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ABSTRACT
Stochastic density functional theory (sDFT) is becoming a valuable tool for studying ground-state properties of extended materials. The
computational complexity of describing the Kohn–Sham orbitals is replaced by introducing a set of random (stochastic) orbitals leading to
linear and often sub-linear scaling of certain ground-state observables at the account of introducing a statistical error. Schemes to reduce
the noise are essential, for example, for determining the structure using the forces obtained from sDFT. Recently, we have introduced two
embedding schemes to mitigate the statistical fluctuations in the electron density and resultant forces on the nuclei. Both techniques were
based on fragmenting the system either in real space or slicing the occupied space into energy windows, allowing for a significant reduc-
tion in the statistical fluctuations. For chemical accuracy, further reduction of the noise is required, which could be achieved by increasing
the number of stochastic orbitals. However, the convergence is relatively slow as the statistical error scales as 1/

√
Nχ according to the cen-

tral limit theorem, where Nχ is the number of random orbitals. In this paper, we combined the embedding schemes mentioned above and
introduced a new approach that builds on overlapped fragments and energy windows. The new approach significantly lowers the noise
for ground-state properties, such as the electron density, total energy, and forces on the nuclei, as demonstrated for a G-center in bulk
silicon.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0044163

I. INTRODUCTION

Kohn–Sham (KS) density functional theory1,2 (DFT) is widely
used to study a wide range of systems due to its capability of quan-
titatively predicting ground-state properties at a moderate com-
putational cost of O(N3

e ), where Ne is the number of electrons.
While this moderate scaling allows for an efficient description of
the ground state of molecules and bulk structures with periodic
boundary conditions, the application to systems containing 104

electrons or more, such as nanostructures,3 complex materials,4
and large biomolecules,5 is still a severe challenge for today’s DFT

implementations. Linear-scaling methods for DFT based on divid-
ing the entire system into subsystems6–8 require proper treatment
of the boundaries between the fragments.8–13 Another approach to
realize linear scaling relies on the “locality” of the density matrix
(DM).14–20 These approaches have received growing interest in
recent years.21–25

We have recently introduced an alternative linear-scaling
approach to DFT, which does not rely on the partitioning of the
system into subsystems nor depend on the sparsity of the density
matrix.26 Instead, it utilizes stochastic orbitals, which are random
linear combinations of deterministic KS orbitals, to calculate the
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electron density and other ground-state properties. In practice, the
required number of stochastic orbitals does not increase with the
system size for evaluating many ground-state properties,26,27 leading
to linear scaling or even sub-linear scaling DFT.26,27 In stochastic
DFT, linear scaling is achieved at the cost of introducing a statis-
tical error in the density and related observables, which, according
to the central limit theorem, decrease rather slowly with the num-
ber of stochastic orbitals, Nχ , limiting the efficiency and accuracy
of the method. Therefore, developing noise reduction schemes for
sDFT is essential for achieving chemical accuracy without the need
to dramatically increase Nχ .

One approach for reducing the noise in sDFT is based on
dividing the entire system into fragments. The entire system’s
density is then given as a sum of the fragment densities and a
correction term sampled using stochastic orbitals. When the sum of
the fragment densities provides a good approximation of the total
system’s density, the correction term is small, leading to signifi-
cant reductions in the noise for the electron density, energy, and
forces on the nuclei. This approach has been illustrated for systems
with open boundary conditions28–30 as well as for periodic boundary
conditions.27,31 For the latter case, we used overlapped fragments to
ensure a reasonable estimate of both the density and the density
matrix [this approach was referred to as “overlapped embedded-
fragmented stochastic density functional theory” (o-efsDFT).27]
Recently, we introduced an alternative technique to mitigate the
statistical noise, referred to as “energy-window sDFT” (ew-sDFT),32

where the occupied space was divided into energy-resolved
subspaces (“energy windows”) and the contribution to the density
for each window can be calculated simultaneously. This method
reduces the statistical noise in the density and the nuclei forces, but
not in the total electronic energy.32

In this paper, we combine the overlapped embedded-
fragmented scheme with the energy window scheme. Noise reduc-
tion is obtained by projecting both the system density matrix and the
fragment density matrix onto fixed energy windows. The proposed
energy window embedded-fragmented stochastic DFT (ew-efsDFT)
approach reduces the noise in the electron density, total energy, and
forces on the nuclei and the total computational time by more than
an order of magnitude compared to ew-sDFT or o-efsDFT, as illus-
trated for a G-center embedded in bulk silicon. The noise reduction
is crucial for obtaining structural information with chemical accu-
racy using only several tens of stochastic orbitals, as will be shown in
a proceeding publication.33

This manuscript is organized as follows: In Sec. II, we briefly
review the sDFT. In Sec. III, we present the o-efsDFT and ew-sDFT
methods, both central to the development of the current noise reduc-
tion scheme. In Sec. IV, we provide the details of the proposed
ew-efsDFT and a summary of the algorithm. Assessment of the new
approach for a challenging G-center embedded in bulk silicon is pre-
sented in Sec. V alongside a discussion of the computational com-
plexity and cost of the ew-efsDFT. Finally, in Sec. VI, we summarize
the main developments.

II. STOCHASTIC DENSITY FUNCTIONAL THEORY
Consider an extended system described by KS-DFT, with a KS

Hamiltonian (ĥKS) given by

ĥKS = t̂ + v̂nl + v̂loc + v̂H[ρ] + v̂xc[ρ], (1)

where t̂, v̂nl, v̂loc, v̂H[ρ], and v̂xc[ρ] are the operators of the kinetic
energy, the non-local pseudopotential energy, the local pseudopo-
tential energy, the Hartree energy, and the exchange–correlation
energy, respectively. The Hartree and exchange–correlation terms
depend on the electron density, ρ(r), which is formally given by (we
assume closed-shell and ignore spin–orbit couplings for simplicity)

ρ(r) = 2Tr(ρ̂δ(r − r̂))

= lim
β→∞

2Tr(θβ(ĥKS, μ)δ(r − r̂)), (2)

where ρ̂ = θβ(ĥKS, μ) is the one-body density matrix and θβ(x, μ)
= 1/(1 + eβ(x−μ)

) is the Fermi–Dirac distribution function parame-
terized by the inverse temperature (β) and the chemical potential (μ)
tuned to give the number of electrons, Ne = ∫ drρ(r). Other smooth
functions to approximate a step function can also be used instead
of θβ(x, μ). In KS-DFT, the electron density can also be written in
terms of the KS orbitals (eigenstates of the KS Hamiltonian), ϕi(r),

ρ(r) = 2
Nocc

∑
i
∣ϕi(r)∣2, (3)

where Nocc is the number of occupied orbitals.
In sDFT, the trace in Eq. (2) is replaced by averaging the

expectation value of θβ(ĥKS, μ)δ(r − r̂),

ρ(r) = 2⟨⟨χ∣θβ(ĥKS, μ)δ(r − r̂)∣χ⟩⟩
χ
, (4)

where ∣χ⟩ is a stochastic orbital and ⟨⋅ ⋅ ⋅⟩χ implies averaging over
an ensemble of stochastic orbitals. The stochastic orbitals are repre-
sented on a real-space grid with Ng grid points; each grid point is
assigned a random value ±1/

√
ΔV , where ΔV = V/Ng is the volume

element and V is the volume of the supercell. Equation (4) can be
rewritten in a compact form as

ρ(r) = 2⟨∣ξ(r)∣2⟩χ , (5)

where ∣ξ⟩ is a projected stochastic orbital, which is given as

∣ξ⟩ =
√

ρ̂∣χ⟩ =
√

θβ(ĥKS, μ)∣χ⟩. (6)

The projection of the stochastic orbitals onto the occupied space is

obtained by expanding
√

θβ(ĥKS, μ) in Chebyshev polynomials,34,35

√

θβ(ĥKS, μ) =
Nc

∑
n=0

an(μ, β)Tn(ĥKS), (7)

where Nc is the length of the Chebyshev polynomial expansion,
an(μ, β) are the expansion coefficients, and Tn are the Chebyshev
polynomials of order n.

Ground-state observables corresponding to any one-body
operator, Ô, can be evaluated using a similar stochastic trace for-
mula,

O = 2Tr(ρ̂Ô) = 2⟨⟨ξ∣Ô∣ξ⟩⟩χ . (8)

Since the exact electron density can only be recovered by aver-
aging infinitely many stochastic orbitals, estimates for O result in
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statistical errors that decrease as N−1/2
χ according to the central limit

theorem, where, as before, Nχ is the number of stochastic orbitals. To
achieve chemical accuracy for the electron density and the forces on
the nuclei, Nχ may need to exceed 103 orbitals, limiting the efficiency
of sDFT. The need to develop noise reduction schemes is clear and
would extend the range of system sizes that can be studied routinely
using sDFT.

III. NOISE REDUCTION SCHEMES IN STOCHASTIC DFT
A. Overlapped embedded-fragmented stochastic DFT

Significant reduction in the statistical error can be achieved by
introducing a reference system that provides a reasonable approxi-
mation to the electron density and can be calculated within KS-DFT.
The total electron density is then given as a sum of the reference sys-
tem electron density and a small correction term obtained stochasti-
cally.27–30 In this section, we will briefly review the most recent devel-
opments based on an overlapped embedded-fragmented stochastic
DFT (o-efsDFT), which is central to the proposed ew-efsDFT. Full
details of the approach can be found elsewhere.27

In o-efsDFT, the supercell is divided into fragments referred
to as “core regions” (see Fig. 1 for an illustration) C f wrapped by
“buffer regions” (B f ) to form dressed fragments (D f = C f ∪ B f ),
where f is the fragment index. The fragment density matrix, ρ̂ f , is
given by

⟨r∣ρ̂ f ∣r
′
⟩ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∑
N f

occ
i=1 ⟨r∣φ

f
i ⟩⟨φ

f
i ∣r
′
⟩, r′ ∈ D f

0, r′ ∉ D f

(9)

for r ∈ C f . In the above equation, φ f
(r) are the KS orbitals for frag-

ment f obtained from a deterministic KS-DFT approach and N f
occ is

the total number of occupied orbitals for the f th dressed fragment.
Using the above equation, the total electron density can be evaluated
as follows:

FIG. 1. An illustration of the overlapped fragmented scheme. Each small solid
blue/red square represents a core region C f . Focusing on the solid red square
core region of a fragment, the region within the dashed red square corresponds to
the dressed fragment, D f . The region between the solid red square and dashed
red square is the buffer region.

ρ(r) = 2∑
f
⟨r∣ρ̂ f ρ̂⊺f ∣r⟩ + 2⟨∣ξ(r)∣2⟩χ − 2∑

f
⟨⟨r∣ρ̂ f ∣χ⟩⟨χ∣ρ̂

⊺
f ∣r⟩⟩χ

= 2∑
f

ρ f (r) + 2⟨∣ξ(r)∣2⟩χ − 2∑
f
⟨∣ξ f (r)∣

2
⟩χ , (10)

where the fragment electron density is ρ f (r) = ∑
N f

occ
i=1 ∣φ

f
i (r)∣

2,

ξ f (r) = ∑
N f

occ
i=1 φ f

i (r)⟨φ
f
i ∣χ⟩D f , and ⟨φ f

i ∣χ⟩D f = ∫D f
drφ f

i (r)
∗χ(r). We

use the relationship ρ f (r) = ⟨r∣ρ̂ f ρ̂⊺f ∣r⟩ in Eq. (10) since KS-DFT
methods in the 0 K limit are adopted to calculate fragment KS
orbitals.

In the limit Nχ →∞, the first and last terms on the right hand
side of Eq. (10) cancel, while the remaining term converges to the
deterministic electron density. For a finite set of stochastic orbitals,
the noise in the second term on the right hand side of Eq. (10)
roughly cancels that in the last term, as long as the reference sys-
tem density matrix provides a reasonable approximation to that of
the full system, thereby leading to a significant reduction in the
statistical error.27,28 Finally, we would like to note that the fragmen-
tation scheme described above is similar to another fragmentation-
based DFT approach.8,36 However, unlike divide-and-conquer based
methods, the stochastic approach does not introduce systematic
errors resulting from the fragmentation in the limit Nχ →∞.

B. Energy window stochastic DFT
A reduction in the statistical fluctuations can also be achieved

using another scheme, based on partitioning the occupied space into
“energy windows.”32 In this approach, rather than projecting ∣χ⟩
onto the occupied space using Eq. (6), we divide the occupied space
into energy windows, and ∣χ⟩ is projected onto each window using a
set of projectors, P̂1, . . . , P̂Nw . Here, the projector P̂w is defined as

P̂w = θβ(ĥKS, εw) − θβ(ĥKS, εw−1) (11)

for 1 ≤ w ≤ Nw, where −∞ = ε0 < ε1 < ⋅ ⋅ ⋅ < εNw = μ. In ew-sDFT,
the electron density is given by the sum of all projected densities,

ρ(r) = 2
Nw

∑
w=1
⟨∣ξ(w)(r)∣

2
⟩

χ
≡ 2

Nw

∑
w=1

ρ(w)(r), (12)

where ∣ξ(w)⟩ =
√

P̂w ∣χ⟩ is a projected stochastic orbital for win-
dow w. ∣ξ(w)

⟩ are calculated simultaneously with a single Chebyshev
expansion, i.e.,

∣ξ(w)⟩ =
√

P̂w ∣χ⟩ =
Nc

∑
n=0

b(w)n (εw , εw−1)Tn(ĥKS)∣χ⟩, (13)

where Nc is the length of the Chebyshev polynomial (chosen suf-
ficiently large to converge the expansion), b(w)n (εw , εw−1) is the
expansion coefficient (depends on the window), and Tn(x) is the
Chebyshev polynomial of order n. The variance of the electron den-

sity in this scheme is 8∑Nw
w=1[ρ

(w)
(r)]

2
, which is smaller than the

variance in sDFT given by 8(∑Nw
w=1ρ(w)(r))

2
.32
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IV. ENERGY WINDOW EMBEDDED-FRAGMENTED
STOCHASTIC DFT

Combining the energy window approach with the fragmenta-
tion approach results in the following expression for the electron
density at a grid point r:

ρ(r) = 2∑
f

ρ f (r) +
Nw

∑
w=1
(2⟨⟨r∣

√

ρ̂P̂w ∣χ⟩⟨χ∣
√

P̂w ρ̂∣r⟩⟩
χ

− 2∑
f
⟨⟨r∣ρ̂ f

√
P̂w ∣χ⟩⟨χ∣

√
P̂w ρ̂⊺f ∣r⟩⟩χ

⎞

⎠

= 2∑
f

ρ f (r) + 2
Nw

∑
w=1
⟨∣ζ(w)(r)∣2⟩

χ
− 2∑

f

Nw

∑
w=1
⟨∣ξ(w)f (r)∣2⟩

χ
.

(14)

In the above equation, the projection operators on the energy
windows are defined as

P̂w = θβ(ĥKS, εw) − θβ(ĥKS, εw−1) 1 ≤ w < Nw

P̂Nw = Î −
Nw−1

∑
w=1

P̂w ,
(15)

where {ε} ≡ ε0 . . . εNw−1 (ε0 = −∞) define the boundaries of the
energy windows. We would like to signify the differences between
the projection operators used for ew-sDFT [cf. Eq. (11)] and those
used in the current ew-efsDFT approach [cf. Eq. (15)]. In ew-sDFT,
∑

Nw
w=1P̂w equals the density matrix ρ̂, while in ew-efsDFT, it equals

the unit operator, Î. Furthermore, in ew-sDFT, the highest energy
window is set to εNw = μ, while in ew-efsDFT, the energy windows
are held fixed (but not necessarily equally spaced) for the entire
self-consistent procedure and are chosen to be independent of the
chemical potential, μ. The use of a fixed set of energy windows sim-
plifies the on-the-fly calculations of chemical potential [see Eq. (18)].

In Eq. (14), the action of
√

ρ̂P̂w and
√

P̂w on ∣χ⟩ is obtained
using a proper Chebyshev series,

∣ζ(w)⟩ =
√

ρ̂P̂w ∣χ⟩ =
Nc

∑
n=0

a(w)n (μ, εw , εw−1)Tn(ĥKS)∣χ⟩,

∣ξ(w)⟩ =
√

P̂w ∣χ⟩ =
Nc

∑
n=0

b(w)n (εw , εw−1)Tn(ĥKS)∣χ⟩.
(16)

Finally, as before, the density of each fragment is given by

ρ f (r) = ∑
N f

occ
i=1 ∣φ

f
i (r)∣

2 and the stochastic projected orbitals for each
fragment are given by

ξ(w)f (r) =
N f

occ

∑
i=1

φ f
i (r)⟨φ

f
i ∣ξ
(w)
⟩D f . (17)

For a fixed set of energy windows, εw , the chemical potential (μ) can
be obtained by solving

N(μ) = 2∑
f
∫

C f

drρ f (r) + 2⟨⟨χ∣ρ̂(μ)∣χ⟩⟩χ

− 2∑
f

Nw

∑
w=1
⟨∫

C f

dr∣ξ(w)f (r)∣2⟩
χ
, (18)

where ∫C f
dr imply that the integrals are performed in real

space in region r ∈ C f . In the above equation, ⟨χ∣ρ̂(μ)∣χ⟩ is
evaluated by expanding ρ̂ in a Chebyshev series ⟨χ∣ρ̂(μ)∣χ⟩
= ∑

Nc
n=0cn(μ)⟨χ∣Tn(ĥKS)∣χ⟩ and the chemical potential is determined

by solving for N(μ∗) = Ne, where Ne is the total number of electrons
in the system.

Similar to the electron density, other ground-state observables
such as the kinetic energy,

Ek = 2∑
f

N f
occ

∑
i=1
⟨φ f

i ∣t̂∣φ
f
i ⟩C f + 2

Nw

∑
w=1
⟨⟨ζ(w)∣t̂∣ζ(w)⟩⟩

χ

− 2
Nw

∑
i=1
∑

f
⟨⟨ξ(w)f ∣t̂∣ξ(w)f ⟩C f ⟩χ

, (19)

or the non-local pseudopotential energy,

Enl = 2∑
f
∑

I,RI∈C f

N f
occ

∑
i=1
⟨φ f

i ∣v̂
I
nl∣φ

f
i ⟩D f + 2

Nw

∑
w=1
∑

I
⟨⟨ζ(w)∣v̂I

nl∣ζ
(w)
⟩⟩

χ

− 2
Nw

∑
w=1
∑

f
∑

I,RI∈C f

⟨⟨ξ(w)f ∣v̂I
nl∣ξ
(w)
f ⟩C f ⟩χ

, (20)

or the non-local pseudopotential contribution to the forces on the
nuclei,

FI
nl = 2

N f
occ

∑
i=1
⟨φ f

i ∣
∂v̂I

nl

∂RI
∣φ f

i ⟩
D f

+ 2
Nw

∑
w=1
⟨⟨ζ(w)∣

∂v̂I
nl

∂RI
∣ ζ(w)⟩⟩

χ

− 2
Nw

∑
w=1
⟨⟨ξ(w)f ∣

∂v̂I
nl

∂RI
∣ ξ(w)f ⟩

D f

⟩

χ

, (21)

is expressed in ew-ofsDFT as a sum of three terms, where the first
term and the last term cancel each other in the limit Nχ →∞ (see
the supplementary material).

The proposed ew-efsDFT method to reduce the noise in the
density, energy, and forces on the nuclei can be summarized as
follows:

1. Generate the KS orbitals {φ f
i (r)} for each dressed frag-

ment and ρ f (r) = ∑
N f

occ
i=1 ∣φ

f
i (r)∣

2 using a deterministic DFT.
ρ(r) = 2∑ f ρ f (r) is used as the initial electron density guess.

2. For each stochastic orbital χ(r) (defined above), calcu-
late and store on the grid the projected stochastic orbital
ζ(w)(r) = ⟨r∣

√
P̂w ∣χ⟩ and also store the Chebyshev moments,

⟨χ∣Tn(ĥKS)∣χ⟩.
3. For each window and for each stochastic orbital, generate and

store on the grid ξ(w)f (r) = ∑
N f

occ
i=1 φ f

i (r)⟨φ
f
i ∣ξ
(w)
⟩D f .

4. Solve for μ∗ (N(μ∗) = Ne) with the regula falsi method
using the Chebyshev moments (⟨χ∣Tn(ĥKS)∣χ⟩), ξ(w)f (r), and
ρ f (r).30

5. For each window and for each stochastic orbital, generate
and store on the grid the stochastic projected orbitals ζ(w)(r)
= ⟨r∣
√

ρ̂(μ∗)P̂w ∣χ⟩ using the chemical potential determined in
the previous step.
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6. Generate and store the electron density ρ(r) using Eq. (14)
with all stochastic orbitals.

7. Update the density and the KS Hamiltonian using the itera-
tive subspace (DIIS) method37 and repeat the above steps until
self-consistency is achieved, using the same random number
seed.

V. APPLICATION TO G-CENTER IN BULK SILICON
We demonstrate the ew-efsDFT for a low G-center defect

concentration in bulk silicon.38,39 We focus on the A-type38

G-center impurity embedded within a Si512 supercell (see the
structure in Fig. 2). We performed Γ point DFT calcula-
tions using the Perdew–Burke–Ernzerhof (PBE)40 functional
with Troullier–Martins norm-conserving pseudopotentials41 in the
Kleinman–Bylander form.42 As a result of localized orbitals around
the carbon atoms, a 40 Ry wave function cutoff (80 Ry for the den-
sity cutoff) was used, corresponding to the real-space grid spacing
of 0.18 Å. In-gap states require a large β ≈ 900 in inverse Hartree
to sufficiently converge the ground-state properties with respect to
the electron temperature. 80 stochastic orbitals were used in both
ew-efsDFT and o-efsDFT. The dressed fragments were Si64 with
periodic boundary conditions, while the size of each core region
was Si8. We used 41 energy windows in ew-efsDFT with fixed win-
dow boundaries chosen such that each window has roughly the
same number of KS orbitals, thereby lowering the statistical noise.
This requires an estimate of the density of states, which can be
obtained directly from the projection of the stochastic orbitals26

or approximated from the density of states of the fragments or
the pristine structure. For each single point calculation, SCF con-
vergence was achieved when the difference of energy per electron
between two consecutive iterations is below 10−8 Hartree (see Fig. 3).
The fragment density was used as an initial guess for the SCF
calculations.

FIG. 2. An A-type G-center (two carbon atoms shown in blue) embedded in a Si512
supercell (Si–Si bonds shown in yellow). The A-type G-center is constituted by a
substitutional carbon atom, an interstitial carbon atom, and an interstitial silicon
atom, which are highlighted as spheres.

FIG. 3. SCF convergences from three single point calculations with different ran-
dom number seeds are shown. In each single point calculation, the convergence
is measured as the absolute difference between the energy per electron in the ith
step (E) and the converged energy per electron (Ec). Units of energies are Hartree.

A. Results
In Fig. 4, we assess the accuracy of ew-efsDFT for the elec-

tron density (upper panel) and the standard deviation in the elec-
tron density (lower panel) for selected positions in the vicinity of
the G-center. The density and standard deviation were calculated
from 5 independent ew-efsDFT or o-efsDFT runs, with 80 stochas-
tic orbitals for each run. For clarity, we plot the absolute value of the
electron density difference between the stochastic and the determin-
istic calculations. Both the deviations from the deterministic elec-
tron density and the standard deviation obtained by the ew-efsDFT
(shown in red) are significantly smaller than the corresponding o-
efsDFT results (shown in blue). The noise of the electron density is
significantly smaller, by approximately, a factor of 5 when compared
to o-efsDFT.

FIG. 4. Upper panel: the absolute value of the electron density difference (∣Δρ∣)
between the stochastic (ew-efsDFT in red, o-efsDFT in blue) and a deterministic
calculation. Lower panel: the standard deviation of electron density (ρSTD) evalu-
ated with ew-efsDFT (red line) and o-efsDFT (blue line). ∣Δρ∣ and ρSTD are shown
along the x axis with y = 5.3 Å and z = 5.0 Å. The peak marked by “Carbon”
corresponds to a region closed to a carbon atom.
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TABLE I. The kinetic energy (Ek), the nonlocal pseudopotential energy (Enl), the Hartree energy (EH), the local pseudopotential energy (Eloc), the exchange–correlation energy
(Exc), and the total energy (Etot), all per electron in eV obtained by deterministic DFT (dDFT), o-efsDFT, and ew-efsDFT. The standard deviation in the last digits of the energy is
presented in parentheses.

Method Ek/Ne Enl/Ne EH/Ne Eloc Exc Etot/Ne

dDFT 10.1767 5.7871 2.0194 −8.7085 −8.1027 −26.8197
o-efsDFT 10.1735(35) 5.7882(36) 2.0222(19) −8.7074(40) −8.1052(8) −26.8205(11)
ew-efsDFT 10.1778(11) 5.7874(4) 2.0193(6) −8.7086(11) −8.1028(3) −26.8186(4)

In Table I, we list the kinetic energy (Ek), the nonlocal pseu-
dopotential energy (Enl), the Hartree energy (EH), the local pseu-
dopotential energy (Eloc), the exchange–correlation energy (Exc),
and the total energy (Etot), all per electron. The reference determinis-
tic calculation converges (on the grid) to all significant digits shown.
In parentheses, we provide the standard error, which is significantly
smaller in ew-efsDFT compared to o-efsDFT for all quantities. We
find that the standard error in the total energy per electron decreased
by a factor of ≈ 3 when 41 windows were used. The total energy per
electron in both ew-efsDFT and o-efsDFT are slightly outside one
standard deviation from the deterministic DFT result.30,31 We note
in passing that the ew-sDFT approach (without fragmentation) does
not reduce the noise in the total energy per electron, as discussed
previously.32

In Fig. 5, we plot the force on the nuclei along the x-direction
for selected atoms obtained by the ew-efsDFT (upper panel) and
the o-efsDFT (lower panel). Error bars indicate the standard devi-
ation for each force. Clearly, the statistical fluctuations are sig-
nificantly smaller for ew-efsDFT compared to o-efsDFT. In order
to estimate the overall noise reduction efficiency, we averaged the

FIG. 5. Forces on the nuclei along the x-direction (Fx ) for selected atoms calcu-
lated from ew-efsDFT (upper panel) and o-efsDFT (lower panel). Error bars in the
forces on the nuclei were obtained from five runs. Blue symbols are Fx calculated
from a deterministic DFT. The dashed line signifies the boundary between carbon
and silicon atoms.

standard deviations of Fx (nuclei force along the x axis) over all
atoms. The averaged standard deviation of Fx is ≈0.53 eV/Å for
o-efsDFT and ≈ 0.09 eV/Å for ew-efsDFT. Similar results were also
obtained for other force components Fy and Fz , which implies that
ew-efsDFT standard deviations of nuclei forces are about a factor
of 6 smaller than those in o-efsDFT. In other words, to achieve
a similar noise level in o-efsDFT would require ≈30 times more
stochastic orbitals. No bias was observed for forces on the nuclei in
ew-efsDFT.

B. Computational cost
In Table II, we summarize the total wall time and the contri-

bution from the Chebyshev moments, ⟨χ∣Tn(ĥKS)∣χ⟩, and from the
projections of ∣χ⟩ onto the occupied space and the energy windows.
The number of stochastic orbitals, the size of the core and dressed
fragments, the grid size, and all other parameters were the same for
both approaches. The overall wall time seems to be very similar,
comparing ew-efsDFT and o-efsDFT methods. Each SCF iteration
is ≈ 50% longer in ew-efsDFT, but the number of SCF iterations
required to achieve a similar convergence is smaller in ew-efsDFT,
resulting in similar wall times. Note that the statistical error in
ew-efsDFT is much smaller than o-efsDFT. To achieve similar statis-
tical errors in o-efsDFT, it would result in wall times that are roughly
30 times longer than ew-efsDFT.

The main difference between the two methods is the computa-
tional time for generating the Chebyshev moments, ⟨χ∣Tn(ĥKS)∣χ⟩.
In o-efsDFT, we used the relation T2n = 2T2

n − 1 to evaluate
Tn(ĥKS)∣χ⟩ for n > Nc/2, thereby computing only 1/2 the number
of moments. This relation cannot be used in ew-efsDFT since each

TABLE II. Averaged computational time (in hours) for o-efsDFT and ew-efsDFT. The
wall time and number of SCF iterations are averaged over five independent runs. The
time of calculating ∣ξ(w)

⟩, ∣ζ (w)
⟩, and ∣ξ⟩ and the time of projecting ∣ξ(w)

⟩ with ρ̂frag
are averaged over all SCF iterations and all five runs. All calculations were performed
on a 40 node cluster computer, where each node contains two 16-core Intel Xeon
Processors E5-2698 v3 at 2.3 GHz.

o-efsDFT ew-efsDFT

Wall time (h) 25.11 25.22
Number of SCF iterations 25.6 16.4
Time for one SCF iteration (h) 0.98 1.54
Time for calculating ⟨χ∣Tn(ĥKS)∣χ⟩ (h) 0.32 0.73
Time for generating ∣ξ⟩ or ∣ξ(w)

⟩ (h) 0.64 0.72
Time for projecting ∣ζ(w)

⟩ with ρ̂frag (h) N/A 0.04
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stochastic orbital is projected onto all energy windows to gener-
ate ∣ξ(w)

⟩ and ∣ζ(w)
⟩. Other smaller contributions to the computa-

tional time difference between the two methods can be traced to
the need to generate Nw projected stochastic orbitals in ew-efsDFT
compared to only one projected orbital in o-efsDFT, resulting in
≈ 20% increase in generating ∣ξ⟩ vs ∣ξ(w)

⟩. In addition, in ew-efsDFT,
one has to compute ∣ξ(w)f ⟩ with the fragment density matrix, i.e.,

∑
N f

occ
i=1 φ f

i (r)⟨φ
f
i ∣ξ
(w)
⟩D f , in each SCF iteration, while in o-efsDFT,

the projection of ∣χ⟩ is performed only once at the beginning of the
calculation.

VI. SUMMARY
In this work, we have developed an approach to reduce the

statistical fluctuations in the electron density, total energy, and
forces on the nuclei within the stochastic DFT framework without
increasing the number of stochastic orbitals. This achievement was
made possible by combining the overlapped embedded-fragmented
stochastic DFT27 with the energy window stochastic DFT.32 The
new approach builds on both real-space and energy-space fragmen-
tation, resulting in a significant reduction in the noise in single-
particle observables without affecting the computational time. The
performance of the ew-efsDFT was tested for a G-center embedded
in bulk silicon with a small fundamental gap and in-gap impurity
states, making this a rather challenging system for DFT. Compared
to o-efsDFT and ew-DFT (not shown explicitly here), the statis-
tical error in the forces is ∼6 times smaller in ew-efsDFT, result-
ing in a reduction of ≈ 30 in the computational wall time. This
reduction in noise/computational time is important to accurately
describe the structural properties of extended systems without the
need to increase the number of stochastic orbitals. Application of
the ew-efsDFT method to structural minimization is currently under
way.33

SUPPLEMENTARY MATERIAL

The asymptotic behavior of single-particle observables and
analysis of the variance of the electron density for ew-efsDFT are
provided in the supplementary material.
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