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Abstract 

Recently the Jahn-Teller model was extended to treat (reactive) scattering processes. The present study is devoted to 
possible effects of a degenerate vibronic coupling (DVC) on resonances. The main conclusions are: (a) The DVC affects 
dramatically the state-to-state transition processes and as a result it shuffles resonances attached to given transitions and may 
cause existing resonances to be masked by other processes. (b) The DVC may affect the widths and the heights of 
resonances but change only slightly their position. 

1. Introduction 

The possible effects of degenerate vibronic cou- 
pling (DVC), as for instance conical intersections 
(CI), on scattering processes have become an impor- 
tant subject within the study of few-atom systems 
[1-7]. In that light we developed a two-coordinate 
model which is close in spirit to the Jahn-Teller (JT) 
model [8-19] but is devised for studying the effects 
of CIs and eventual other similar degenerate elec- 
tronic situations on scattering processes [17]. The 
main motivation for doing that is to have a model 
which is simple enough to be solved to any required 
accuracy but still general so that calculated magni- 
tudes such as S-matrix elements and transition prob- 
abilities bear a relation to realistic systems. In our 
first publication on this subject [17] we were mainly 
interested in verifying that the ordinary Born-Op- 
penheimer approximation (BOA) [20] fails even for 

energies much below the upper surface (similar ef- 
fects of DVCs on molecular spectra have been known 
for some time [13]). In order to stay within the spirit 
of the BOA a new equation was presented [17,19]. In 
a detailed numerical study it was shown that results 
due to this equation and results obtained by solving 
the two coupled equations (namely, solving the model 
without approximations) are similar and that both 
differ significantly from results due to the BOA. 

In the present publication we concentrate on (re- 
active) resonances and employing the simple two-co- 
ordinate model we show relevant results. Although 
simple, the model produces resonances and the main 
purpose of the present Letter is to study the effect of 
DVC on resonances. 

This Letter is organized in the following way: the 
next section gives some theoretical remarks relevant 
to the subject under consideration, the third section 
presents the quasi-JT (scattering) model, the fourth 
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shows and discusses numerical results, and the fifth 
summarizes the conclusions. 

2. Theoretical  remarks 

A detailed derivation of the Schr~Sdinger equations 
that must be solved was given in our previous publi- 
cation [17]. Here are presented the relevant equations 
accompanied by short explanations. 

The two coupled equations that have to be solved 
to obtain the accurate results are [17-19]: 

1 0 
[T. + u , - E ]  x,  + 2mq~ b~oX2 = O. 

[T. + ' ~ 2 - E ] x  e 2mqZ o~oX , = 0 ,  (1) 

where T, is the kinetic operator given in the form 

1 [ 0 2  1 0 1 02 

Tn = - 2-"-m l ~q 2 + - - -  + q--T q aq O~ 2 ( 2 )  

q and ~o are two polar coordinates, m is the mass of 
the system, E is the total energy of the system and 
fii; i = 1, 2 are defined as: 

1 
Ui = " i  "t" ~ ; i = 1, 2. (3) 

~mq- 

Here, ui'~ i = 1, 2 are the two adiabatic potential 
energy surfaces (PES). 

Eqs. (1) can be solved directly but we preferred to 
do so by transforming them to the diabatic represen- 
tation. This is done by employing the following 
adiabatic-diabatic transformation [18,21-24]: 

X2 ~sin a cos ct / r/2 " 
(4) 

Substituting Eq. (4) in Eq. (1) it can be shown 
[18,21-24] that choosing a to be 

1 
= (5) 

annihilates the coefficients of the first derivatives 
and leads to the following (diabatic) equations: 

{T n " ~ / [ g  I -[- u 2 or- ( u I - -  u 2 )  c o s  ~9] }T~, 

- ½ ( u  I - u 2 )  sin ¢rl2 = Er h, 

{To + + . 2 -  ( u , -  u2) cos 

- ½ ( u  I - u 2 )  sin ~or/, = Er/2. (6) 

The results obtained from this coupled-equation 
model will be compared with those obtained by the 
ordinary (single surface) Born-Oppenheimer model, 
namely: 

( T , + u - E ) x = O ,  (7) 

where u I and Xi are replaced by u and X, respec- 
tively. 

The two-coupled equations in Eq. (6) and the 
single equation in Eq. (7) are solved using a recent 
method based on combining the discrete-variable 
representation with the features of the Toeplitz ma- 
trix [25-28]. 

3. The model  system 

The model system is reminiscent of the Teller 
model [9] which is the original model for represent- 
ing a conical intersection (CI). Within the Teller 
model are considered two diabatic potential energy 
surfaces (PES) which intersect at a point and which 
are, at this point's vicinity, linearly dependent on the 
coordinates. The model, as a whole, is used to treat 
bound systems. Our model is devised to treat scatter- 
ing processes and therefore is assumed to be bound 
with respect to one (Cartesian) coordinate, i.e. r and 
unbound with respect to the other coordinate, i .e .R.  
Since we are interested in simulating a reactive 
process the model potential will possess two asymp- 
totes; one at R = ~  and the other at R ~ - ~ c .  In 
addition, mainly for reasons of clarity (as will be 
discussed in the next section), the dependence of the 
adiabatic potentials on R and r, in the vicinity of 
the intersection point between the two surfaces, is 
not linear but quadratic. This change makes the 
present model typical for a wider range of couplings, 



D.M. Charutz et al./  Chemical Physics Letters 265 (1997) 629-637 631 

Table 1 
List of  parameters applied in the calculations 

all models: 
m 0.58 proton mass 
A 3.0 eV 
D 5.0 eV 

o- 0.30 ,~ 

or I 0.75 ~, 
~o o 39.14  10 i3 s -  l 

w I 7.83 1013 s I 

RSSM only: 
c 1.8 eV 
d 8.0 eV 

I 0.135 ,~ 

NRDSM only: 

p 0.333 ,~ 

Rf - 2 . 403  ,~ 

it was shown in Ref. [17] that ~%(q, ~o) is equal to 
(2q)-~.  A similar derivation with exactly the same 
expression for ~%(q, q~) was derived by Baer and 
Englman for the ordinary JT model (with a CI) [18]. 
Since r~(q, ~)  is the only term to determine the 
symmetry effects and since it is the same in the two 
models, the symmetry effects encountered in the two 
models have to be the same and are independent of 
the exact forms of the two adiabatic PESs. They may 
be linear in the vicinity of the intersection (and then 
the model is the ordinary JT model) or they may 
exhibit any other kind of dependence (in our present 
model they are quadratic) but this, as we just proved, 
will not affect the symmetry. 

The two adiabatic PESs u~ and u 2 are assumed 
to be, in this study, of the forms 

namely the degenerate vibronic coupling (DVC). 
These changes are not expected to affect the physical 
content of the model because they are not directly 
associated with symmetry effects caused by the dia- 
batic intersection. The symmetry effects enter through 
the non-adiabatic coupling term ~%(q, q~) which is 
the coefficient of the (first) ¢p derivative term in the 
adiabatic representation [19]. For the present model 

u,( R, r) = ½rn(to o -  ~o,( R))2r 2 + Af( R, r), 

u2(n,  r ) =  ' 3mw~r 2 ( D - A ) f ( R ,  r) +D,  

(8a) 

(8b) 

where A, D and ¢o 0 are constants. The function 
f (R,  r), which is responsible for forming a single 

> 

-1 '~--  ::::: . . . . .  ; . . . .  _ " - : : : : :  0 r()k) 

Fig. 1. The two adiabatic potential energy surfaces applied in the extended Jahn-Teller  model. 



632 D.M. Charutz et al. / Chemical Physics Letters 265 (1997) 629-637 

0.6 

0.5 

~5 
.o 0.4 ,o 

,5 

0.3 

rr 0.2 

0.1 

0 
1.8 

(a) 

1.9 2 2.1 2.2 

0.6 (b) 

0.5 

0.4 

g 

o~ 0.3 

0.2 

0 . . . . . . .  - . . . . . . . .  

1.8 1.9 2 2.1 2.2 

Energy(eV) 

Fig. 2. Reactive transition probability as a function of  total energy, calculated within the Born Oppenheimer approximation: (a) Results for 
the 0 ---> 0 transition; (b) results for the 1 ~ 1 transition; ( ) quantum mechanical results; ( -  - - )  Lorentzian fitted curves. 
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intersection point between the two PESs, is assumed 
to be 

( R:+r2  ) 
f ( R ,  r )=exp  0" 2 , (9)  

and ff),(R), which is responsible for forming a bifur- 
cated transition state, is assumed to be 

& , ( R )  = to, e x p ( -  ( R / ( r , ) 2 ) .  (101 

Here ~r, o-~ and to, are constants, r is the vibra- 
tional coordinate and R is the translational coordi- 
nate (both are defined along the interval - o~ ~ x 
+ o~; x = r, R). The numerical values of  the various 
parameters are listed in Table 1. They were chosen 
to be relevant for a typical chemical reaction; the 
mass is assumed to the reduced mass of  H + H 2 and 
the vibronic spacing is about 0.25 eV. The two 
adiabatic PESs are presented in Fig. 1. 

4. Results 

We shall examine the effects of  the DVC on 
resonances and for this purpose we consider the 
energy range 1.8-2.25 eV. It is important to remem- 
ber that this energy range is below the intersection 
energy point ( =  3 eV). 

In Fig. 2 are presented the (reactive) probabilities 
P(0, 0) and P ( I ,  1) as a function of  total energy. 
The results were obtained by solving Eq. (7), namely, 
the ordinary BO SchrSdinger equation. It is impor- 
tant to emphasize that the PESs employed in this 
study are even with respect to the vibrational coordi- 
nate r and therefore only (even ~ even) and (odd 
odd) transitions are allowed. Thus the probabilities 
P(0,  1) and P(1, 0) are identically zero. As can be 
seen, both the P(O, O) and P(1,  1) curves are char- 
acterized by two well-separated resonances, each of  

which is located at a different energy. To find the 
characteristic features of  the resonances they were 
fitted to Lorentzians so that their heights, A, their 
half width, F ,  and their positions E 0, were deter- 
mined by 'trial and error'.  The positions, widths and 
heights of  the various fitted Lorentzians are given in 
Table 2 and the fits are drawn as dashed lines in Fig. 
2 (and also in Fig. 4). It is important to mention that 
all other probability functions, namely the even ones 
P(0, v')  and the odd ones P ( l ,  v') have resonances 
at the same energies as P(0, 0) and P(1,  1), respec- 
tively. In all cases the resonances can be identified as 
Feshbach-type resonances [29] for which the position 
of the resonance coincides with an eigenvalue, ~, of  
a vibrational potential curve e(R) [29,30]. These 
vibrational potential curves are usually calculated by 
solving the following R-dependent eigenvalue prob- 
lem: (102 ) 

- -  + u l ( r t R  ) - e " ( R )  ~ , (r lR)  
2m Or: 

= 0 ,  

(12) 

where ul(r[ R) = ul(r, R) is the lower adiabatic PES 
and r and R are equal to q sin q~ and q c o s  q~, 
respectively. 

In our present model the resonances associated 
with the even probability functions P(0,  v')  are 
identified with eigenvalues of  the even adiabatic 
vibrational curves and the resonances associated with 
odd probability functions P(1, v')  are identified with 
the odd vibrational curves. Following an inspection 
of the vibrational potential curves en(R) obtained 
from Eq. (12) we found that the positions of  the 
resonances of  the P(0,  0) and P ( I ,  1) probability 
functions are associated with the es(R)  and ~7(R) 
curves, respectively (see Fig. 3). In addition to the 
curves, the corresponding eigenvalues g'8i; i = 1, 2 
and g'Ti; i = 1, 2 are listed in Table 2. 

Table 2 
Lorentzian parameters and eigenvalues related to BOA resonances (in eV) 

Transition A F E o 

0 ~ 0 0.480 0.016 2.06 2.03 
0 ~ 0 0.350 0.014 2.18 2.15 

I ~ 1 0.478 0.016 1.83 1.81 
I ~ 1 0.610 0.016 1.93 1.91 
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Fig. 3. Vibrational adiabatic curves as a function of R. Also shown are the position of the eigenvalues. (a) The 8th curve; (b) the 9th curve 
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Fig. 4. Conical  intersection-affected reactive transition probabil i ty P (0  ~, 1) as a function of total energy. ( 

results; ( -  - - )  Lorentzian fitted curves. 

) Quantum mechanical 

Fig. 4 shows the transition probabilities P(0,  1) 
as a function of  energy derived from the solutions of  
the set of coupled equations in Eq. (6). As before, 
the resonances were analyzed by fitting them to 
Lorentzians; their positions, widths and heights are 
in Table 3. 

Two important differences are noticed between 
the BOA and the coupled-equations results: 

(a) In contrast to the BOA results we find here 
that 

P (even  ~ even) = P ( o d d  ~ odd) = 0, 

but then 

P (even  ~ odd) :~ O. 

(b) The transition probability curves contain four 
resonances, instead of  two as in each of  the previous 
cases. We included also the unidentified shape in the 
energy interval 1.8-1.9 eV because it seems that 
there is a resonance which is masked by other ef- 
fects. 

The effect of  the DVC is indeed dramatic: it 
changes the character of the transition (namely, it 
causes it to be odd ~ even) and it changes entirely 
the pattern of  the resonances. Whereas the first 
subject was elaborated in Ref. [17], here we concen- 
trate on the second subject, namely oll the effect of 
the DVC on resonances. The DVC not only caused 
the two 'even '  and the two ' odd '  resonances to 

Table 3 
Lorentzian parameters and eigenvalues related to conical  intersection effected resonances (in eV) 

Transition A /" Eo ~ ~c 

0 ~ l 0.215 0.010 1.93 1.91 1.92 
0 --, 1 0.420 0.014 2.06 2.03 2.04 
0 ~ 1 0.220 0.014 2.17 2.15 2.23 
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manifest themselves through a single even-odd tran- 
sition, but it also affected the overall shape of each 
of the resonances; it caused one resonance to be 
masked by unresolved processes and it varied some 
characteristic parameters related to the other three, 
namely, the heights, A, which are reduced and the 
half widths, F ,  which are narrowed (see Tables 2 
and 3 for comparison). The only feature which was 
hardly affected was their position, E 0, and the reason 
is as follows. 

The DVC-affected results were obtained by solv- 
ing the two coupled equations in Eq. (6). In Ref. [17] 
we showed that the low-energy transition probabili- 
ties due to the coupled equations in Eq. (6) and those 
derived by employing an extended BOA single- 
surface equation of the form (Eq. (13') in Ref. [17]) 

T~ +-~ + 2mq2 Oq~ E , ~ = 0  (13) 

are, for all practical purposes, identical. In other 
words, the transition probability functions, including 
the resonances formed by solving Eq. (6), were 
reproduced by solving Eq. (13). Although written in 
terms of polar coordinates, Eq. (13) was solved using 
the Cartesian coordinates (r ,  R). 

As mentioned above, the positions of the reso- 
nances are solely determined by the eigenvalues of 
the adiabatic curves. Therefore we have to calculate 
adiabatic curves employing an equation that follows 
from Eq. (13). Due to the angular symmetry intro- 
duced by the DVC it will be more convenient to use, 
for this purpose, polar coordinates, namely (q, ~p); 
thus ~o will be the internal coordinate and q will 
serve as a parameter. Therefore the relevant q-de- 
pendent equation to determine the internal adiabatic 
potential curves t o (q )  is 

1 02 1 
+Ul(~plq)  + ~ 

2 m q  2 0~o 2 8mq 2 

i 0 e c . ( q ) ~ : ( ~ 0 l q ) = 0  " J  (14) 
2mq 2 0~o 

Eq. (14) yields rotational (instead of vibrational) 
adiabatic curves. As before the adiabatic curves can 
support q-dependent bound states which are respon- 
sible for the Feshbach resonances. It is important to 
mention that the q-dependent eigenvalues are essen- 

tially the same as those that were obtained ignoring 
the terms due to the DVC (the third and the fourth 
terms in Eq. (14)) but the eigenfunctions were differ- 
ent because they are anti-symmetric with respect to 
~p and therefore flip sign at ~p= 27r. Having the 
q-dependent potential curves we calculated the corre- 
sponding eigenvalues which are also listed in Table 
3. The results for ~, and ~c, are similar, thus 
justifying the expectations that the resonances within 
the two frameworks are the same. 

5. Conclusions 

The main conclusions are as follows: 
(a) The DVC affects dramatically the state-to-state 

transition processes and as a result resonances at- 
tached to given transitions undergo shuffling. More- 
over it causes existing resonances to disappear or at 
least to be significantly weakened by other pro- 
cesses. 

(b) The DVC affects the width and the height of 
resonances but only slightly their position. 

It is not yet clear to what extent DVC will affect 
scattering processes in realistic systems but reso- 
nances (or differential cross sections) must be ana- 
lyzed with care when DVC effects are expected. The 
situation in case of spectroscopic measurements may 
be more delicate because here the analysis is done 
separately for each value of the total angular momen- 
tum J and in such cases the effect of resonances will 
be more pronounced as compared to the case with 
scattering processes where it is averaged over many 
J values. 
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