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The one-body density matrix (OBDM) is a fundamental contraction of the Bose-Einstein condensate wave
function, encapsulating its one-body properties. It serves as a major analysis tool with which the condensed
component of the density can be identified. Despite its cardinal importance, calculating the ground-state OBDM
of trapped interacting bosons is a challenge and to date OBDM calculations have been published only for
homogeneous systems or for trapped weakly interacting bosons. In this paper we discuss an approach for
computing the OBDM based on a double-walker diffusion Monte Carlo random walk coupled with a stochastic
permanent calculation. We here describe the method and study some of its statistical convergence and properties
applying it to some model systems.
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I. INTRODUCTION

Despite its importance for determining the structure and
properties of boson systems, calculation of the ground-state
one-body density matrix (OBDM) proves to be a daunting
task. Most effort has gone to homogeneous systems where
the OBDM has a simpler structure because its eigenfunctions,
the plane waves compatible with the system size, are known
in advance from symmetry [1–5]. However, for trapped
systems, the OBDM is considerably more complicated and has
been calculated exactly (near analytically) only for hard-core
particles in harmonic traps [6,7] and numerically exactly
only for weakly interacting systems [8]. Monte Carlo (PIMC)
methods have been used for systems containing thousands of
weakly interacting bosons trapped in a harmonic potential at
finite temperatures [9], but PIMC calculations of the OBDM
become exponentially more demanding as temperatures drop
and interactions grow. Diffusion Monte Carlo, employing a
variational Monte Carlo guiding function has also been used
for studying systems of bosons in three dimensions at various
densities from weak to intermediate strength [10,11]. However,
the OBDM in these approaches is evaluated by an approximate
expression, involving the variational and mixed estimators of
the OBDM relying on the quality of the guiding function.
This makes them inappropriate for strong interactions and
additionally, they suffer from instabilities in the population
control resulting from singularities in the local energy under
the guiding function [12].

In this paper, we present a stochastic approach for the
calculation of the ground-state OBDM for trapped strongly
interacting bosons. Such computational methods are essential
for analyzing systems of small to intermediate number of
one-dimensional (1D) bosons in the strong interaction regime
[13–17]. The formalism seems applicable to any number
of dimensions but in this paper we describe and study the
implementation to 1D bosons, which are challenging systems
due to their strong correlation effects [18,19]. The method
is based on a DMC random walk and employs a stochastic
method for estimating the permanents required to calculate the
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OBDM . In Sec. II we describe the basic formalism, definitions,
and techniques; in Sec. III we apply the method to systems of
bosons trapped in a harmonic well where interaction strength
is increased while keeping the trap potential fixed and then in
double-well traps where interaction strength is increased while
keeping the density of the system (nearly) fixed; summary and
conclusions are given in Sec. IV.

II. METHOD

A. Basic notions

For D bosons of mass mb in a trap potential v(q) (q is the
Cartesian position coordinate of a particle) interacting through
a pairwise potential u(q12), the Hamiltonian is written as a sum
of kinetic and potential energies:

Ĥ = T̂ + V̂ , (1)

T̂ = − h̄2

2mb

D∑
n=1

∇2
n (2)

V̂ =
D∑

n=1

v(qn) +
D∑

m<n

u(|qn − qm|), (3)

where V̂ is a sum of one-body and two-body interactions.
Although the formalism we develop is not limited to any
specific form of the trap potential or two-body interactions,
we will use, for demonstration purposes, the following even-
symmetric trap, which combines a harmonic well with a
Gaussian-shaped barrier in its center:

v(q) = 1

2
mbω

2q2 + Vbe
− q2

2σ2
b . (4)

Here ω, Vb, and σb are, respectively, the harmonic frequency,
barrier height, and barrier width. The interaction we consider
is a pairwise Gaussian repulsion of the form,

u(q12) = c√
2πσr

e
− q2

12
2σ2

r , (5)
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where c is the repulsion strength and σr the interaction range.
When addressing the purely harmonic trap (Vb = 0) we will
use two pure quantities for characterizing the trap:

α0 = c

E0l
, (6)

α1 = σr

l
, (7)

where E0 = h̄ω and l =
√

h̄
mbω

are the energy and length scales

of the single particle noninteracting harmonic ground state.
Another nondimensional parameter comes from the theory
of nontrapped 1D gases interacting via a δ-function potential
(σr → 0), involving the 1D scattering length 2h̄2/mbc (see for
example Ref. [20]):

α2 = h̄2

mbcl
. (8)

Small values of α2 mean that scattering events occur on a
length scale smaller than the width of the trap. In the examples
we give below almost all cases are within this regime.

The ground-state one-body density matrix (OBDM) for D

bosons is defined up to a constant factor as an expectation
value of a nonlocal operator:

�1(q,q̃) ∝
∫

dxd x̃�(x)�(x̃)

×δ(x1 − q)δ(x̃1 − q̃)
D∏

j=2

δ(xj − x̃j ), (9)

where �(x) ≡ �(x1, . . . ,xD) is the ground state, symmetric to
particle exchange and normalization

∫
�1(q,q)dq = D can be

imposed a posteriori. Singling out particle 1 in this definition
is arbitrary as all particles are identical. In fact, we can take
advantage of the wave function exchange symmetry and write
the OBDM in an equivalent but explicitly fully symmetric way:

�1(q,q̃) ∝
∫

dxd x̃�(x)�(x̃)

×
∑

j

w( y(x|j ), y(x̃|j ))δ(xj − q)δ(x̃j − q̃),

(10)

where y(x|j ) ≡ (y1, . . . ,yD−1) = (. . . ,xj−1,xj+1, . . . ) is the
vector of D − 1 coordinates obtained from the vector x by
removing the j th coordinate. The weight w( y, ỹ) of each
double configuration y, ỹ is the number of permutations P

of the ỹ coordinates having the property that simultaneously
for all k, the position ỹPk

is located in an infinitesimal volume
element surrounding the position of yk . Mathematically this
is expressed as the following sum of products of δ functions:
w( y, ỹ) ≡ ∑

P

∏
k δ(yk − ỹPk

).
For a numerical implementations, we coarse-grain the δ

functions. First, we introduce a q-axis grid containing 2NG

bins, each of width h, centered on the grid points yg = gh,
where g = −NG, − NG, + 1, . . . ,NG − 1,NG is an integer.
The coarse-grained OBDM is then a histogram on a 2NG ×
2NG lattice derived from the exact OBDM as an integral over

the bins:

�
gg̃

1 ≡ h−2
∫∫

�1(q,q̃)θh(q − yg)θh(q̃ − yg̃)dqdq̃, (11)

where θh(ξ ) equals 1 if ξ ∈ [− h
2 , h

2 ] and zero otherwise.
Next we introduce the DMC random walk as a means

for calculating the coarse-grained OBDM. Regular DMC
produces a trajectory of length NT time steps made by M

walkers, giving M × NT D-dimensional vectors x distributed
as the ground-state wave function �(x). However, this is
not what we need for the OBDM of Eq. (10), where the
integral is over �(x)�(x̃). Hence we apply the standard DMC
procedure not on a single but on a double-walker system
corresponding to 2 × D particles under the Hamiltonian Ĥ =
Ĥ (x) + Ĥ (x̃), producing a random walk trajectory of M ×
NT 2D-dimensional vectors (x,x̃) distributed as the product
of ground-state wave functions �(x)�(x̃). The coarse-grained
OBDM histogram then becomes equal (up to normalization)
to the following average along such a trajectory:

�
gg̃

1 ∝
〈∑

j

wh( y(x|j ), y(x̃|j ))θh(xj − yg)θh(x̃j − yg̃)

〉
M×NT

,

(12)

where

wh( y, ỹ) =
∑
P

∏
k

θh(yk − ỹPk
) (13)

are the coarse-grained weights. The sum over the permutations
is not required when the random walk continues indefinitely,
producing exhaustive sampling [we can take wh( y, ỹ) = 1].
However, sampling is evidently finite, and not taking the
permutations will result in extremely poor statistics because
of the small probability to find yk and ỹk in the same bin
simultaneously for all k = 1, . . . ,D. The sum of products over
permutations appearing in Eq. (13) is the formal definition of
a permanent of the (D − 1) × (D − 1) matrix describing the
adjacency of particles in the two components of the double
walker:

�kj = θh(yk − ỹj ). (14)

Note that the expression of the permanent in Eq. (13) is
almost identical to that of the determinant except that in the
latter all odd permutations P are multiplied by −1. Despite
this similarity, the numerical work needed to evaluate the
permanent is vastly larger than for the determinant: the former
involves exponential complexity, O(2DD) [21], while the lat-
ter is polynomial, O(D3). For this reason, we use a stochastic
method [22] for evaluating the permanent in polynomial time,
as discussed in the following algorithm.

B. Algorithm for calculating the one-body density matrix

The M DMC double walkers (xm,x̃m) (m = 1, . . . ,M) are
subject to the standard DMC diffusion and birth and/or death
processes in a series of NT time steps, each of duration �t ,
depending on the Hamiltonian Ĥ (x) + Ĥ (x̃) as follows.

(1) Diffusive step: the position of each walker is changed
by (�xm,�x̃m), a vector of random numbers, each sampled
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FIG. 1. The autocorrelation function CJ = ∑
m(EJ+m − Ē)

(Em − Ē)/
∑

m(Em − Ē)2, where Em is the DMC reference energy
at time step m and Ē is its mean, for D = 16 bosons in a harmonic
oscillator trap for several values of α0 (and α1 = 0.1). The decay
constant Jd (defined by CJd

= e−1 ≈ 0.37) is indicated in parenthe-
ses. Interestingly, in each case the value of Jd is approximately equal
to α0.

from the normal distribution with mean μ = 0 and variance
σ 2 = h̄�t

mb
.

(2) Reproduction/annihilation: For each
walker at time t , (xm,x̃m), an integer n =
INT [e(E(t)−[V (xm)+V (x̃m)])�t/h̄+M−M0 + r] is computed
(where M0 is a preset target number of walkers), 0 � r < 1
is a random fraction and E(t) = 1

M

∑M
k=1 [V (xk) + V (x̃k)]

is the average potential energy over all walkers at time step
t = 1, . . . ,NT . Then:

(a) if n > 0 n clones of the walker are generated and M

is increased by n

(b) if n = 0 the walker is eliminated and M is decreased
by 1.
(3) Evaluating the energy: In the appropriate limit (M →

∞, �t → 0, and NT → ∞) the expected time-step average
of E(t) is an unbiased estimate of the ground-state energy of
the double system:

2EGS =
〈

1

NT

NT∑
n=1

E(n�t)

〉
, (15)

and the M × NT walker positions (x,x̃) are distributed as
�(x)�(x̃). The numerical procedure uses a finite number
M of walkers, a finite time step �t , and a finite number of
sampling times NT , leading estimates of EGS having random
fluctuations 
(M,NT ) ∝ 1√

NT M
as well as a small bias due to

the finite time step �t .
(4) Estimating the OBDM: Every NC time steps the

DMC double walkers are used update the OBDM histogram
according to Eq. (12). NC is taken much larger than the
correlation decay lengths Jd of the walk (see Fig. 1). In
Eq. (12), the bosonic weight wh( y, ỹ) is equal to the permanent
of the (D − 1) × (D − 1) adjacency matrix �ij of Eq. (14),
which is evaluated following these steps:

(a) Preliminary screening: we compute the column
sums cj = ∑D

i=1 �ij and the row sums ri = ∑D
j=1 �ij

of the adjacency matrix and if one of these is zero the

FIG. 2. The application of the stochastic permanent evaluation
described in step 4b of the algorithm in Sec. II B to adjacency
matrices �ij [Eq. (14)] appearing in DMC trajectories corresponding
to D interacting bosons inside a Harmonic well [α0 = 4, α1 = 0.1 in
Eqs. (6)–(7)]. Top: The coefficient of deviation Cν (relative standard
deviation) for the stochastic permanent evaluation as a function
of D. For each adjacency matrix �, the permanent is reevaluated
stochastically ten times (every time using K = 100 sets of random
integers) and Cν(�) is calculated as the ratio of the standard deviation
to the average. The results shown in the figure are averages 〈Cν(�)〉
over 10000 instances of � matrices, which arise during the DMC
random walk. Bottom: The frequency of nonzero permanents as a
function of D.

permanent is immediately set to zero without further
computation. The numerical effort in this screening process
scales at most as O(D2) and is effective since typically only
a small fraction of the permanents are nonzero (see bottom
panel of Fig. 2).

(b) For the adjacency matrices passing step 4a, the
permanent is estimated as the average 〈| det �|2〉 where
� is the matrix obtained from � by multiplying each
of its elements by ±1 at random. Mathematically, �ij =
(−)nij �ij where nij are random independent integers [22].
The average 〈| det �|2〉 is estimated using K samples of the
integers nij , where K is on the order of a few hundreds. The
relative standard deviation Cν occurring in this stochastic
permanent evaluation for a typical DMC trajectory is shown
in the top panel of Fig. 2 for K = 100. Cν grows roughly
in proportion to D, for large D’s.

(c) Normalize (�gg̃

1 ← �
gg̃

1 × D
tr�1h2 ) and symmetrize

[�gg̃

1 ← (�gg̃

1 + �
g̃g

1 )/2] the completed OBDM histogram
of Eq. (12).

We found the statistical error 
RDM of any OBDM property we
looked at (eigenvalues, for example) is proportional to 1√

NT MK

where NT is the number of time steps, M the number of walkers
and K the number of determinants used in the permanent
evaluation. From this, we conclude that the bias, if it exists, is
small and the error is dominated by statistical fluctuations.

The algorithm quickly identifies most of the zero perma-
nents, however, it is clear that for the sampling to be efficient
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FIG. 3. The deterministic (top) and DMC (bottom) OBDM �1(q,q̃) for of D = 4 unit-mass particles trapped in the potential well v(x) of
Eq. (4) and interacting via the potential u(x12) of Eq. (5). The parameters are kH = 0.25, Vb = 1.5, σb = 0.5, and σr = 0.5 and the values of c

are indicated in the figure for each column. A bin size of h = 0.375 atomic units was used for sampling. The DMC calculation used a total of
M = 48000 walkers (128 000 for c = 4), NT = 4000 time steps (20000 for c = 4), and �t = 0.01 time units (0.005 for c = 4).

we cannot afford a situation where the permanents are rarely
different than zero. Hence, the bin size h should not be too
small, and a general rule of the thumb would be to take
h to be of the order of n−1 (or a small fraction thereof)
where n is the average density. The efficacy of the permanent
method is seen in that the fraction of nonzero permanents
grows with increasing number of particles for a Harmonic
traps (see bottom panel of Fig. 2). This finding has support of
theoretical investigations [23]. Thus, the sampling efficiency
is not expected to decrease and perhaps even increases as the
number of particles grows.

C. Statistics and validation

In Fig. 3 we show contour plots of a grid-based deterministic
and the DMC-based stochastic OBDM estimates of �1(q,q̃) for
several systems of D = 4 particles interacting with increasing
repulsion strengths. In each case the DMC-based and grid-
based OBDMs are indeed nearly identical in appearance, due
to extensive sampling, validating, in principle, our method.

To show the effect of the stochastic permanent evaluation,
we study the three highest-lying OBDM eigenvalues for a set of
16 bosons in a Harmonic trap, as shown in Table I. The averages
and fluctuations using DMC with deterministic permanent
evaluation and DMC with stochastic permanent evaluation
for K = 200 and 400 stochastic determinants are shown. The
expectation values are close and the standard deviations with
K = 400 are close to the deterministic fluctuations.

III. APPLICATIONS

In this section we apply the algorithm for two types of
trapped boson systems in order to demonstrate the performance

and the kind of results that can be obtained. We compare
the calculated densities to that of the Thomas-Fermi (TF)
approximation [24,25], given as the positive part of the shifted
and negatively scaled potential well:

nT F (q) = Pμ − v(q)

c
. (16)

where P symbol means only positive values are nonzero. Here,
the TF chemical potential μ is determined by the density
normalization condition

∫
nT F (q)dq = D.

A. Constant harmonic-well trap

In Fig. 4 we study 16 trapped bosons in a harmonic well as a
function of α0, taking the values 4, 8, 16, 32 with α1 = 0.1 and

TABLE I. The expected value and standard deviation of the three
largest OBDM eigenvalues for a system of 16 bosons in a Harmonic
trap, calculated using DMC comparing the deterministic (K = 0) and
stochastic (K = 200, 400) evaluations of permanents. The parameter
K is the number of stochastic determinant calculations used for each
permanent evaluation. The potential parameters [see Eqs. (6)–(7)] are
α0 = 4, α1 = 0.1. The DMC calculation used M = 64000 walkers
and NT = 8000 time steps with �t = 0.005ω−1 and the OBDM bin
size was h = 0.625.

0 200 400

K E(f ) σ (f ) E(f ) σ (f ) E(f ) σ (f )

f1 0.806 0.01 0.808 0.014 0.805 0.008
f2 0.085 0.006 0.086 0.009 0.085 0.007
f3 0.047 0.006 0.043 0.003 0.047 0.006
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FIG. 4. The OBDM diagonal, antidiagonal, condensate [nC(q)],
and Thomas-Fermi [nT F (q)] densities for D = 16 particles in a
Harmonic well interacting via the potential of Eq. (5). The interaction
range parameter is α1 = 0.1 while the interaction strength parameter
α0 is indicated in the panels. The OBDM eigenvalues (divided by D)
are the eigenstate fractions fn indicated in each panel with f1 and
f2 having relative errors of 10% and f3 and f4 of 20% (largely
independent of α0). For α0 < 32 the statistical error bars are not
larger than the marker symbols. For α0 = 32 the statistical error bars
are shown explicitly for the diagonal, antidiagonal and condensate
densities. The OBDM bin size was h = 0.625.

Vb = 0 (corresponding DMC run parameters given in Table II).
We choose the regime of small α1 so the interaction is close
to contact. A useful way to think of this series of systems is to
imagine that the repulsion strength c increases (in proportion
to α0) while the harmonic trap stays put.

It is seen that as the repulsion (α0) grows, the density
diminishes and broadens. This happens because at short inter
particle distances the repulsion force is stronger than the
harmonic force and thus, as repulsion grows the particles can
stretch the harmonic spring and spread out.

For α0 = 4 and 8 the density �1(q,q) in Fig. 4 is similar
in shape to the TF density nT F (q) [Eq. (16)]. The TF approx-
imation is expected to apply for large numbers of particles
[18], and weak interactions α0 
 1, and is seen here to work
surprisingly well beyond this limit. As α0 increases further, the
system gradually assumes a more Fermionic structure, which

TABLE II. The parameters for the DMC runs used to produce the
results shown in Fig. 4. The wall time in hours and the number of
core-i7 CPU’s used (each CPU running eight threads).

α0

DMC run data 4 8 16 32

M (×103) 96 96 480 640
NT (×103) 900 900 900 6000
NJ 250 250 500 500
K 100 100 100 100
ω�t (×10−3) 5 2.5 2.5 2.5
Wall time hrs × CPU 11 × 3 10 × 3 33 × 6 192 × 8

includes a flattening of the density profile. However, the TF
density retains the parabolic shape and therefore is not any
more a reasonable approximation to the density.

As for the condensate density nc(q). For the lowest value
α0 = 4, it is very similar in shape to the total density, just scaled
by a factor f1 ≈ 0.8 where f1 is the condensate fraction. As
α0 increases the condensate is gradually destroyed. This is
evidenced by the steady decrease of the condensate fraction f1

and then by the antidiagonal density �1(q,−q), progressively
developing a concave shorter-ranged character while deviating
in shape from the total density �1(q,q) (see Appendix for
discussion). Finally as interactions grow, the shape of the
condensate density nc(q), retaining its flexible smoothness,
increasingly deviates from that of the total density, which
displays increasing rigidity due to fermionization.

Figure 4 also displays the statistical error bars for the
α0 = 32 system. It is seen that the total density is considerably
more sensitive to the QMC statistical fluctuations than the
condensate density (and the antidiagonal density). This is
reminiscent of the two-fluid model of superfluid He-II [26]
according to which the condensate has vanishing viscosity
and therefore is immune to fluctuations quite distinct from the
behavior of the normal fluid.1

B. Constant density in double-well trap

The generality of the DMC-based OBDM calculation
allows us to study systems beyond the uniform gas and
the harmonic trap approximations. One interesting case, is
the partially fragmented trapped gas, which is formed in a
double-well potential. When the barrier is extremely wide and
tall, the system fragments into two condensates [27,28] with
OBDM exhibiting two large and equal eigenvalues. However,
if the barrier is only partially separating the condensate the
nature of the system is mixed and difficult to describe without
detailed calculation.

Here we examined the behavior of the bosons when trapped
in a double well as the repulsion strength is increased. If we
keep the trap potential unchanged while increasing steadily
the repulsion constant c, the boson cloud will expand and
deplete in density, its potential energy will grow, until the
effect of the double-well potential barrier will be but a small
perturbation. In order to prevent this, we examine in Fig. 5
systems of increasing repulsion constant c while at the same
time changing the trap [spring constant kH and barrier height
Vb in Eq. (4)] so that the boson density remains unchanged.
This is a different limit than that studied in the previous
section, where we kept the trap constant as we increased
c and the density decreased. This limit is relevant to the
density functional theory of Bose gases where it can be
combined with the adiabatic connection theorem to calculate
the exchange-correlation energy [29,30].

We found that with constant σr = 0.1 and σb = 0.5, the
TF density is unchanged if we preserve the ratios Vb/c and
kH/c (we took these equal to 3 and 2.86, respectively). The
OBDM properties of four such systems with c = 2, 4, 8, and

1The viscosity of a fluid is related to momentum fluctuations by the
Green-Kubo formula.
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FIG. 5. The OBDM diagonal, antidiagonal, condensate [nC(q)],
and Thomas-Fermi [nT F (q)] densities for D = 32 particles with the
value of c indicated in the panels and σr = 0.1, σb = 0.5. The other
two potential parameters are taken as kH = 2.86c and and Vb = 3c.
This forces the TF density to be identical in all four systems. The
OBDM eigenstate fractions fn, n = 1, . . . ,4 as well as fc = ∑

n>4 fn,
are indicated in each panel; f1 and f2 have relative errors of 10% and
f3 and f4 of 20% (largely independent of c). The DMC parameters
are given in Table III. The bin size was h = 0.625 (all quantities are
unit less).

16 are shown in (5), (corresponding DMC run parameters
given in Table III). Since the density is kept constant the
main response is expressed as off diagonal changes in the
OBDM as c grows. What we see is that the antidiagonal
�1(q,−q) gradually diminishes for intermediate values of
q and deforms, smearing the double-hump feature. The
condensate density, like the total density �1(q,q), seems to
preserve its shape but reduces as contributions from other
eigenfunctions of the OBDM grow. Indeed, the strengthening
of c reduces the value of the condensate fraction, i.e., the
largest OBDM eigenvalue fraction, from f1 = 0.84 at c = 2
to f1 = 0.65, while compensating by increasing the other
eigenvalue fractions f2, f3, and f4. Note that the growing value

TABLE III. The parameters for the DMC runs (D = 32 bosons in
a double well, keeping the density constant as the interaction constant
c grows) used to produce the results shown in Fig. 5. The wall-time
in hours and the number of core-i7 CPU’s used (each CPU running 8
threads). The DMC correlation time for c = 16 was large and required
large NJ to reduce fluctuations.

c

DMC run data 2 4 8 16

M (×103) 256 256 256 512
NT (×103) 75 140 250 350
NJ 50 100 250 500
K 100 100 100 100
Ndet = MNT K/NJ (×1010) 3.8 3.6 2.6 3.6
ω�t (×10−3) 1.25 1.25 1.25 1.25
Wall time hrs × CPU 64 × 4 65 × 4 53 × 4 47 × 8

of the sum of higher-state population fractions fc = ∑
k>4 fk ,

reaching 9% at c = 16. The second eigenvalue does not grow
appreciably larger than the third or fourth eigenvalue fractions,
showing that the condensate is not fragmented despite the
visibly deep cut through the density at x = 0.

IV. SUMMARY AND DISCUSSION

In this paper we have developed a stochastic method for
calculating the OBDM of trapped Bose particles in the ground
state. The method is based on a unguided DMC process
in which a double walker is used to estimate the OBDM
�

qq̃

1 (where q designates bins on the position axis) as a
permanent of the double-walker adjacency matrix. We have
used the method to treat systems of up to 32 bosons with
usefully converged statistics in harmonic and double-well
traps. Based on the tests we ran, we estimate the complexity
to scale as D6 = D3 × D2 × D where the first factor is due
to the complexity of a determinant calculation, the second
is our estimate of the increase in the number of determinant
evaluations needed for each permanent calculation due to the
linear increase of the relative statistical fluctuations Cν with
D (top panel of Fig. 2) and the third is due to the fact that
for each double walker we repeat the permanent evaluation D

times. In a limited range of D, the efficiency of the sampling
decreases with increasing D due to the decrease in the number
of nonzero permanents (see the bottom panel of the figure).
However, when D grows further this effect will diminish since
the fraction of nonzero permanents actually grows with D.
In calculating the OBDM of harmonically trapped particles
with α0 = 4 and α1 = 0.1, the CPU time increased by a
factor ∼50 when going from D = 16 to D = 32 (keeping the
same level of statistical fluctuations), which is consistent with
this scaling. Note, however, that this estimated complexity
is based on experience with the Harmonic-trapped Bosons
and short interaction ranges. Its generality needs to be further
investigated tested in different settings and applications.

It is tempting to compare the computational complexity
of the present OBDM calculation method with that of other
published methods. The most serious contender is the path
integral ground-state method [2–4], which has been applied
to calculation of the OBDM from the weakly to the strongly
interacting regimes [5] However, although formulated in a
general way, this approach been applied only for homogeneous
systems where the OBDM is a function of the displacement
�q = q − q ′ and thus greatly benefits from averaging over the
coordinate q, an advantage that cannot be exploited in trapped
(nonhomogeneous) systems.

We point out that while in this paper we focused on short-
ranged repulsive 1D particles, there is no formal reason why the
method will not be applicable for higher dimensions and other
types of interactions. Indeed the possibility of these issues is
left as future directions.

It is important to appreciate that the present stochastic
OBDM calculation essentially involves a stochastic postpro-
cessing step placed on top of a DMC random walk. As such,
the same technique can perhaps be used in conjunction with
other types of Monte Carlo methods or even with deterministic
approaches that produce a wave function. This too is a possible
direction for extending the method.
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APPENDIX: OBDM DIAGONAL AND ANTI-DIAGONAL
FOR POTENTIALS WITH INVERSION SYMMETRY

The condensate is associated with the antidiagonal long
range of the density matrix [31,32]. In finite systems it is more
difficult to speak of long range yet the relation, e.g., ratio, of
the antidiagonal and diagonal can be considered. We describe
this approach here.

For the OBDM of the (non-negative) ground state, as
considered here, the OBDM �1(q,q̃) is also manifestly non-
negative. Furthermore, if the trap potential is symmetric
v(q) = v(−q), the OBDM eigenstates ψn(q) [�1(q,q̃) =∑

n wnψn(q)ψn(q̃) where 1 � wn � 0 are the OBDM eigen-
values] are either symmetric or antisymmetric to inver-
sion. The diagonal and antidiagonal densities can thus be
written as

�1(q,q) =
∑

n

wn|ψn(q)|2 (A1)

�1(q, − q) =
∑

ψ∈even

wn|ψn(q)|2 −
∑

ψ∈odd

wn|ψn(q)|2.

(A2)

Focusing on the sum and difference between the OBDM
diagonal �1(q,q) and antidiagonal �1(q,−q), we define two

non-negative even/odd (+/−) state densities

n±(q) = 1
2 [�1(q,q) ± �1(q,−q)], (A3)

and the corresponding even/odd populations D± =∫
n±(q)dq. Clearly, the sum D+ + D- = ∫

�1(q,q)dq is the
total population D, while the difference,

D+ + D- =
∫

�1(q,−q)dq (A4)

is the integral of the antidiagonal (which is thus always
positive). Since the densities n+(q) and n−(q) are positive, the
OBDM diagonal is never smaller than its antidiagonal and so
the ratio 1 � �1(q,−q)/�1(q,q) is well defined. The presence
of a condensate can perhaps be associated with a bound of this
ratio from below as q grows:

a < �1(q,−q)/�1(q,q). (A5)

Equality of diagonal and antidiagonal happens when only
even states are populated. One such case is for the noninteract-
ing Bose gas in its ground state, where only the (even) ground
state is populated, in this case D = Deven and Dodd = 0. Once
a noncondensate is formed (due to interactions or increase
of temperature, for example) some of population is trans-
ferred into odd states and therefore Deven − Dodd diminishes.
From Eq. (A4) this latter effect causes the reduction of the
OBDM antidiagonal integral

∫
�1(q,−q)dq. All the while,

the diagonal integral
∫

�1(q,q)dq, remains equal to D. For
this reason, a small antidiagonal population is indicative of a
large noncondensate being formed.
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