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ABSTRACT
Linear scaling density functional theory is important for understanding electronic structure properties of nanometer scale systems. Recently
developed stochastic density functional theory can achieve linear or even sublinear scaling for various electronic properties without relying
on the sparsity of the density matrix. The basic idea relies on projecting stochastic orbitals onto the occupied space by expanding the Fermi-
Dirac operator and repeating this for Nχ stochastic orbitals. Often, a large number of stochastic orbitals are required to reduce the statistical
fluctuations (which scale as N−1/2

χ ) below a tolerable threshold. In this work, we introduce a new stochastic density functional theory that can
efficiently reduce the statistical fluctuations for certain observable and can also be integrated with an embedded fragmentation scheme. The
approach is based on dividing the occupied space into energy windows and projecting the stochastic orbitals with a single expansion onto
all windows simultaneously. This allows for a significant reduction of the noise as illustrated for bulk silicon with a large supercell. We also
provide theoretical analysis to rationalize why the noise can be reduced only for a certain class of ground state properties, such as the forces
and electron density.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5114984., s

I. INTRODUCTION

Accurate modeling of the electronic structure is important
for understanding the thermal, optical, and magnetic properties of
molecules and condensed matters. Density functional theory (DFT)1

within the Kohn-Sham (KS) scheme2 is often the method of choice
due to its relatively low computational cost, which formally scales
as N3

e , where Ne is the number of electrons in the system. However,
even this mild power-law scaling limits the applicability of DFT to
study complex systems that require modeling of more than 104 elec-
trons.3–5 In order to reduce the scaling, much effort has been devoted
to the development of linear scaling DFT algorithms.6–17 The

majority of these algorithms either divide a system into subsys-
tems14–17 and attempt to solve the electronic structure problem in
each subsystem or rely on the sparsity of the density matrix.6,10,12

Although linear scaling DFT has achieved many successes, difficul-
ties exist in both approaches. Algorithms based on solving subsys-
tem such as like embedding methods require a proper treatment
of boundaries between subsystems16,18–22 while methods based on
the locality of the density matrix often suffer from slow convergence
when the fundamental band gap is small.

Recently, we have introduced an alternative scheme for linear-
scaling DFT based on the notion of stochastic orbitals, termed
stochastic DFT (sDFT).23 The idea is to compute the electron

J. Chem. Phys. 151, 114116 (2019); doi: 10.1063/1.5114984 151, 114116-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5114984
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5114984
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5114984&domain=pdf&date_stamp=2019-September-20
https://doi.org/10.1063/1.5114984
https://orcid.org/0000-0001-8432-1925
https://orcid.org/0000-0003-2031-3525
mailto:mingchen.chem@berkeley.edu
mailto:roi.baer@huji.ac.il
mailto:dxn@chem.ucla.edu
mailto:eran.rabani@berkeley.edu
https://doi.org/10.1063/1.5114984


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

density and ground state electronic properties with stochastic
orbitals that are random linear combinations of the deterministic
occupied orbitals. Importantly, the sDFT approach depends on nei-
ther the sparsity of density matrix nor how the boundaries between
fragments in an embedding scheme are treated. This has been
shown for a variety of systems, including insulators and semicon-
ductors.23–28 Although sDFT is very efficient for large systems, low-
ering the statistical noise of ground state electronic properties to
below tolerable thresholds often requires hundreds to thousands of
stochastic orbitals, leading to significant computational costs.23 Var-
ious techniques based on embedded fragmentation algorithms have
been successfully introduced to reduce the noise in the electron den-
sity for specific systems, such as molecular systems24 and covalently
bonded materials,25,26 but more robust noise reduction schemes are
needed, particularly for systems for which it is nontrivial to construct
embedded fragments.

Here, we propose a general improvement to sDFT that reduces
the noise in the electron density and nuclear forces by breaking the
electron density into components corresponding to orbital energy
windows and using sDFT to sample each window. We refer to this
new method as “energy window stochastic density functional the-
ory” (ew-sDFT). We find that ew-sDFT successfully reduces the sta-
tistical noise in the electron density and in certain other ground state
electronic structure properties (e.g., forces).

This paper is organized as follows: We briefly review the sDFT
approach and then present the energy-window modification fol-
lowed by a numerical illustration for bulk silicon with a large
supercell. Finally, we provide a discussion of the noise reduction
mechanism in ew-sDFT.

II. STOCHASTIC DENSITY FUNCTIONAL THEORY
We begin by briefly reviewing the stochastic density functional

theory (for more details, consult Refs. 23–26 and 28). Without loss
of generality, we limit the discussion to a system in a box of vol-
ume V with periodic boundary condition. Electronic properties are
calculated by KS-DFT with Hamiltonian ĥKS given by

ĥKS = t̂ + v̂nl + v̂loc + v̂h[ρ] + v̂xc[ρ], (1)

where t̂, v̂nl, v̂loc, v̂h[ρ], and v̂xc[ρ] are kinetic, nonlocal pseudopo-
tential, local pseudopotential, Hartree, and exchange correlation
terms. In KS-DFT, the Hartree and exchange correlation potentials
explicitly depend on the electron density ρ(r), which is given by
ρ(r) = 2∑Nocc

i=1 ∣ψi(r)∣2 on Ng real-space grid points, where ψi(r) are
the KS orbitals of ĥKS and Nocc is the number of occupied orbitals.
ρ(r) can also be expressed as the trace of an operator, i.e.,

ρ(r) = 2Tr ρ̂δ(r − r̂), (2)

where ρ̂ = limβ→∞ θβ(ĥKS;μ) is the one-body density matrix, θβ(x;
μ) = 1/(1 + eβ(x−μ)) is the Fermi-Dirac distribution function with
inverse temperature β and chemical potential μ, and δ(r − r̂) is the
Dirac-delta function. In practice, β is chosen to be large enough
to converge the ground state properties and μ is tuned such that
Tr ρ̂ = Ne/2 is equal to the number of electron pairs.

In sDFT, ρ(r) in Eq. (2) is determined by using a set of Nχ
stochastic orbitals ∣χ⟩ (rather than finding all KS orbitals),

ρ(r) = 2⟨⟨χ∣ρ̂δ(r − r̂)∣χ⟩⟩χ = 2⟨∣ξ(r)∣2⟩χ , (3)

where ∣ξ⟩ =
√

ρ̂∣χ⟩ and ⟨⋯⟩χ imply averaging over an ensemble
of stochastic orbitals. One possible choice of ∣χ⟩ in real space is
χ(r) = ±1/

√

ΔV with equal random probabilities of positive or neg-
ative values for each grid point, and ΔV = V/Ng represents the vol-
ume element. In practice, a set of Nχ stochastic orbitals {∣χi⟩} is used
in sDFT and a sample average leads to ρ̄χ(r) = 2

Nχ
∑

Nχ
i=1 ∣ξ(r)∣

2. ρ̄χ(r)
is then used to evaluate quantities that are functionals of the density,
such as the local pseudopotential energy, Hartree energy, exchange-
correlation energy, and the local pseudopotential nuclei force. A
ground state quantity corresponding to a one-body operator, Ô, can
also be obtained via a trace formula,

O = 2Tr(ρ̂Ô) = 2⟨⟨ξ∣Ô∣ξ⟩⟩χ . (4)

Equation (4) is used to evaluate kinetic energy (EK) and nonlocal
pseudopotential energy (Enl) and nonlocal pseudopotential nuclei
force. Applying Eq. (4) with a finite number of samples results in
a statistical approximation of the expectation value of Ô.

Achieving linear (or sublinear) scaling in sDFT relies on two

requirements. First, applying
√

ρ̂ =
√

θβ(ĥKS;μ) to a stochastic
orbital ∣χ⟩ should scale linearly with respect to system size. This is
achieved by expanding the Fermi-Dirac operator in a Chebyshev
polynomial,29,30

√

ρ̂∣χ⟩ =
√

θβ(ĥKS;β,μ)∣χ⟩ =
Nc

∑

n=0
an(μ,β)Tn(ĥKS)∣χ⟩, (5)

where an(μ, β) are the expansion coefficients of the Fermi-Dirac
operator31 and Nc is the highest degree of polynomials. Linear scal-
ing then relies on the sparsity of the KS Hamiltonian and not on the
density matrix. Second, for many local observables like the energy
per particle and the forces on the atoms, the statistical noise does
not increase with increasing system size and often decreases with the
system size, leading to sublinear scaling.23–26,28

Within the sDFT formulation, the exact electron density ρ(r)
can only be recovered by averaging infinitely many stochastic
orbitals. Thus, for a finite set of stochastic orbitals, ρ̄χ(r) contains
a statistical noise. With the choice of random state ∣χ⟩ described
above, the variance of density calculated from one stochastic orbital,
ρχ(r) = 2⟨χ∣θβ(ĥKS;μ)δ(r − r̂)∣χ⟩, is approximately given by25

Varχ(ρχ(r)) = 2ρ2
(r), (6)

where Varχ(⋯) represents variance in ρ(r). From the central limit
theorem, the variance of the electron density ρ̄χ(r) evaluated with
Nχ stochastic orbitals is 2ρ2(r)/Nχ . Equation (6) indicates that the
standard deviation of the density is proportional to the density itself.
Thus, by dividing ρ(r) into multiple components and using sDFT to
sample each of them, it is possible to reduce the statistical noise, as
discussed in Sec. III.

III. ENERGY WINDOW STOCHASTIC DENSITY
FUNCTIONAL THEORY

The central idea behind the energy window stochastic density
functional theory (ew-sDFT) is to divide the space spanned by the
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occupied orbitals into subspaces and perform sDFT calculation in
each subspace before combining contributions from all subspaces.
We will illustrate ew-sDFT with two energy windows; however, gen-
eralizing the results to multiple windows is straightforward. First,
we divide the occupied orbitals, {ψi}, into two subsets: one with
orbital energy (εi) smaller than a given energy ε∗ while orbitals
in the other subset have orbital energies higher than ε∗, where
ε∗ < μ. The orbital indexes in the two subsets are w1 = {i|εi ≤ ε∗}
and w2 = {i|ε∗ < εi < μ}. The corresponding projection operators
onto each energy window are ρ̂1 = θβ(ĥKS; ϵ∗) and ρ̂2 = θβ(ĥKS;μ)
−θβ(ĥKS; ϵ∗). Similar to sDFT, applying

√

ρ̂1 and
√

ρ̂2 to a stochastic
orbital ∣χ⟩ generates filtered stochastic orbitals ∣ξ(1)⟩ =

√

ρ̂1∣χ⟩ and

∣ξ(2)⟩ =
√

ρ̂2∣χ⟩. The deterministic density ρ(r) can be recovered by

averaging 2|ξ(1)(r)|2 + 2|ξ(2)(r)|2, i.e.,

ρ(r) = 2⟨∣ξ(1)(r)∣2 + ∣ξ(2)(r)∣2⟩
χ
. (7)

We evaluate both
√

ρ̂1 and
√

ρ̂2 using a Chebyshev polynomial
expansion given by Eq. (5). We emphasize that ew-sDFT barely
increases the computational wall time compared to sDFT because
the same Chebyshev polynomials of ĥKS can be used to simultane-
ously project a random stochastic orbital on both energy windows,
generating |ξ(1)

⟩ and |ξ(2)
⟩with a similar effort to one window sDFT.

Within ew-sDFT, a general ground state observable can be
evaluated according to

O = 2Tr(ρ̂Ô) = 2⟨⟨ξ(1)∣Ô∣ξ(1)⟩ + ⟨ξ(2)∣Ô∣ξ(2)⟩⟩
χ

(8)

and by ρχ(r) = 2|ξ(1)(r)|2 + 2|ξ(2)(r)|2, the variance of ρχ(r) in
ew-sDFT is given by

Varχ(ρχ(r)) = 2(ρ2
1(r) + ρ2

2(r)), (9)

where ρ1(r) = 2∑i∈w1
∣ψi(r)2

∣ and ρ2(r) = 2∑i∈w2
∣ψi(r)2

∣ are den-
sities corresponding to the two energy windows. Recalling that the
variance of ρ̄χ(r) from sDFT is 2ρ2

(r) = 2(ρ1(r) + ρ2(r))2, the
variance is thus reduced by 4ρ1(r)ρ2(r). Therefore, with similar com-
putational wall time, ew-sDFT achieves smaller fluctuations in the
electron density compared to sDFT.

The implementation of ew-sDFT is similar to sDFT and can
be implemented in plane waves, real space grids, or Gaussian basis
sets. Starting from the initial guess of the electron density, ew-sDFT
first generatesNχ random vectors in real space as described in Sec. II.
Next, the chemical potential μ is determined by solving the following
equation:

2
Nχ

Nχ

∑

i=1
⟨χi∣ f (ĥKS;β,μ)∣χi⟩ = Ne. (10)

Note that Eq. (10) is the same as the one used in sDFT since
⟨χi∣ρ̂1∣χi⟩ + ⟨χi∣ρ̂2∣χi⟩ = ⟨χi∣ρ̂∣χi⟩ for each |χi⟩. After determining μ,
each |χi⟩ is filtered by

√

ρ̂1 and
√

ρ̂2 using a Chebyshev polyno-
mial expansion as described by Eq. (5) to generate ∣ξ(1)i ⟩ and ∣ξ(2)i ⟩.
The filtered stochastic orbitals are then used to calculate the density,
ρ̄χ(r), and other electronic properties via Eqs. (7) and (8). The KS
Hamiltonian is then updated with ρ̄χ(r), and the above calculations

repeat until ρ̄χ(r) converges. The same random number seed is used
throughout the self-consistency iterations to ensure convergence.

IV. RESULTS AND DISCUSSION
We assessed the performance of ew-sDFT on silicon crystal

with various supercell size. Silicon crystal is a challenging system
for linear scaling DFT algorithms due to its small band gap within
the local density approximation (LDA) to DFT (fundamental gap of
∼0.6 eV). We used β ≈ 600 in inverse Hartree, sufficient to converge
the ground state properties with respect to the electron tempera-
ture. The same value of β ≈ 600 was also sufficient to converge the
ground state properties within ew-sDFT, regardless of the number of

FIG. 1. Standard deviation of densities at selected grid points are evaluated from
sDFT (solid blue) and ew-sDFT with 10 windows (solid red) calculations for Si64
system. Theoretical estimated density standard deviation from Eqs. (6) and (9) are
plotted as dashed blue line for sDFT and dashed red line for ew-sDFT.

FIG. 2. (a) Density of states (DOS) of Si64 by using densities calculated from sDFT
(blue line) and ew-sDFT with 10 windows (red line) are compared to deterministic
DOS (green line). DOS from sDFT and ew-sDFT are averaged from 10 indepen-
dent runs. (b) Standard deviations of DOS are shown as blue line for sDFT and
red line for ew-sDFT.
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TABLE I. The average values of energies per electron, including kinetic energy (Ek), nonlocal pseudopotential energy (Enl), external energy/local pseudopotential energy (Eloc),
the summation of Hartree (Eh) and exchange-correlation (Exc) energy and total energy (Etot), are presented in the table. The standard deviations in the last digits of energies
are listed in parentheses. Nw is the of energy windows used for ew-sDFT calculation.

System Method Nw Ek Enl Eloc Eh + Exc Etot

Crystal Si64 sDFT 10.450(40) 6.081(8) −8.633(22) −6.270(6) −26.937(37)
ew-sDFT 10 10.450(40) 6.081(8) −8.641(19) −6.271(6) −26.946(36)

Deterministic 10.450 6.083 −8.660 −6.266 −26.958
Crystal Si512 sDFT 10.364(7) 6.105(3) −8.581(6) −6.291(2) −26.969(7)

ew-sDFT 10 10.363(6) 6.104(3) −8.587(5) −6.293(2) −26.978(7)
ew-sDFT 100 10.363(7) 6.104(3) −8.589(5) −6.293(2) −26.980(7)

Deterministic 10.360 6.105 −8.594 −6.292 −26.985
Thermal Si512 sDFT 10.301(5) 6.104(3) −8.790(5) −6.190(1) −26.942(8)

ew-sDFT 10 10.298(6) 6.104(2) −8.800(2) −6.190(1) −26.956(6)
Deterministic 10.298 6.104 −8.804 −6.190 −26.959

energy windows. The wave function cutoff was 30 Ry and the den-
sity cutoff was 60 Ry, which corresponds to real space grid spacing of
0.22 Å. Troullier-Martins norm conserving pseudopotentials32 were
used with Kleinman-Bylander separable form.33 The application of

the nonlocal pseudopotential was performed in real space to reduce
the computational costs.34 We first tested a rather small supercell
containing 64 silicon atoms as an illustrative example of ew-sDFT.
512 stochastic orbitals were used in both sDFT and ew-sDFT and

FIG. 3. Selected average nuclei forces
along x axis and standard deviations
(error-bars) are shown for (a) crystal
Si64, (b) crystal Si512, and (c) thermal
Si512. Panel (a): Blue and green sym-
bols are nuclei forces from sDFT and
ew-sDFT with 10 windows, respectively.
Panel (b): Blue, green, and red dots
are nuclei forces from sDFT, ew-sDFT
with 10 windows, and ew-sDFT with 100
windows, respectively. Panel (c): The
nuclei forces from for a thermally equi-
librated Si512 structure using sDFT (blue
symbols) and ew-sDFT (green symbols).
Since the forces are significantly larger
than in the perfectly ordered case, we
subtract the corresponding determinis-
tic value from each force. (d) The stan-
dard deviations of nuclei forces along
the x axis averaged over all nuclei as a
function of number of energy windows.
The results for Si64 crystal, Si512 crys-
tal, and thermally equilibrated Si512 are
shown as blue, red, and green symbols,
respectively. sDFT results correspond to
1 energy window.
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10 energy windows were used in ew-sDFT. All statistical quantities
were evaluated from 10 independent runs.

In addition to the perfect crystalline silicon structures, we
have also compared the performance of sDFT and ew-sDFT on a
thermally equilibrated silicon structure. The structure was obtained
by equilibrating Si512 crystal at 1000 K and ambient pressure with
molecular dynamics simulation using the Stillinger and Weber
force-field.35 Due to smaller fundamental gap of thermal equilib-
rium silicon, we used β ≈ 800 in inverse Hartree to converge the
ground state properties in both sDFT and ew-sDFT calculations. All
the other computational details were not changed, and all statistical
quantities were averaged over 5 independent runs.

In Fig. 1, we plot the standard deviation of ρ̄χ(r) for sDFT (blue
curves) and ew-sDFT (red curves). In addition, we plot the esti-
mate of the standard deviation given by Eqs. (6) and (9) for sDFT
and ew-sDFT (dashed lines), respectively. We find that the standard
deviation of the electron density is roughly proportional to the value
of ρ(r), consistent with the theoretical predictions. Both theory and
numerical calculations demonstrate that ew-sDFT reduces the statis-
tical noise in the density. With 10 windows, the density fluctuation
from ew-sDFT is reduced by nearly a factor of 3 compared to sDFT.
Since the standard deviation scales as N−1/2

χ , it implies that the sDFT
requires about 10 times more stochastic orbitals to achieve the same
level of statistical noise in the density.

A similar picture emerges for the density of states (DOS), as
shown in Fig. 2. We constructed the KS Hamiltonian ĥKS[ρ̄χ(r)]
from ρ̄χ(r) and diagonalized it in the subspace of occupied orbitals.
The DOS of ĥKS[ρ̄χ(r)] withρ̄χ(r) from ew-sDFT is in better agree-
ment with the deterministic result (upper panel of Fig. 2) and the
fluctuations in the DOS are smaller (lower panel of Fig. 2).

Reducing the noise in the electron density should lead to a
reduction of the noise of all ground state properties. To test this
hypothesis, we calculated the energy per electron and nuclei forces
for Si64 and Si512 supercells at T = 0 K and for Si512 supercell at
T = 1000 K and compared the results of ew-sDFT to sDFT. 10 energy
windows were used for all systems. In addition, to explore the effect
of the number of windows, we have used 100 energy windows for
the crystal Si512. The energies per electron calculated by sDFT and
ew-sDFT agree well with deterministic results, as presented in
Table I. Surprisingly, the standard deviations are similar comparing
sDFT and ew-sDFT. Increasing the number of windows to 100 does
not change this picture.

Contrary to the case of the total energy, the standard deviation
in the nuclei forces is significantly reduced by the introduction of
energy windows, as shown in Fig. 3. Increasing the number of win-
dows in ew-sDFT to 100 further reduces the noise in the nuclei forces
[Fig. 3 panel (d)], however, the standard deviation seems to converge
to a lower limit. This suggests that there should exist an optimal
window size (close to 10) balancing between the small additional
computational overhead associated with increasing the number of
windows and the reduction in the statistical noise. In addition to
the role of the number of energy windows, Fig. 3 panel (d) clearly
demonstrates that the noise in the nuclei forces does not depend
on the system size, implying that ew-sDFT scales linearly with the
system size for nuclei forces.

Turning to discuss the role of thermal fluctuations and the
introduction of disorder, comparing the standard deviation of the

nuclei forces in Fig. 3 panels (c) and (d), we find that the reduction
in the noise in the nuclei forces using 10 energy windows is not lim-
ited to a perfectly ordered structure at T = 0 and a similar reductions
are observed for the thermally equilibrated structure at T = 1000 K.
This signifies that the sort of self-averaging observed here is not a
consequence of the perfectly ordered structure.

V. FLUCTUATIONS OF OBSERVABLES AND DENSITY
FUNCTIONALS

In this section, we analyze the fluctuations in observables
described by the trace over a generic operator Ô and rationalize the
behavior depicted in Table I and Fig. 3, where reduction in the fluc-
tuations was observed for the forces but not the total energies per
particle. We begin by focusing on a simple case in which the operator
Ô does not depend on the electron density, ρ̄χ(r). In the stochastic
formulation [cf. Eq. (4)], the expectation value is approximated by
Oχ = 2⟨ξ|Ô|ξ⟩. The variance of Oχ can be calculated by the following
equation:

Varχ(Oχ) = 8
Nocc

∑

i,j=1
⟨ψi∣Ô∣ψj⟩

2, (11)

where ψi and ψj are deterministic KS occupied orbitals. We need to
generate the KS orbital for the analysis, but of course, ew-sDFT does
not require any knowledge of the KS orbitals. The variance given by
Eq. (11) is determined by the Frobenius norm of the matrix repre-
sentation of Ô in the occupied subspace. In the case of ew-sDFT,
the variance is given by the sum of variances for each window (for
simplicity we take only two windows)

Varχ(Oχ) = 8
⎛

⎝
∑

i,j∈w1

⟨ψi∣Ô∣ψj⟩
2 + ∑

i,j∈w2

⟨ψi∣Ô∣ψj⟩
2⎞

⎠

. (12)

Recalling that w1 (w2) is the set of orbital indices for the first (sec-
ond) energy window, Eq. (12) suggests that the variance of Oχ is
propositional to the Frobenius norms of diagonal blocks of ⟨ψi|Ô|ψj⟩

(see Fig. 4). If ⟨ψi|Ô|ψj⟩ is diagonal dominant, the variance cal-
culated from Eqs. (11) and (12) is nearly identical. In this case,
ew-sDFT is less efficient at reducing the statistical fluctuations in Oχ .
In the limiting case in which ψi are eigenfunctions of Ô, the noise
level of Oχ calculated from ew-sDFT is identical to that of sDFT

FIG. 4. The variance of Oχ depends on (a) the Frobenius norm of the whole matrix
(shaded zone) in sDFT and (b) the Frobenius norm of the diagonal blocks (shaded
zone) in ew-sDFT.
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(a single window ew-sDFT). On the hand, if ⟨ψi|Ô|ψj⟩ is off-diagonal
dominant, significant noise reduction can be achieved by ew-sDFT,
as suggested by comparing Eqs. (11) and (12).

To illustrate this, consider the stochastic fluctuations in the
kinetic energy, nonlocal pseudopotential energy, and local pseu-
dopotential energy, which are described by the operators t̂, v̂nl, and
v̂loc [independent on the electron density, ρ̄χ(r)]. The correspond-
ing matrix elements calculated in the KS eigenstates representation
are shown in Fig. 5 panels (a)–(c), respectively. The matrices are
clearly diagonal dominant for all three cases [panels (a)–(c)]. Thus,
it is not surprising that ew-sDFT does not reduce the noise for the
corresponding observables, Ek, Enl, and Eloc (as discussed above, see
also Table I). On the contrary, matrices of nuclei forces are not
diagonal dominant, as illustrated in Fig. 5 panels (d)–(f), consis-
tent with the ew-sDFT results shown in Fig. 3. We note in passing
that for amorphous materials, off-diagonal terms in the matrices of
t̂, v̂nl, and v̂loc become important, as shown in the supplementary
material. However, these matrices are still diagonal dominant and
thus noise reduction in energy terms are limited, as illustrated in the
thermal equilibrium Si512 example in Table I. On the other hand,
for these amorphous materials, the structure of the corresponding
matrices for the force remain nondiagonal dominant and ew-sDFT
can achieve excellent noise reduction in atom forces, which is also
demonstrated by the thermal equilibrium Si512 example in Fig. 3.

Next, we consider the case where the operator Ô depends on
the electron density, ρ̄χ(r). This is important for observables like
the Hartree energy and the exchange-correlation energy required to
fully understand the behavior with respect to the number of energy

windows observed for the total energy. Consider the variance of
a density functional f [ρ̄χ(r)], where ρ̄χ(r) is calculated from Nχ
stochastic orbitals in sDFT or ew-sDFT. Approximating ρ̄χ(r) as
ρ̄χ(r) ≈ ρ(r)(1 + α(r)), where α(r) is a small random perturbation
of order

√

ϵ where ϵ = 1/Nχ , and retaining terms to order ϵ leads to

⟨ f [ρ̄χ(r)]⟩ = f [ρ(r)] + ϵ∬
δ2f

δρ(r)δρ(r′)
ρ2
(r, r′)drdr′ + O(ϵ3/2

),

(13)

Var( f [ρ̄χ(r)]) = 8ϵ
Nocc

∑

i,j=1
(⟨ψi∣

δf
δρ
∣ψj⟩)

2

+ O(ϵ3/2
), (14)

where, as before, ρ(r, r′) = 2⟨r∣ρ̂∣r′⟩ is the single particle density
matrix. For linear functional like the local pseudopotential energy,
⟨ f [ρ̄χ(r)]⟩ = f [ρ(r)] and the functional variance given by Eq. (14) is
identical to applying the central limit theorem to the variance given
by Eq. (11) with Ô replaced by a local effective operator δf

δρ [ρ(r)](r).

For a nonlinear functional, ∬
δ2f

δρ(r)δρ(r′)ρ
2
(r, r′)drdr′ is nonzero,

corresponding to “bias” which decays as 1/Nχ as recently discussed
by Cytter et al.27 and Fabian et al.28 In ew-sDFT, the average and
variance of f [ρ̄χ(r)] becomes

⟨ f [ρ̄χ(r)]⟩ = f [ρ(r)] + ϵ∬
δ2f

δρ(r)δρ(r′)
(ρ2

1(r, r′)

+ ρ2
2(r, r′))drdr′ + O(ϵ3/2

), (15)

FIG. 5. The matrices ∣⟨ψi∣Ô∣ψj⟩∣ are plotted for (a) Ô = t̂, (b) Ô = v̂nl, and (c) Ô = v̂loc, (d) Ô = ∂v̂loc
∂X1

, (e) Ô = ∂v̂nl
∂X1

, and (f) Ô = ∂v̂loc
∂X1

+ ∂v̂nl
∂X1

, where X1 is the x
coordinate of the first atom.
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Var( f [ρ̄χ(r)]) = 8ϵ
⎛

⎝
∑

i,j∈w1

(⟨ψi∣
δf
δρ
∣ψj⟩)

2

+ ∑
i,j∈w2

(⟨ψi∣
δf
δρ
∣ψj⟩)

2
⎞

⎠

+O(ϵ3/2
). (16)

Using the above relations in Eqs. (11)–(16) results in the following
expression for the variance of total energy:

Var(Etot) = 8ϵ
Nocc

∑

i,j=1
(⟨ψi∣ĥKS∣ψj⟩)

2
= 8ϵ

Nocc

∑

i=1
ε2
i + O(ϵ3/2

) (17)

for sDFT and

Var(Etot) = 8ϵ
⎛

⎝
∑

i,j∈w1

(⟨ψi∣ĥKS∣ψj⟩)
2

+ ∑
i,j∈w2

(⟨ψi∣ĥKS∣ψj⟩)
2⎞

⎠

+ O(ϵ3/2
)

= 8ϵ
Nocc

∑

i=1
ε2
i + O(ϵ3/2

) (18)

for ew-sDFT. The expressions for the total energy variance given
by Eqs. (17) and (18) are identical, suggesting that the statisti-
cal noise in ew-sDFT is identical to that of sDFT, consistent with
the results shown above. We wish to emphasize that the results in
Eqs. (17) and (18) also support the observed sublinear scaling of
the energy per electron with both sDFT and ew-sDFT, since the
occupied orbital energies are bounded, and thus, the variance of
the total energy is proportional to the system size. This implies that
the standard deviation of the energy per electron is inverse propor-
tional to the square root of the system size, explaining our previous
observations.23,24

VI. CONCLUSION
In this study, we developed a stochastic density functional

theory scheme which allows us to significantly reduce the statis-
tical noise in certain ground state observable with DFT. This was
achieved by dividing the occupied space into energy windows and
using correlated sampling in each window. Our new scheme (ew-
sDFT) is able to reduce the statistical noise in both the electron den-
sity and nuclei forces without significantly increasing the computa-
tional time, but not for the total energy or total energy per electron.
We showed that noise reduction of an observable in ew-sDFT cor-
relates with whether or not the corresponding operator is diagonal
dominant in KS eigenstate representation. The total energy is diag-
onal dominant, and no noise reduction was observed. However, for
the forces and electron density, this was not the case and we observed
a significant reduction in the noise that results in nearly an order of
magnitude reduction in the computational effort compared to sDFT
(since the noise is proportional to 1/

√

Nχ). This reduction allows
for a more rapid sampling of the canonical distribution using meth-
ods that do not rely on the total energy, such as Langevin dynam-
ics.26 The developed ew-sDFT provides an additional approach
to noise reduction within the family of sDFT methods and can
be combined with embedded fragmentation schemes to further
improve the accuracy and efficiency of stochastic density functional
theories.

SUPPLEMENTARY MATERIAL

Detailed derivations for variance of ground state properties
in sDFT and ew-sDFT are provided in the supplementary mate-
rial. The supplementary material also includes operator matrices for
disordered Si64 system.
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