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Abstract. We explain the concept of orthogonal polynomials and specialize

to Chebyshev polynomials. We then explain how to use this expansion for

computing an operator function on a Hilbert-space function. As applications

we discuss how to e�ciently computer the free energy and the entropy of a

particle in temperature T .

Jerusalem, January 13, 2020

Copyright© 2016 by Roi Baer
All rights reserved.
Reproduction or translation of any
part of this work without written
permission of the copyright owner
is unlawful.

1. Introduction

In many cases in Quantum Mechanics we need to apply a function f
(
Ĥ
)
of an

operator Ĥ to a wavefunction ψ0. For example, when solving the time-dependent
Schrodinger, starting from a given initial state ψ (0) = ψ0 at time t = 0:

(1.1) i~ψ̇ (t) = Ĥψ (t) ,

where ~ is Planck's constant. The solution at time t is:

(1.2) ψ (t) = e−iĤt/~ψ0.

Here the operator function is based on the imaginary exponential function ft(x) =
e−ixt/~ and has time as a parameter t.

Another example is the partition function which is de�ned as a trace of an
operator function:

(1.3) Z = tr
[
e−βĤ

]
where now the operator function is the real exponential function fβ(x) = e−βx and
has the inverse temperature as a parameter β.

For non-interacting fermions the number of fermions as a function of temperature
and chemical potential µ:

(1.4) N (β, µ) = tr

[
2

1 + eβ(Ĥ−µ)

]
Here we will describe how such an operator function can be computed using or-
thogonal polynomials.

1



OPERATOR FUNCTION BY CHEBYSHEV FIT 2

2. Orthogonal Polynomials

De�nition 1. A set of polynomials pn (x) n = 0, 1, 2, ... is called an orthogonal set
if pn (x) is of degree n and if

(2.1)

∫ b

a

pn (x) pm (x)w (x) dx = cnδnm

We denote the coe�cient of xn (the leading coe�cient) in pn (x) by An. w (x) > 0
is the weight function so clearly the norm cn is positive.

Example 2. Examples of orthogonal polynomials are the Legendre polynomials,
orthogonal in the interval [−1, 1]. These are obtained by a Gram Schmidt orthog-
onalization of the set

{
1, x, x2, ...

}
. Remember that the Gram Schmidt procedure

for orthogonalization of a set of vectors αn is the set β0 = α0 and

(2.2) βn = αn −
n−1∑
k=0

βk 〈βk|αn〉
〈βk|βk〉

.

In our case, take p0 (x) = 1. Then, since 〈p0|x〉 = 0

(2.3) p1 (x) = x.

Next,

p2 (x) = x2 − p1 (x)

〈
p1|x2

〉
〈p1| p1〉

− p0 (x)

〈
p0|x2

〉
〈p0| p0〉

(2.4)

= x2 − 2

3
(2.5)

and

p3 (x) = x3 − p1 (x)

〈
p1|x3

〉
〈p1| p1〉

= x3 − 3

5
x(2.6)

Where we used:
∫ 1

−1 x
2ndx = 2

2n+1 and
∫ 1

−1 x
2kdx = 0. Continuing this way we get

p4 (x) = x4 − 6
7x

2 + 3
35 etc.

Lemma 3. The polynomial xn is a linear combination of the orthogonal set of

polynomials pm (x) where m ≤ n.

Proof. Using induction. For n = 0 it is trivial. Now suppose it is true for n > 0
then for n + 1 we have that xn+1 − 1

An+1
pn+1 (x) is a polynomial of degree n and

thus equal to
∑n
m=0 bmpm (x). Thus, xn+1 = 1

An+1
pn+1 (x) −

∑n
m=0 bmpm (x) i.e.

it is a linear combination of pm (x)'s. �

Corollary 4. Within a set of orthogonal polynomials, pn is orthogonal to all m-

degree polynomials qm (x) where m < n.

Proof. For m < n pm (x) is a linear combination of pk (x) k ≤ m, all of which are
orthogonal to pn (x) by de�nition. �

Corollary 5. Any m-degree polynomial q (x) can be written as q (x) =
∑m
n=0 bnpn (x)

where bn = c−1n
∫
q (x) pn (x)w (x) dx.

De�nition 6. A root of a polynomial p (x)is a point of sign change. Speci�cally, a
point t for which p (x) p (y) < 1 for all x < t < y in an in�nitesimal interval around
t. Naturally p (t) = 0.
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Theorem 7. All n roots of pn (x) are real, distinct and appear inside the interval

[a, b].

Proof. Denote by N <= n the number of sign changes of pn (x) in [a, b]. If N = 0
then de�ne q0 (x) = 1 and if N > 0 de�ne polynomial qN (x) = ΠN

i=1 (x− ti), where
ti are the N roots of pn (x) in the interval. pn (x) qN (x) does not change sign

even once in the interval and therefore
∫ b
a
pn (x) qN (x)w (x) dx 6= 0 i.e. pn and qN

are non-orthogonal. This can only be true if N = n since pnis orthogonal to all
polynomials of degree N < n. Hence pn (x) changes sign n times in the interval,
which means that all its roots are distinct and real. �

3. Quadrature as approximations to integrals

De�nition 8. A rule
∑N
n=1 anf (xn) is called a quadrature formula for f (x) with

N nodes xn or a N -quadrature; an are called the weights. We use quadratures to

approximate integrals
∫ b
a
f (x)w (x) dx. A N−quadrature is called �k-exact� if it is

exact for all f (x) = qm (x) polynomials of degrees m ≤ k.

Theorem 9. A N -quadrature cannot be 2N -exact.

Proof. By counter example: f (x) = ΠN
n=1 (x− xn)

2
is a non-negative 2N -degree

polynomial. Its integral is positive while the quadrature formula yields zero. �

De�nition 10. A N -quadrature which is (2N − 1)-exact is called a Gaussian

N-quadrature.

Theorem 11. A N -quadrature which is (N − 1)-exact is also (2N − 1)-exact if
and only if the nodes xn are the roots of pN (x).

Proof. Follow these:

(1) If the nodes xn are the roots of pN (x) then the quadrature is (2N − 1)exact:
Any polynomial sk (x) of degree k < 2N can be written as sk (x) =
q (x) pN (x)+r (x) where both q (x) and r (x) are polynomials of degree less
than N . Now

∫
sk (x)w (x) dx =

∫
r (x)w (x) dx since pN (x) is orthogonal

to q (x). Finally, since q (xn) pN (xn) = 0 and the quadrature is (N − 1)-

exact we have:
∫
sk (x)w (x) dx =

∑N
n=1 anr (xn) =

∑N
n=1 ansk (xn), hence

it is also 2N − 1exact.
(2) In a N -quadrature which is (2N − 1)-exact the nodes xn must be the roots

of pN (x): Let qN (x) = ΠN
n=1 (x− xn) then for k < N :

∫
qN (x) pk (x)w (x) dx =∑N

n=1 anqN (xn) pk (xn) = 0 since then the quadrature is exact. Thus
qN (x) is a N degree polynomial which is orthogonal to all pk (x) i.e. it
must be a constant times pN (x) .

�

Corollary 12. The weights are obtained from solving the N linear equations with

N unknowns

(3.1)

N∑
n=1

anpk (xn) =
c0

p0 (0)
δk0, k = 0, . . . ,K

.

Theorem 13. For a Gaussian quadrature
∑N
n=1 anpk (xn) pj (xn) = ckδkj, k, j =

0, . . . ,K
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4. Polynomial fit approximation to functions

Given a function f (x), an interval [a, b] and a weight w (x)and a set of polyno-
mials of degree k = 0, 1, . . . pk (x) we ask what is the best �t we can obtain for
f (x)

(4.1) f (x) ≈
N−1∑
n=0

αnpn (x)

we can obtain for f (x)using these polynomials, so that the di�erence is minimal in
the sense

(4.2) J =

∫ b

a

(
f (x)−

N−1∑
n=0

αnpn (x)

)2

w (x) dx

We can solve this by taking derivatives with respect to αk:

(4.3) 0 =
∂J

∂αk
= −2

∫ b

a

(
f (x)−

N−1∑
n=0

αnpn (x)

)
pk (x)w (x) dx

which can be rearranged to read:

(4.4)

N−1∑
n=0

αn

∫ b

a

pn (x) pk (x)w (x) dx =

∫ b

a

f (x) pk (x)w (x) dx.

we see that, if we choose the polynomials pn (x) as the orthogonal set with respect
to w (x) we obtain a simple expression :

(4.5) αk =
1

ck

∫ b

a

f (x) pk (x)w (x) dx.

Hence we have a systematic way of generating optimal approximations to func-
tions. If we know how the perform the integrals of Eq. 4.5 we can use the obtained
αk for approximating the function of an operator having its eigenvalues within the
interval [a, b].

Now, if we cannot use exact integration, we can use Gauss integration:

(4.6) αk =
1

ck

N ′∑
n=1

f (tn) pk (tn)wn, k = 0, . . . , N − 1

One can choose N ′ = N or even N ′ = 2N for higher precision.

5. Chebyshev Polynomials

The Chebyshev polynomials Tn (x) are a family of polynomials, de�ned through
trigonometric functions. For |x| ≤ 1 we set x = cos θ and de�ne

(5.1) Tn (x) = Tn (cos θ) = cosnθ

Is this really a polynomial?? First we note:

T0 (x) = 1

T1 (x) = x
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Now, using the trigonometric relation:

cos (n+ 1) θ = 2 cos θ cosnθ − cos (n− 1) θ

It is straightforward to unveil the polynomial nature: Tn+1 (x) can be de�ned in
terms of lower degree T's :

Tn+1 (x) = 2xTn (x)− Tn−1 (x)(5.2)

Thus the Chebyshev polynomials can be generated, for example

T2 (x) = 2x2 − 1

T3 (x) = 4x3 − 3x

T4 (x) = 8x4 − 8x2 + 1

The orthogonality of the Chebyshev polynomials over the interval [−1, 1] derives
from:

(5.3)
2

π

∫ π

0

cos (nθ) cos (mθ) dθ = (δn0 + 1) δnm

and by making the change of variable x = cos θ, we obtain:

(5.4)
2

π

∫ 1

−1

Tn (x)Tm (x)√
1− x2

dx = δnm (δn0 + 1)

Hence, the weight w (x) = 2
π

1√
1−x2

emerges.

The roots of the Chebyshev polynomial TN (x) are derived from the zeros of the
cosine cosNθ = 0 which are

(5.5) θ(N)
n =

π

N

(
n− 1

2

)
where n is any integer. Hence, the Gaussian-Chebyshev sampling points, based on
the TN (x) the are

(5.6) x(N)
n = cos θ(N)

n , n=1,. . . N

The N quadrature weights weights an are determined from Eq. 3.1 one gets:∑N
n=1 anTk

(
x
(N)
n

)
= 2δk0 or

(5.7)

N∑
n=1

a(N)
n cos

(
kθ(N)
n

)
= 2δk0, k = 0, . . . , N − 1

Due to the fact that This is a set of N equations and N unknowns. We note that
for k 6= 0

N∑
n=1

cos
(
kθ(N)
n

)
= Re

N−1∑
n=0

eik
1
N (π2 +nπ)(5.8)

= Re

[
eik

π
2N

(−)
k − 1

2i sin kπ
2N

]
(5.9)

= 0(5.10)

this gives:

(5.11) a(N)
n =

2

N
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The quadrature is then :

(5.12)
2

π

∫ 1

−1

f (x)√
1− x2

dx ≈ 2

N

N∑
n=1

f
(

cos θ(N)
n

)

6. Chebyshev approximation

Further reading: [1]
Suppose we have a set of functions f (x; p) where x is a variable in the interval

[−1, 1] and p is some set of parameters. We can use Chebyshev polynomials and
write,

(6.1) f (x; p) ≈
N−2∑
k=0

bk (p)Tk (x)

where due to Eq. 5.4:

(6.2) bk (p) =
1

1 + δk0

2

π

∫ 1

−1

Tk (x) f (x; p)√
1− x2

dx.

Then, using the Gaussian quadrature of with N terms in Eq. (5.12) we estimate
bk, k = 0, . . . , N − 2 as:

(6.3) bk (p) =
1

1 + δn0

2

N

N∑
n=1

cos
(
kθ(N)
n

)
f
(

cos θ(N)
n ; p

)
Note: The constant bk (p) can be calculated e�ciently using a FFT. Denoting

fn (p) = f
(

cos θ
(N)
n ; p

)
, for real functions f (x) We write Eq. (6.3) as:

bk (p) =
1

1 + δn0

2

N
Re

{
ei

π
2N k

2N−1∑
n=0

ei
2π
2N nkφn (p)

}
, k = 0, . . . , N − 2(6.4)

Where the sum can be done using a FFT, by setting

(6.5) φn =

{
fn+1 0 ≤ n < N

0 N ≤ n < 2N

so the sum in the last term is a FFT of fn (p) (for each value of parameters p an
FFT needs to be performed) and all the b's for this set of parameters are obtained.

If f (x) = fr (x) + if i (x), is complex then you don't have to separate to real
and imaginary parts. Just do the following FFT (note the :

(6.6) bk (p) =
1

1 + δk0

1

N

{
ei

π
2N k

2N−1∑
n=0

ei
2π
2N nkfn+1 (p)

}
, k = 0, . . . , N − 1.

This works well for both the real and the complex cases and for real functions gives
exactly the same coe�cients as Eq. 6.4.
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7. Chebyshev approximation for a operator function

Based on ref.[2].

We now show how to apply Fp

(
Ĥ
)
on a given function ψ. Given the operator

Ĥ we �rst need to estimate the interval [Emin, Emax] which contains all of Ĥ's
eigenvalues. Then we de�ne a function:b− a = Emin, b+ a = Emax

(7.1) fp (x) = Fp
(
x∆E + Ē

)
where:

(7.2) Ē =
Emax + Emin

2
, ∆E =

Emax − Emin
2

Now �nd the Chebyshev approximation for f (x):

(7.3) fp (x) =

K∑
k=0

bk (p)Tk (x)

Then, here's how to apply Fp

(
Ĥ
)
on any given ψ :

(7.4) Fp

(
Ĥ
)
ψ =

K∑
k=0

bk (p)ψk

where:

(7.5) ψ0 = ψ, ψ1 = ĤNψ0, ψk+1 = 2ĤNψk + ψk−1

and

(7.6) ĤN =
Ĥ − Ē

∆E
Note that the same set of ψ's can be used for many parameter s p, and that you
only need to remember 4 functions.

8. Stochastic wave functions and traces using Chebyshev moments

The methods here are based on refs. [3, 4, 5][4][5].
If we want to calculate the trace of an operator function, (see for examples Eq.

(1.3) or Eq. (1.4)):

(8.1) Ap = tr
[
Fp

(
Ĥ
)]

We �rst employ the stochastic trace formula, where we take a random wave
function at grid-point rg,

(8.2) ψ (rg) =
eiθg√
∆V

where ∆V is the grid spacing/area/volume. It can be shown that the average of
the projection operator of such wave functions give the unit operator:

(8.3) 〈|ψ 〉〈ψ|〉 = I

where the angular brackets denote averaging with respect to θ. Combining this
with Eq. (8.1) we obtain:

(8.4) Ap = tr
[
〈|ψ 〉〈ψ|〉Fp

(
Ĥ
)]

=
〈〈
ψ
∣∣∣Fp (Ĥ)∣∣∣ψ〉〉
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Using the Chebyshev approximation of the function in Eq. (7.4) we �nd:

(8.5) Ap =

K−1∑
k=0

bk (p)Mk

where:

(8.6) Mk = tr
[
Tk

(
ĤN

)]
= 〈〈ψ|ψk〉〉

is the k Chebyshev moment. Note that the main numeric e�ort goes to calculation
of the K moments, which are just numbers. One can save half of the Hamilton-
ian applications by noticing that from the trigonometric relations cos (n+m) θ +
cos (n−m) θ = 2 cosnθ cosmθ, we have, for −1 ≤ x ≤ 1:

(8.7) Tn+m (x) + T|n−m| (x) = 2Tn (x)Tm (x) .

Using this relation with n = m (we omit (x)):

(8.8) T2n = 2T 2
n − 1

and with n = m+ 1 we �nd:

(8.9) T2n+1 = 2TnTn+1 − T1.

Hence, applying this for the operator ĤN instead of x, for even k, i.e. k = 2n, we
�nd:

(8.10) M2n = 2 〈〈ψn|ψn〉〉 −M0

and for odd k, i.e. k = 2n+ 1, we �nd:

(8.11) M2n+1 = 2 〈〈ψn|ψn+1〉〉 −M1

Clearly we only have to compute ψn's for n = 0, . . . ,K/2.

9. Algorithm for calculating the trace of F
(
Ĥ; p

)
The following steps are necessary:

(1) Note that p is a set of parameters, like β, µ for the electron number function
Ne

(2) Prepare a grid representation of wave functions and the Hamiltonian oper-
ator

(3) Estimate Emin and Emax (see: section 7).

(4) De�ne ĤN (Eq. 7.6).
(5) For a given set of parameters p prepare the Chebyshev coe�cients bk (p)

k = 0, . . . ,K − 1. K (see Eq. (6.6)) has to be even and large enough so
that all bk (p) with k > K are negligible (e.g. less than 10−8).

(6) Generate the moments Mk k = 0, . . . ,K − 1:
(a) Set

(i) M0 = Ng
(ii) for all k = 1, . . . ,K − 1 Mk = 0

(b) Generate a stochastic wave function ψ0 on the grid (Eq. 8.2). Note it
must be zero on the grid boundaries.

(c) Set
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(i) ψ1 = ĤNψ0

(ii) M1 = 〈ψ0|ψ1〉,
(iii) M2 = 2 〈〈ψ1|ψ1〉〉 −M0;

(d) For n = 2, 3, ... to n = K/2 (remember K is even):

(i) ψ2 = 2ĤNψ1 − ψ0

(ii) M2n−1 = M2n−1 + (2 〈ψn−1|ψn〉 −M1)
(iii) M2n = M2n + (2 〈ψn|ψn〉 −M0),
(iv) ψ0 = ψ1, ψ1 = ψ2

(e) Average Mk over I stochastic functions (see Eq. 8.2 on page 7). The
statistical error should decrease in proportion to I−1/2.

(7) Calculate the trace as: tr
[
F
(
Ĥ; p

)]
=
∑K−1
k=0 bk (p)Mk.
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