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ABSTRACT: We examine the possibility of using a Metropolis algorithm for computing the
exchange energy in a large molecular system. Following ideas set forth in a recent publication
(Baer, Neuhauser, and Rabani, Phys. Rev. Lett. 111, 106402 (2013)) we focus on obtaining the
exchange energy per particle (ExPE, as opposed to the total exchange energy) to a predefined
statistical error and on determining the numerical scaling of the calculation achieving this. For
this we assume that the occupied molecular orbitals (MOs) are known and given in terms of a
standard Gaussian atomic basis set. The Metropolis random walk produces a sequence of pairs
of three-dimensional points (x,x′), which are distributed in proportion to ρ(x,x′)2, where
ρ(x,x′) is the density matrix. The exchange energy per particle is then simply the average of
the Coulomb repulsion energy υC(|x−x′|) over these pairs. To reduce the statistical error we
separate the exchange energy into a short-range term that can be calculated deterministically
in a linear scaling fashion and a long-range term that is treated by the Metropolis method. We
demonstrate the method on water clusters and silicon nanocrystals showing the magnitude of
the ExPE standard deviation is independent of system size. In the water clusters a longer random walk was necessary to obtain
full ergodicity as Metropolis walkers tended to get stuck for a while in localized regions. We developed a diagnostic tool that can
alert a user when such a situation occurs. The calculation effort scales linearly with system size if one uses an atom screening
procedure that can be made numerically exact. In systems where the MOs can be localized efficiently the ExPE can even be
computed with “sublinear scaling” as the MOs themselves can be screened.

■ INTRODUCTION

The electronic exchange energy is a basic term in density
functional and Hartree−Fock theories (DFT and HFT,
respectively), the first quantum correction to the classical
density-based electrostatic (Hartree) energy.1−6 In the local
and semilocal approximations for DFT the exchange energy
functional is a spatial integral over a function of the electronic
density and its derivatives, which can be evaluated efficiently.
Such a local/semilocal approach to DFT is useful for some
applications, but extensive assessments have shown that the
more elaborate nonlocal exchange is essential for quantitative
description of many molecular properties, including atom-
ization energies, bond lengths, vibrational frequencies, reaction
barriers, quasiparticle energies and gaps, polarizabilities,
etc.3,5,7−16 Thus, it has become standard practice to incorporate
nonlocal exchange into DFT calculations, mainly as a part of
hybrid3 or range-separated hybrid functionals.5,17−19 The
nonlocal exchange involves calculating a nonlocal six-dimen-
sional (6D) integral:
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where υC(r) = e2/4πε0r is the electron−electron Coulomb
repulsion potential energy and where the density matrix (DM)
is a sum over occupied Kohn−Sham (KS) eigenstates:
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Estimation of nonlocal exchange is pricy and forms the rate-
determining step in many types of DFT calculations for large
systems (many electrons) and large basis sets. In plane waves or
grid calculations the cost of exchange energy calculation is
O(N2M log M), where N is the number of electrons and M is
the number of grid points, that is, near-cubic scaling. In
Gaussian-type orbital basis-set calculations exchange evaluation
formally has quartic O(M4) scaling, where M is the basis set
size. This, however, can be easily reduced to quadratic scaling
for large systems due to the locality of the basis set functions.
Further reduction to linear scaling can be achieved once Dsys >
Lρ, where Lρ is the DM range, that is, the distance |x − x′| for
which ρ(x,x′) has decayed to negligible values, and Dsys is the
diameter of the molecular system.20,21 In most bulky systems,
especially semiconductors, Lρ is large,27 and linear scaling
exchange energy calculations cannot be achieved on present
day computers, limiting the usefulness of linear scaling
exchange calculations to low-dimensional systems.24 Achieving
lower scaling exchange calculation must involve new ideas that
go beyond exploitation of the elusive DM sparsity.26

One such direction is to decompose the exchange integral
into a sum of long (L) and short (S) range exchange terms:

= +E E EX X
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where
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The short-range interaction υS(r) = erfc (γr)υC(r) ensures
that only short distances |x − x′| < nγ−1, where γ−1 is the range
parameter and n is a small integer, contribute to the EX

S integral.
Thus, it can be evaluated in linear scaling complexity once Dsys
exceeds γ−1, which can be chosen to be on the order of a few
Bohrs.22 By this procedure the high computational complexity
of the exchange energy evaluation is deferred to the EX

L integral
over υL(r) = erf (γr)υC(r) and as before, linear scaling “kicks in”
only when Dsys > Lρ, which is prohibitive.
To overcome the high complexity for evaluating EX

L, we
resort to stochastic methods. These have recently been used to
lower computational complexity in various types of electronic
structure calculations.23,31 In particular, a stochastic density
functional theory (sDFT) was developed and shown capable of
achieving linear scaling KS-DFT calculations.31,32 In these
works, a successful basic concept was developed and shown
essential, namely, that the standard deviation in the energy per
particle should be controlled instead of the total energy. It was
shown that using such an approach in sDFT, which includes a
converged self-consistent-field (SCF) cycle, allows calculation,
to useful accuracy, of Kohn−Sham band gaps and density of
states even when large energy fluctuations are present in the
total energy.31 Furthermore, the SCF sDFT Hamiltonian was
used successfully as a basis for a stochastic approach to linear
scaling GW approximations for the Dyson equation33 enabling
estimation of accurate quasiparticle energies. Other develop-
ments along these lines include low scaling estimation of the
random phase34 approximation to the correlation energy and
stochastic approaches to the calculation of multiexciton
generation rates in quantum dots.29,30

The achievements of sDFT are currently limited to local/
semilocal Kohn−Sham functionals, and functionals that contain
exact exchange make the calculation considerably more
expensive. This is the main incentive for the present work (as
well as an earlier attempt using a different approach28)
developed in this paper where we examine a Metropolis
stochastic method to calculate the exchange energy. We focus
on applicability to large systems and determine the scaling of
the numerical effort with system size, issues of ergodicity, and
ways to accelerate the calculation.

■ METHODS
As explained in the introduction, our basic premise is that in
our approaches it is usefully sufficient to control the error in the
exchange energy per electron (ExPE) eX = (EX)/(Ne), where EX
is given in eq 1. For this, we expressed the ExPE as a sum of
long and short-range terms:

= +e e eX X
S

X
L

(5)

where eX
S = EX

S/Ne can be evaluated using a deterministic linear
scaling approach and eX

L = EX
L/Ne is evaluated as the expectation

value of the following random υariable:

∑ υ= | − ′ |
=

e
I

x x
1

( )X
L

m

I
L

m m
1 (6)

where each of the I pairs of three-dimensional (3D) points
(xm,x′m) is a 6D random variable distributed according to the
normalized weight w(x,x′) = (1/Ne)|ρ(xm,x′m)|2. (The sampling

by the Metropolis method delivers directly the integral ratio
(∫ ρ(x,x′)2υL(x,x′)dxdx′)/(∫ ρ(x,x′)2dxdx′) and not the inte-
gral ∫ ρ(x,x′)2υL(x,x′)dxdx′ itself. Since by definition
∫ ρ(x,x′)2dxdx′ = Ne, only the exchange energy per particle is
accessible by the method.) Repeated sampling of the random
variable in eq 6 and averaging produces an estimate for the
ExPE with standard deviation given by σ, which can be
determined by repeating the calculation several times (see
section below). A useful quantity can then be defined, which we
call σ0, the core standard deviation:

σ σ≡ I0 (7)

which, because of the central limit theorem, is independent of
the number of random samplings I and thus characteristic only
of the electronic structure of the studied system.
An alternative approach to eq 6 would be to make a walk

according to the weight w(x,x′) = erf (γ|xm − xm′|)ρ(xm,xm′)2
and compute the ratio of the two averages:
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In both eq 6 and eq 8 we obtained very similar results of
average and the standard deviation. Thus, we report henceforth
only the method and results based on eq 6.
We use the Metropolis algorithm35 to sample these pairs

(x,x′) from a random walk performed by a random walker in 6D
space. In each step the walker attempts to assume a new
position (x,x′)new, sampled uniformly from a 6D sphere of
radius Δq centered on the current position (x,x′)curr. The new
position is accepted with probability:
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If the new position is rejected the walker stays in its current
position. The step-size parameter Δq is determined by ensuring
that the rate of acceptance of new positions is ∼0.4. The tuning
of Δq is done during a 4000 step “warm-up stage,” which also
determines the initial position of the walker.
The evaluation of ρ(x,x′) in eq 2 is based on the availability

of the molecular orbitals (MOs) from the HF or DFT
calculation:

∑ψ ϕ=
μ

μ μ
=

Cx x( ) ( )n

M

n
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where Cμn are the MO coefficients and ϕμ(x), μ = 1, ..., M are
the contracted Gaussian basis functions (CGFs) centered and
localized around atom Aμ. To expedite the calculation of ψn(x),
one sums only the indices μ that refer to basis functions
localized on atoms close to the point x. The implications of this
procedure will be studied in the next section.
For the purpose of this study, we take the MO coefficients

Cμn from a conventional converged self-consistent field (SCF)
Hartree−Fock calculation, performed with the Q-CHEM
electronic structure package.36 We chose the SBKJC
pseudopotential basis set37 because it enables us to avoid
explicit treatment of the core electrons, considerably reducing
the statistical errors. The statistical estimates are compared to
the deterministic value of the exchange energy results reported
in the SCF run.
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The statistical estimate of the exchange energy per particle
exhibits fluctuations that give rise to a standard deviation
depending on the number of steps I as in eq 7 shown in Figure
1 for a silicon nanocrystal. We see that the Gaussian behavior

sets in only when I > I0, where I0 is large if the distribution of
single Metropolis steps is far from Gaussian as may happen
when walkers fail to sample the entire space due to poor
connectivity (ergodicity). One way to mitigate the effect of the
initial position of the walker is to start the averaging of eX only
after a “thermalization” phase of length I0. In the calculations
below we chose I0 = 4000.

■ RESULTS
The stochastic method is demonstrated on water clusters and
on hydrogen-terminated silicon nanocrystals. Two of the
clusters, namely, (H2O)31 and (H2O)57, were taken from the
Supporting Information of ref 38. The other clusters were
prepared using molecular dynamics (MD) in the following way:
The water−water force field was the flexible-SPC force field
with a smooth cutoff that reproduced bulk properties of
water.39 The MD propagation proceeded using a fourth-order

symplectic integrator with a time step of 1 fs. During the first
100 ps, frequent velocity rescaling was used to drive the system
to equilibrium at the temperature of 300 K. Subsequently, a
microcanonical MD trajectory was run for 200 ps, and the last
time step configuration was taken as the cluster geometry we
actually used.) In Table 1 we give various parameters
concerning these clusters, in particular the value of the long-
range ExPE as a function of the range parameter γ−1 (γ−1 = 0
corresponds to the case where none of the exchange energy is
short-range so all of it is long-range). The two classes of
systems have very different electronic properties related to the
range of quantum mechanical coherence as determined by the
DM ρ(x,x′). One can get a glimpse of this range by recording
the distance distribution between x and x′ recorded during the
metropolis walk as shown in Figure 2 for the largest silicon and

water systems studied. The range of the DM for the water
cluster is rather easy to characterize as ∼5a0 because of the fast
decay, but for silicon the DM tail decays slowly; significant
revivals are seen even at 15a0. Another way to see that the DM
for water decays fast relative to that for silicon is to observe that
in Table 1 the long-range ExPE decays with γ−1 much faster for
water than for silicon. As shown below the locality of the DM
has important consequences on the statistical fluctuations in the
exchange energy estimates.

Figure 1. Deviance of the statistical estimate of the ExPE ⟨eX
L⟩I (for γ

−1

= 0) from the exact deterministic value in Si353H196 as a function of the
number of metropolis steps I. Each line represents an independent
Metropolis process, and the red straight line represents eq 7, where σ0
= 1.25Eh is a guiding line showing the theoretical form of the statistical
convergence.

Table 1. Data for the (H2O)N Water Clusters and the Hydrogen-Capped Silicon NCs Used in the Calculations

Water clusters

eX
L [Eh]

a

NH2O Ne
b Mc γ−1 = 10a0 3.3a0 2.0a0 0.0a0

10 80 120 −0.0559 −0.1564 −0.2351 −0.491
20 160 240 −0.0558 −0.1563 −0.2350 −0.491
31 248 372 −0.0558 −0.1561 −0.2354 −0.488
41 328 492 −0.0558 −0.1561 −0.2353 −0.487
57 456 684 −0.0558 −0.1564 −0.2353 −0.492
101 808 1212 −0.0558 −0.1560 −0.2352 −0.487
191 1528 2292 −0.0558 −0.1561 −0.2353 −0.487

Hydrogen-capped silicon NCs

eX
L [Eh]

a

NSi NH Ne
b Mc γ−1 = 10a0 3.3a0 2.0a0 0.0a0

16 16 80 160 −0.0547 −0.1392 −0.1899 −0.271
35 36 176 272 −0.0547 −0.1398 −0.1913 −0.275
87 76 424 848 −0.0547 −0.1395 −0.1908 −0.274
353 196 1608 3216 −0.0546 −0.1388 −0.1896 −0.271

aeX
L is the deterministic value of the ExPE, given for four values of the range parameter γ−1. bNe is the number of electrons in the system. cM is the

number of atomic orbitals in the basis.

Figure 2. Histograms of walker distance |x1 − x2| for the (H2O)57
water cluster (left) and the Si353H196 silicon NC. Both systems have a
diameter of approximately 1.5 nm.
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Sources of Error in the Metropolis Estimate of the
ExPE. There are two main sources of error in a practical
Metropolis evaluation of the ExPE, namely, bias and
fluctuation. Bias is a systematic error that, in the case of a
properly executed Metropolis algorithm, should be zero, unless
the walk is not long enough and therefore is not ergodic. We
will discuss such a case below. The second source of error is the
statistical fluctuations that decrease in proportion to 1/I1/2 (see
eq 7). Note that both sources of error are eliminated by
increasing the number of sampling steps.
The statistical fluctuations are estimated using the standard

deviation σ of ExPE results from 20 independent Metropolis
walks of I steps. The core standard deviation σ0 is then
calculated from σ and I using eq 7 and is shown in Figure 3 as a

function of system size for water and silicon clusters. It
stabilizes as system size grows to a value of 2.1Eh for water and
1.2Eh for silicon clusters. We note that the ExPE for water is eX
≈ − 0.49Eh and for silicon is eX ≈ − 0.27Eh so the relative
variances, namely, σ0/eX are similar for both systems.
The variance due to the Metropolis method seems to be

independent of system size for large systems (in water the
variance depends on system size for small and intermediate
sized clusters). This reflects the fact that the Metropolis
algorithm delivers directly the ExPE and does not have the self-
averaging property sometimes seen in other methods which
sample the total energy and then divide by the number of
particles to obtain the ExPE. Note however that this does not
immediately mean that the Metropolis method is inferior to
these other methods, as the CPU time is calculated in a
different manner.
Let us now examine the effect of the range parameter γ−1 in

eq 4 on the variance. Since the LR ExPE is much smaller than
the full ExPE, one expects at the very least a proportional
reduction in the statistical fluctuations. In Figure 4 we see that
the gain is in fact larger than expected: the relative core
standard deviation, that is, the ratio σ0/eX

L, decreases as a

function of γ−1. We attribute this to the smoothing of the
integrand, in particular the elimination of the Coulomb
singularity in υL(r) of eq 4. The relative core standard
deviation of the water clusters benefits considerably more than
that of silicon due to the lower range of the DM of the former,
limiting the walker distance |x1 − x2| (see Figure 2).
Our Metropolis method uses a system-dependent weight

|ρ(x,x′)|2 and a system-independent integrand υc(|x−x′|). There-
fore, the conclusion that the relative variance for the two types
of systems studied is nearly equal seems to indicate that the
Metropolis sampling in both classes of systems is of a similar
nature. Somewhat surprisingly, we find that this is far from true.
As shown in Figure 5, a walk of I = 105 steps in water gets

“stuck” and does not cover the entire cluster (top left panel): it
is sensitive to the initial position of a walker. In silicon (bottom
middle panel) this does not happen: the walker covers to a
large degree of uniformity the available space, irrespective of the
initial position. This effect is due to the rather small range of
the DM combined with the sparsely packed nature of the water
cluster system. In silicon there is no such problem as the atoms
are tightly packed and the DM has a larger range (see Figure 2).
Since for water clusters, the walk of length I = 105 is far from
being ergodic, the Metropolis walk is not expected to yield the
correct ExPE since it has not converged. We can measure the
extent of ergodicity by estimating the ellipsoid within which the

Figure 3. Irreducible root variance σ0 = σI1/2 in the ExPE (for γ−1 = 0)
as a function of the systems size in water clusters (top panel) and
silicon NCs (bottom panel). σ0 was estimated by performing NMet =
20 independent walks of I = 105 Metropolis steps. For water, we also
show results for a random walk of I = 106 steps.

Figure 4. Relative standard deviation, that is, the ratio of the core
standard deviation σ0 to the LR ExPE eX

L, as a function of the range
parameter γ−1 for a water and a silicon cluster.

Figure 5. Two-dimensional projections of the I walker positions
during different Metropolis walks, each represented by a different
color. (upper left) Three sets of I = 105 points for for (H2O)57. (upper
right) Two sets of a longer walk on the same system (I = 106). (lower
panel) Three sets of I = 105 are shown for Si87H76.
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walk takes place. The center of the ellipsoid is ⟨y⟩, where y = (x
+ x′)/2 and the ellipsoid axes and corresponding widths are,
respectively, the eigenvectors and eigenvalues of the 3 × 3
moment of inertia tensor Qij = ⟨yiyj⟩ − ⟨yi⟩⟨yj⟩, where i,j = 1, 2,
3 are two Cartesian indexes. The volume V = (4π)/(3)
(det(Q))1/2 of this ellipsoid can be compared to the converged
volume Vm (estimated as the volume of the ellipsoid for a large
number of walkers). A ratio V/Vm smaller than 1 indicates a
problem in ergodicity. In Figure 6 we plot this ratio for a water

cluster and a silicon NC. As I increases the volume ratio
approaches unity. This happens much faster in the silicon
clusters than in water. Thus, unless importance sampling is
used the water calculation requires a considerably higher value
of I.
If we increase the number of steps of the walk in the water

cluster we find that the trajectory does eventually cover the
entire space. However, this will take a considerably longer walk,
and the estimate for the ExPE by the Metropolis random walk
is not reliable unless the walk is ergodic. It is interesting to note,
however, despite that full ergodicity is not achieved at I = 105

steps, the estimate of the ExPE for the water clusters is very
close to the exact value, not showing a visible bias. The
histogram displayed in Figure 7 shows that the short metropolis

process happens to give the correct value of the integral. This
happens probably because all the disparate regions have very
similar exchange energy per electron. In a less homogeneous
system we expect a bias and larger standard deviations. The
problem of getting stuck is left as a problem for future study. A
likely solution will be based on a multiscale strategy whereby
the system is divided to many regions, in each of which a short
trajectory is used; the choice of which region to sample will be
based on the rates of going from one region to another.

Computational Cost. The CPU time T for calculating one
Metropolis iteration is determined primarily by the CPU time
needed to estimate the DM at a given pair of 3D points (x,x′)
and this in turn is determined by the CPU time to compute the
value of each of the Ne occupied MO ψn(x) at points x and x′.
Each MO is expressed as a linear combination of M atomic
orbitals (AOs) and since there are Ne such orbitals T is
proportional to MNe. This quadratic scaling is not really
essential and can be reduced by exploiting the fast Gaussian
decay of the basis-set functions: only AOs belonging to atoms
that are closer to x than a threshold distance Dth need be taken
into account. We set Dth to be the largest standard deviation of
an atom’s CGF, times a factor f determining the tolerated error.
Taking f = 5 is equivalent to a tolerated error of 10−16, which is
the double precision accuracy. In applications of this approach,
we found that the average number of atoms NA required for
each MO evaluation saturates as system size grows, where
asymptotically NA = 40 (NA = 80) for the water (silicon)
systems. With this technique we achieve asymptotic linear
scaling behavior T ∝ Ne as seen in Figure 8 for both the water

and the silicon systems. The saturation is faster for the water
clusters than for silicon, due to the larger value of Dth required
for the silicon AOs relative to the oxygen AOs. This linearity
can be compared to the time for deterministic evaluation, which
seems to scale in a Q-CHEM SCF calculation as Ne

2.5.

■ SUMMARY AND DISCUSSION

In this paper we have examined the use of a Metropolis
algorithm for computing the ExPE in a large molecular system,

Figure 6. Volume measure of ergodicity for the random walk in a Si
NC and a water cluster as a function of the length of the walk.

Figure 7. A histogram, summarizing the results of 200 Metropolis
estimates of the ExPE with γ−1 = 0 for (H2O)57. Each run includes
96,000 steps. The red line represent the exact value of the exchange
energy per electron.

Figure 8. CPU time as a function of number of electrons for water
clusters (upper) and Silicon NCs (lower). The reported time is for I =
105 Metropolis steps. Error bars indicate the uncertainty in the time
(determined by measuring the scatter in different runs). The CPU
time per SCF iteration for the deterministic Hartree−Fock calculation
is shown on the graph as well. This time is a rough estimate for the
CPU time of a deterministic exchange energy calculation.
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given the molecular orbitals expressed as linear combinations of
Gaussian-type atomic basis sets. As a first step, we divide the
exchange energy and correspondingly the Coulomb interaction
into long- and short-range parts, determined by a range
parameter γ−1. The short-range part can in principle be
computed in a linear scaling manner, and we do not discuss it
further here. The long-range ExPE is estimated using
Metropolis walk that samples the distribution ρ(x,x′)2 and
averages the long-range Coulomb repulsion energy υL(|x − x′|)
(using eq 6). The properties of the method were studied using
two systems of very different chemical and electronic structures,
namely, large water clusters and silicon clusters.
It was seen that in silicon the Metropolis walk efficiently

samples the entire available space and gives a good estimate of
the ExPE with a core standard deviation σ0 that is asymptoti-
cally independent of system size.
Similar results to those of silicon were obtained for the water

clusters; however, in these systems a problem was observed,
namely, the random walk does not easily cover the entire
cluster and instead tends to get stuck in disparate regions. For
finite walks this impairs ergodicity, which may cause a bias in
the Metropolis-based estimate of the exchange energy. To
overcome this we must make a considerably longer walk to
restore ergodicity. The reason behind this problem is the
combination of sparse packing of the water cluster and the
relatively small range of the DM. In an attempt to overcome
such a bottleneck in the metropolis walk we considered
changing the weight function to a more delocalized one. We
tried several ideas, including those developed successfully for
related problems (e.g., those of ref 25) combining the electron
density (or simple approximations to it) with the Coulomb
operator as a replacement for the Metropolis weight. We found
that, while these procedures were effective in eliminating the
ergodicity problem, they had an adverse effect on the standard
deviation, which grew considerably. Thus, it seems that one
should not completely abandon the squared-DM as a weight;
perhaps a combination of the two approaches can be beneficial
in some cases, although not in the systems we study here. We
leave this issue of overcoming the slow ergodicity to future
work.
The efficacy of the range separation was demonstrated by

showing that the ratio σ0/eX
L decreases with increasing γ−1. We

attributed this reduction to the smoothing of the eX
L integrand

and in particular the removal of the Coulomb singularity. Thus,
overall the separation of the exchange integral into long- and
short-range components is very beneficial. Beyond the mere
fact that the Metropolis is now sampling a smaller function, it is
sampling a smoother one as well; a range parameter of γ−1 =
10a0 reduces the statistical error by 2 orders of magnitude
relative to γ−1 = 0.
One conclusion of this study concerns the dependence of the

fluctuation size on system size. In the stochastic method of ref
31 one computes the total energy and then divides by the
number of electrons to obtain the energy per electron. This
procedure then makes the fluctuation size proportional to the
inverse square-root of the number of electrons: the variance in
the energy per particle decays as system grows. This in turn
allows for the “sublinear scaling” calculation of the energy per
electron. In the present method, fluctuations behave differently.
Because the Metropolis algorithm produces the energy per
electron directly (not through the total energy) the variance of
the procedure is system-size independent (as seen Figure 3).
The result is that the number of iterations required for

achieving a given fluctuation in the ExPE is independent of
system size, and this leads to the conclusion that the numerical
complexity of the Metropolis algorithm is linear scaling with
system size. Sublinear scaling could be reached if it was possible
to localize the MOs since then one could compute each value
of ρ(x,x′) in sublinear scaling effort. However, this regime will
be reached in much larger systems as DM sparsity is illusive.
The present paper studies the possibility of computing the

exchange energy, given a DM. In application to DFT these
techniques must be augmented so as to enable incorporation
into a self-consistent scheme, as has been done recently for
local exchange potentials (see ref 28). We leave this important
and difficult development for future work.
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