUILIBRIUM POPULATION OF
MOLECULAR STATES

The considerations above relied on a simplifying assumption,
namely, that the bias does not modify the population
distribution of molecular states, and so at each gate field only
the ground state of the molecule is populated. We now lift this
assumption since we use quite large bias voltages and turn to a
more realistic treatment of the junction that allows non-

equilibrium population distribution on the molecule. We
employ the Redfield QME, where the weak coupling to the
leads is treated as a perturbation. A standard closure procedure
allows us to obtain an effective Liouvillian in the molecular
subspace. The right eigenvector corresponding to an eigenvalue
with zero imaginary part is the steady-state density matrix
(SSDM). From the SSDM we compute the steady-state
populations, current I(VSD), and the differential conductance
G = ∂I/∂VSD as a function of VSD for each gate field.
One well-known shortcoming of Redfield theory is that its

SSDM is not guaranteed to be positive definite, as a physical
density matrix (DM) should always be. Indeed, in our
calculations we do find certain voltage regimes where Redfield
QME fails. However, these are not the regimes of interest for
this work. Note that we have also used the Lindblad
approach34,35 to compute the conductance and populations
and obtained nearly identical results to those of the Redfield
theory in the regimes of interest shown below. The Lindblad
approach guarantees positivity of the DM, although it has other
basic shortcomings.36 It is comforting that in the regime of
interest both methods gave identical predictions.
We now discuss the results we obtained for the molecular

state populations P, the steady-state currents I, and the
differential conductance peaks G as functions of Ez and VSD
(see Figure 6).

A. Population Distribution of Molecular States. The
population distribution among the four low-lying molecular
states, depicted in the left panel of Figure 6, displays a variety of
domains. To facilitate the interpretation we used a different
color for each domain with border lines dictated by the
transition channels and appear in black. Each domain is
characterized with a different combination of states. The most
populated state appears in large bold letters at the center of

Figure 4. Top panel: Low-lying “diabatic” (t→ 0) eigenenergies of the
model Hamiltonian in eq 4 as a function of gate field Ez. The states are
designated as (n1n2). Bottom panel: Selected diabatic energy dif ferences
(multiplied by 2) from the ground state to the nearest hole/electron
states as a function of Ez. These can be considered as transition
channels in the VSD−Ez plane. The blue (pink) shaded area designates
Ez < Ez* (Ez > Ez*) where (02) ((11)) is the ground state and Ez* = 0.63
V/Å is the critical gate field. It is at this gate field that the conductance
described by the DFT−Landauer approach ought to break down. The
red lines are transition channels that should be active according to the
DFT−Landauer assumption of a single ground-state distribution. The
black dotted portion of each line is the regime where this transition
channel should not be active due to lack of population of the relevant
state. The solid black lines are transition channels that should not be
active in the diabatic limit (t→ 0) since in this limit QD2 is decoupled
from the leads (see text below for details).

Figure 5. Expected position of the differential conductance peaks as a
function of gate field Ez and source-drain bias VSD at t → 0 based on a
KS/GKS DFT−Landauer theory. In such a case the KS/GKS
Hamiltonian is that of the (02) ground state when Ez < Ez* and that
of the (11) ground state when Ez > Ez*. Accordingly, there are two
conducting channels,41 which can be assigned to the transitions (02 →
12) and (11 → 01). At gate fields below Ez* the active channel (02 →
12) is electron conducting, while for Ez > Ez* the active channel (11 →
01) is hole conducting. The intersection of the red line (02 → 12)
with the extrapolated (dotted) line (11→ 01) is marked by the point i,
while points a and b denote, respectively, the ending and the beginning
of those channels which occur at the critical gate field Ez*. When the
gate and bias are set to point i we find a breakdown of the DFT−
Landauer description: there is only one LUMO, and it cannot account
for both conductance channels ia and ib simultaneously.
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each domain, followed by the rest of the states which are
populated in this regime of the VSD−Ez plane. This picture is
markedly different from the assumption made previously
(section III) where only two domains, blue and pink, exist
(see Figure 4 bottom). Furthermore, in equilibrium at zero
temperature, the line Ez = Ez* is the boundary line in the VSD−
Ez plane, separating these populations, while in nonequilibrium
the boundaries of the different domains are the transition
channels discussed in section III.
The transition channels form the boundary domains because

they designate the threshold conditions for insertion of an
electron or a hole into the junction. Such an injected charge
carrier brings with it excess energy of μ + (eVSD)/2 which can
be used to populate higher-energy states.
It is important to note that to change the population

distribution among the two neutral molecular states (i.e., (02),
(11)) a concurrent population change in states of different
charge is needed. For example, let us revert to Figure 4 (top)
and consider the transfer of population from (02) to (11) at Ez
= 0.58 V/Å. The energy for this process is ΔE(02 → 11) = 0.2
eV. Naiv̈ely, one would expect that a source−drain bias of VSD
= 0.4 V will be the threshold voltage for population of (11). In
reality, however, the threshold is determined by a totally
different process, namely, the injection of an electron from the
leads, (02 → 12), which occurs only at ≈1.9 V. The reason for
this odd-looking dependence is simply that at 10 K one must
rely on injected charge carriers to transfer the available energy
in the leads into the junction.
B. Steady-State Current. The nonzero steady-state current

shown in the middle panel of Figure 6 appears in several
distinct domains bounded by the transition channels of the
junction:
(a) The purple domains designate regimes of zero current.
(b) The red triangle defined by the transition channels (02

→ 12) and (11 → 01) indicates a high current regime which
has strong contributions from both electron and hole currents
due to the relatively high population of (02) and (11) seen in
the left panel.
(c) The green colored area on the right is bounded by the

four transition channels (02→ 01), (11→ 01), (02→ 12), and
(11 → 12). Dominant contribution to the current comes from
the (02 → 12) electronic transition, and it is weak due to the

low population of the (02) state. In this regime, the hole
conducting channel (11 → 01) is not active.
(d) The yellow triangular region located at the upper left

corner is bounded by the transition channels (02 → 01) and
(02 → 12). The current is solely due to holes passing through
the (11 → 01) conducting channel. The current is intense due
to the relatively high population of state (11). Interestingly, the
current is not due to any of the transitions defining the domain
boundaries. These transitions do not contribute, because either
they are energetically inaccessible ((02 → 12)) or they change
n2 ((02 → 01)), a process that is weak because QD2 is not
directly coupled to the leads.

C. Redfield Conductance Channels. The current
domains depicted above give rise to sharp differential
conductance peaks called “conductance channels” which are
displayed in Figure 6 (right). These peaks reveal a richer
picture than predicted by the DFT−Landauer theory of Figure
5. To be specific, the DFT−Landauer conductance channels
coincide only partially with those of Redfield; for example at Ez
< Ez*, the (02 → 12) appears in both descriptions, but (11 →
01) does not appear in the DFT picture because 11 is the
ground state of the DFT Hamiltonian only when Ez > Ez*. Here
the situation changes, and this channel becomes active when
the gate field crosses Ei, where “i” is the intersection of the two
channels. The reason for its activation in a much lower gate
field is connected directly to the involvement of a non-
equilibrium mixed state which is displayed as a light gray
triangle in the left panel of Figure 6. To activate this channel
one should have a significant population of the (11) state. In
the KS/GKS picture, state (11) is not populated at all because
Ez < Ez* (blue domain in Figure 4 (bottom)), but in the
nonequilibrium mixture it carries a significant population and
therefore is able to conduct.
A surprising finding was the appearance of additional

conductance channels, absent from the DFT−Landauer picture.
These channels appear as horizontal lines in Figure 6 (right) at
VSD = 1.4 V and VSD = 2.2 V. These are attributed to the
transition channels (11 → 12) and (02 → 01), respectively.
Since these transition channels are not conducting (because
they involve a change in the population of QD2, which is not
directly coupled to the leads), their presence is somewhat
surprising. This is a second example where the nonequilibrium

Figure 6. Contour plots of the Redfield prediction for the steady-state distribution of populations P(02), P(11), P(12), and P(01) (left panel),
current I (middle panel), and the differential conductance peaks G (right panel) as functions of Ez and VSD. The colors of the different population
distribution regimes (left panel) are chosen arbitrarily. The border lines for those regimes are the transition channels discussed in section III, and for
each regime, the most populated state is denoted by bold letters. The color coding for the current and differential conductance peaks (middle and
right panels) has a meaning of intensity (red, orange, yellow, green, blue, and purple, where red is the highest and purple is zero). The maximum
current (in atomic units) is I ≈ 1 × 10−5, and the maximum conductance is G ≈ 5 × 10−4.
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mixed states are important. At low gate field, the appearance of
a mixed state at VSD > 2.2 V which populates state (11) (see
yellow triangle at the left panel of Figure 6) enables a hole
conductance at gate fields much lower than Ez*. At the same
time the appearance of a mixed state at higher gate field which
populates state (02) (see green pentagon at the left panel of
Figure 6) enables an electron conductance at Ez > Ez*.

V. SUMMARY

We have studied the conductance of the molecular junction
depicted in Figure 1, under an external gate field and source−
drain bias. This junction was considered in our previous paper
where we studied the conductance using a ground-state
Hamiltonian, based on a DFT for which the orbital energies
are close to the quasiparticle energies and employing
Landauer’s formula1 which describes the conductance of
noninteracting particles. We showed that this Landauer +
DFT approach is fundamentally flawed (needs an additional
orbital) to account for all the nonequilibrium effects in this
system. Using the data and insights provided by the DFT
calculations, we built a double quantum-dot Hubbard
Hamiltonian to describe this junction. We then employed a
nonequilibrium many-body approach based on the Redfield
theory to calculate the steady-state populations, current, and
conductance channels of this junction. We used the same
model Hamiltonian to construct the conductance channels of
this junction at equilibrium population of molecular states,
assuming zero temperature and employing the diabatic limit.
This picture mimics the conductance calculated in ref 1 using
the DFT−Landauer approach.
Whenever the Redfield approach produces a SSDM which

strongly mixes the two ground states (02) and (11) our
Landauer + DFT approach will fail since it always produces a
Hamiltonian based on just one of the two states. We expected
that the SSDM will mix these states only when the gate field Ez
is close to the critical gate field Ez* because then they are nearly
degenerate. However, we found that the mixture is strong even
when Ez ≪ Ez*, and thus the conductance map is more involved
than anticipated.
One of the attractive features of the junction is the small

number of conductance channels and the sharp response to the
gate field. This was predicted in ref 1 based on the simplified
but wrong Landauer + DFT approach. Within the more
realistic Redfield approach additional conductance channels
form, making the picture somewhat more intricate. However,
the number of such channels is still very small, and the high
tunability properties and sharp switching behavior of this
junction (Figure 6 (right)) are preserved.
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