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II. My first density functional: 

Thomas-Fermi Theory 

A. Uniform electronic density of the large atom 

We develop here a qualitative theory for the electronic structure of the atom. 

The atom is composed of a nucleus of charge +Ze and Z electrons. We want 

the large Z limit. Let us assume the electrons are of uniform density, packed 

into the volume  . Since we have to account for Pauli’s principle, we assume 

that each electron occupies a volume in its own small sphere   so that the 

spheres are non-overlapping. Neglecting the volume between the spheres, 

and since there are   small spheres fit into the large sphere       . The 

kinetic energy of each electron is 
    

     
 and so the total kinetic energy is: 

  
    

     
  

    

     
    .  

Exercise 1: Calculate the energy of a uniform sphere of charge, having radius 

  and total charge    . 

Solution: First build a uniform density R-sphere of smeared uniform charge 

having Z electrons and then bringing the positive nucleus to the center. The 

negative charge density is   
  

    
. The energy of the uniform sphere is 

             
  

 
   

 

 

 

 
 

 

 

   

 
, where   

  

    
.  

Exercise 2: Calculate the Coulomb energy of a neutral charge distribution 

composed of a positive point charge     in the center of a sphere of radius   

containing uniform negative charge.  

Solution: We first build the electron sphere, as in the above exercise, then 

bring the positive nucleus to its center. The nucleus is brought to the center in 
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2 stages. First to the rim, this takes energy      
  

 
. Then, inside the 

negatively charge the Electric field is  
 

  
   

 
     

   

 
  so the potential is: 

   
 

 
  

   

 
   

 

 
 
  

  
  . Thus the total energy gained in bringing the 

nucleus into the center is:        
    

  
 and the total Coulomb energy is 

            
 

  

   

 
.  

The Coulomb energy is calculated classically, as shown in the above exercises 

yielding    
 

  

   

 
. From this, we subtract the self-interaction energy 

 

 

 

 
 of 

each small sphere, since there are   spheres we obtain:          
 

  

   

 
 

 

 

     

 
   In the large   limit the self-interaction energy term is negligible, since 

it is this limit we want, we neglect it henceforth. The energy of the atom is 

then: 

  
 

  
 
 

 
 (2.1.1) 

With  

  
    

   
                  

    

  
 (2.1.2) 

The minimum is obtained by         : 

  
 

   
 
 

   
               

  

 
          

  

  
 (2.1.3) 

Substituting everything we have: 

   
      
 

                       
    
     

     (2.1.4) 
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It is interesting that in this model, as   grows, the radius of the atom     

shrinks as      , so the density grows as   , while the energy of the atom 

drops in proportion to     .  

Our model is exceedingly simplistic, assuming a constant density, neglecting 

correlation, taking a very crude approach for the kinetic energy – these are 

indeed great “sins”. For the hydrogen atom it give the much too high and 

very large radius: 

Note for “hydrogen atom” in our treatment yields a much too large sphere is 

obtained and the energy much too high: 

                                     

Part of the reason for the high energy is the self-interaction energy which we 

neglected. But we already discussed above how to remove self-interaction: we 

would only have to increase    by the self interaction 
  

 
, giving    

  

 
. In 

this case, the radius is reduced and energy drops: 

                                    

But the values are still not quantitative. But for high Z it was proved by Lieb 

and Simon that the scaling of the energy (but not our multiplicative constant) 

is indeed what one finds for an exact solution of the non-relativistic many-

electron Schrödinger equation.  

Our crude approach above is an example of a “statistical” electronic structure 

theory, where many electrons are present at high densities. We describe in the 

rest of this chapter the Thomas Fermi theory, which is a different, more 

orderly approach to the statistical theory of electrons, developed by Thomas  

and Fermi shortly after the advent of quantum mechanics. The idea behind 

this theory is to enable theoretical work on many-body systems, especially 
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atoms. We do this in a way that stresses that this theory can also be viewed as 

an approximation to density functional theory.  

B. Basic concepts in the electron gas and the 

Thomas-Fermi Theory  

In the early days of quantum mechanics there was no practical way of using 

the Schrödinger equation to determine the electronic structure of many-

electron systems such as heavy atoms. A simple, albeit approximate method 

was in need and supplied separately by Thomas[1] and Fermi[2]. Their theory 

can be thought of as a density functional approach. One writes an expression 

for the energy of an atom or a molecule which is a functional of the 1-particle 

density as follows: 

                           
   

 

 
 

         

      
        (2.2.1) 

Thomas and Fermi assumed that the density that characterizes the ground-

state minimizes this functional under the constraint: 

            (2.2.2) 

The first question, beyond the rigor of this approach is, what is the kinetic 

energy functional? In order to take into account the Fermi nature and the 

quantum nature of the electrons, this functional must include both these 

considerations. The Thomas Fermi solution is to assume: 

                     
   (2.2.3) 

What shall we take for      ? Consider first a simple case: a homogeneous gas 

of density   (i.e.      is independent of  ). Furthermore, let us assume that the 

electrons are non-interacting. This is a simple enough system to enable the 

analytic calculation of the kinetic energy functional. From the form of (2.2.3) 
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we see that the total kinetic energy is the sum of contributions of various 

infinitesimal cells in space. Each cell contains         electrons and so, if we 

interpret      as the kinetic energy per electron of a homogeneous gas of non-

interacting electrons then this sum is yields exactly the total kinetic energy for 

this homogeneous gas. The Thomas-Fermi approximation then uses this same 

     also for the inhomogeneous interacting case. 

Let us now compute     . Consider a  homogeneous gas of N uncharged electrons. 

They are non-interacting. These electrons are put in a cubic cell of length  . The 

electron density is everywhere the same   
  

 
 

  

  
.  

We assume the wave functions are periodic in the box. According to Fourier’s 

theorem, we can write any periodic wave function as a linear combination of 

plane-waves, as follows: 

       
   

 
  

 
   

  
 

 (2.2.4) 

Where: 

              (2.2.5) 

and        are integers. Fourier’s theorem is based on the orthonormality of 

the plane waves 

         
 

 
       

       
 

       (2.2.6) 

Where we defined 

      
      

  
       

  

 
  (2.2.7) 

We imagine 3-dimensional k-space divided into an array of small 

compartments, indexed by a set of integers              or by the vector  . 
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Each compartment is of k-length    
  

 
 and its k-volume is      

     

 
. For 

large r-space boxes the k-space compartment is extremely small since     is 

proportional to the inverse box volume. Since we are interested eventually in 

the limit    , we may assume approximate sums of any function      over 

the discrete values of   
  

 
  by integrals: 

     

 

 
 

     
                   (2.2.8) 

Let’s show that plane-waves are eigenstates of kinetic energy operator    : 

          
  

  

 

  
        

    

   
      (2.2.9) 

Now, consider the wavefunction of the    non-interacting electrons in their 

ground-state. Since they are non-interacting, this wave-function is a product 

of single-electron wave-functions: 

          
 
                     

 
     

      (2.2.10) 

Here       is the state of a spin-up electron with wave vector k. while        is 

the state of a spin down electron with wave vector k. Anticipating the 

antisymmetry, we build this wave function by placing 2 electrons in the same 

spatial orbital (once with spin up and the other with spin down). Since non-

interacting electrons have only one type of energy, i.e. kinetic energy: 

      
  

   
  
  

  
    , we can easily show that (2.2.10) is an eigenstate of the 

Hamiltonian:  
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(2.2.11) 

One sees that the energy is just the sum of kinetic energy    
    

 

   
 

    
    in each 

spin-orbital of the product wave function. Let us now anti-symmetrize this 

product wave function. We do this by adding all products resulting from even 

permutations of the electrons and subtracting all odd permutation products. 

One convenient way to represent such a sum is using a determinant, called a 

Slater wave function: 

  
 

   
    

                 

   

       
 

           
 

 

   (2.2.12) 

For this wave function to be minimal energy must fill 2 electrons per level 

starting from the lowest kinetic energy and going up until electrons are 

exhausted. Denote the highest filled level by   . Then: 

        
 

     
         

    (2.2.13) 

Where      is 0 if   is negative and 1 otherwise. This is called the Heaviside 

function. We now perform the integral using spherical coordinates: 

        
 

     
       
  

 

 
   

 

   
  (2.2.14) 

The number of filled orbitals is the product of the real-sapce volum   and the 

k-space occupied state volume, divided by      . Since             and the 

density is   
  

 
 we have: 



Electron Density Functional Theory Page 8 

© Roi Baer 

 

  
        

 
 
  
 

   
  (2.2.15) 

The electron density determined directly the highest filled momentum state: 

       
  

     
  

    

   
       

  

 

 
   

      
  
 

 
  

      

               

(2.2.16) 

Define   by:  

  
 

 
            

  (2.2.17) 

Then: 

       
 

 
        (2.2.18) 

Using 
 

 
  , the energy per particle is: 

       
   
 

 
 

 
       (2.2.19) 

Plugging into Eq. (2.2.3), the Thomas-Fermi kinetic energy functional is 

obtained to be used in Eq. (2.2.1): 

       
 

 
              (2.2.20) 

============================================ 

Exercise: The Thomas Fermi functional for the hydrogen atom.  

a. Repeat the calculation above but now for a “spin-polarized HEG”. That is, do not 
assume that there are 2 electrons in each k-state (the “spin-unpolarized” case) but 
instead, that all spins are up and so there is only one electron per k-state.  

b. Since the electron in a hydrogen-like atom is spin-polarized, use the Thomas-Fermi 
KE functional derived in (a) and compare its estimation of the kinetic energy of the 
electron in a hydrogen-like atom to the exact value. Using the exact kinetic energy in 
the hydrogen atom (you can find it using the virial theorem), assess the quality of 
the result as a function of the nucleus charge Z. 
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============================================ 

We thus find the Thomas-Fermi energy as: 

                           
   

 

 
 

         

      
        (2.2.21) 

If we consider that                
              is the Coulomb 

potential from a given positive charge distribution       we have: 

                
        

  

      
        

 

 
 

         

      
        (2.2.22) 

It will be of value, when we consider atoms and molecules, to add the 

“repulsive” positive charge energy 
 

 
 

         
  

      
       . In this case, we will 

obtain a “total” energy functional (which still neglects the kinetic energy of 

the nuclei though): 

                  
 

 
 

                 
         

      
        (2.2.23) 

To obtain energies of atoms and molecules this energy functional must be 

minimized with respect to the electronic density (subject to a given electron 

number). We will do this in the next subsection. One thing we have to admit 

in this expression is that it treats the particles as smeared charges, which is 

not the correct physics. Also, the energy is manifestly positive, which is not 

what we think about when we consider stable materials. This is mainly 

because the expression in (2.2.23) includes the self repulsion energy of both 

positive and negative charge distributions. In real atoms and molecules each 

electron does not repel itself; also, nuclei do not repel themselves. Removing 

the nuclear self energy is not a big problem, if we think of              
 
    

as composed of   non overlapping components            
     whenever 

   . In this case we can write: 
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                          (2.2.24) 

Where 

        
 

 
 

                 
         

      
       

  
 

 
 

           
  

      
       

 

   

 

(2.2.25) 

Note that the last correction is just a constant and will not affect the 

minimizing electron density.  

C. The virial Theorem for the Thomas-Fermi atom 

The Thomas-Fermi theory enjoys some interesting scaling laws. Some of 

them, like the one we study here turn out to be valid in the exact Schrödinger 

equation. Others are unique to the theory and are correct only for infinitely 

heavy atoms.  

The virial theorem in quantum mechanics is studied in detail in chapter XXX. 

Here we give only the details pertinent to TF theory. We consider the TF 

functional for an atom: 

                   (2.3.1) 

Where  

        
 

 
        

 

 
 

         

      
        (2.3.2) 

Let us assume that        is the electron density which minimized the 

above functional, subject to            for some    . Let us now scale 

this electronic density in the following way, using the scaling parameyter 

   : 
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       (2.3.3) 

Clearly,                 
  , so both charge distributions ascribe to the 

same number of electrons. Similarly it is straightforward to check that: 

                 

            
(2.3.4) 

Thus the TF energy changes as: 

                       (2.3.5) 

Considering this as a function of   we can take the derivative: 

 

  
                      

Since              minimizes    , this derivative, evaluated at     must 

be zero and so              . Since,           we find: 

        
 

 
                             (2.3.6) 

This relation is called the Virial Theorem for the TF atom. Interestingly, 

despite the fact that the TF theory for an atom is an gross approximation it 

obeys this virial relation which is identical in form to the exact quantum 

mechanical virial theorem, to be discussed later. 

D. Minimization of the Thomas-Fermi energy: the 

Thomas Fermi equation 

The TF philosophy is that the ground-state electron density should be 

determined by minimizing       , among all densities having the required 

number of electrons of   , so this is a constraint for the minimization: 

            (2.4.1) 
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Thus, we must build a Lagrangian to be minimized as: 

                      
       (2.4.2) 

Minimizing this Lagrangian gives the Thomas-Fermi equation: 

  
  

     
 
    
     

   (2.4.3) 

We see that the Lagrange constant   is the chemical potential, since it is equal 

to the change in energy when we perturb the density and this change is 

everywhere constant. The functional derivatives of (2.2.22) can be easily 

computed, and after plugging them into Eq.(2.4.3), the following equation is 

obtained: 

                     
     

      
      (2.4.4) 

This is an integral equation for     . It is called the integral Thomas-Fermi 

equation. The potential         is due to the positive charge, hence we can 

write:            
    

  

      
    , so we can define a potential energy 

         
    

        

      
      (2.4.5) 

as the sum of the total electrostatic potential and the chemical potential. Since 

  
 

 
        , this potential is the electrostatic potential obtained from the 

Poisson equation: 

                        (2.4.6) 

On the other hand, plugging Eq.  (2.4.5) in (2.4.4) gives: 

               (2.4.7) 

Thus, the potential energy   obeys the equation: 
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        (2.4.8) 

which is called the "differential Thomas Fermi equation". Once we solve for 

the potential we can reconstruct the density and the TF energy. 

E. Physical meaning of the potential energy      

We have introduced the TF potential energy      mainly as a device for 

obtaining an equation. However, as we show now it does indeed has a 

meaning of a potential, namely the potential governing the change in total 

energy when a change in the nuclear potential is made. Consider the total 

energy defined in (2.2.23) and consider a change in the positive charge        

such that the total charge is unchanged (that is we add or subtract electrons as 

needed). Thus we assume that                   
  . The change in the 

total energy is: 

              
    
     

      
    
      

        
  

   
          

  

      
        

(2.5.1) 

Using Eq. (2.4.3), and 
    

      
    

     

      
     and the fact that           

        
   we have: 

                  
    

        

      
            

   (2.5.2) 

and thus from Eq. (2.4.5): 

                        
   (2.5.3) 

We find that the potential energy      is that which determines the change in 

the total energy when the positive energy is changed, while the system 
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remains neutral. Remember that      is non-negative for all  , so adding 

positive charge always increases the total energy. 

F. Neutral systems under spherical symmetry 

If    is localized within a small radius   and spherical symmetric and 

contains total positive charge   then for      

         
    

        

      
        

 

 
   

     

      
     (2.6.1) 

 we expect      to be spherical symmetric and for     there is no positive 

density so it must obey (see Eq. (2.4.8)): 

           
    

 
 

   

 (2.6.2) 

We consider only the neutral case, as for ions the solution must be cut off and 

requires additional technical issues. For a system with total electronic charge 

Z we assume the following asymptotic behavior: 

 
     

      
     

 

 
 
 

  
           (2.6.3) 

The term 
 

  
 is the first correction term after the monopole Coulomb potential. 

In order to determine   and   we plug in Eq. (2.6.1) and obtain the 

asymptotics of the potential: 

        
 

  
        (2.6.4) 

Finally, plugging into Eq. (2.6.2) we find the condition: 

  
 

  
    

 

 
    

 

  
  

   

        (2.6.5) 

Using        
 

 
       

  
 we find: 
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        (2.6.6) 

Clearly, for this to be valid we must have     and by solving for   we find 

    and   
 

  
 
 

 
 
 

. Thus: 

       
 

 
 
 

 
 

 
 
  

  
       

      
 

 

 

 
 
  

  
           

(2.6.7) 

We should note that a real system of electrons (in an atom for example) does 

not exhibit this density dependence. In fact the decay of the density is 

exponential and not polynomial. Thus, the TF theory exhibits spurious 

density decay. Note also that the density decay is unrelated to any details of 

the system since   is a universal constant. We note that for non-neutral 

systems the TF theory becomes more complicated. One then changes the 

chemical potential so as to make the potential   negative in certain regions. 

The density usually determined from Eq. (2.4.7) is set to zero in those regions. 

  is changed until the integral of the density is the required electron number 

 . It can be shown that this process can be done when     (cations) but not 

for     (anions). We will not treat the TF theory of ions further. 

We will show in the next section that in order to describe a neutral atom in TF 

theory, we only need to solve the H atom. So, let us do this now. The nucleus 

is a point charge so     and from Eq. (2.4.8) we simply need to solve  

            
    

 
 

   

       (2.6.8) 

In spherical coordinates we have: 
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       (2.6.9) 

Multiplying by    and integrating over   from 0 to a small   gives: 

            
 

 
 
   

            
 

 

   (2.6.10) 

By plugging, it is evident that for    :      
 

 
 or               Thus, 

what we need to solve is: 

 

 
       

  
     

    

 
 

   

        
   

        (2.6.11) 

Exercise: By defining: 
 

 
            show that the following equation for 

     needs to be solved: 

       
       

  
                   

   

  
 (2.6.12) 

where 

         
 

 
 (2.6.13) 

Exercise: The short range behavior of     . Assume for small          

                         . By inserting into the equation, show that: 

          
 

 
     

 

 
        

The potential is             
  

 

    

 
 thus the density is       

 

  
   

    

 
 
   

. The kinetic energy for the H atom in the TF approximation 

then becomes: 

   
  

 

 
       

  

 
 

       

  
  

 

 

 (2.6.14) 
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Exercise: Prove that:  

 
       

  
  

 

 

  
 

 
       

 

 
  (2.6.15) 

Solution: Prove by two processes of integration by parts that 

 
       

  
  

 

 

                 
 

 

 

Also prove by alternative integration by parts that: 

 
       

  
  

 

 

 
 

 
         
 

 

 

Combine the two results to show that 

      
 

 
         
 

 

 

From Eqs. (2.2.17), (2.6.14) and (2.6.15) we find:  

   
   

 

 
 
 

  
 
   

    (2.6.16) 

Since the left-hand side is positive we see that   must be negative. Taking the 

virial theorem into account the H atom TF energy is    –   
  

 

 
 
 

  
 
   

   . 

This expression depends on the single constant   which must be obtained 

from an exact global solution of Eq. (2.6.12). Such a solution has been obtained 

(Tal-Levy), giving           , from which 

             

G. More scaling relations for TF theory 

We have discussed the Virial theorem for the TF theory for the atom. Now we 

will obtain more relations with some interesting consequences. Suppose the 
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potential      is the solution of the Thomas Fermi equation Eq. (2.4.8). 

Consider the family of potentials obtained by scaling this solution: 

               (2.7.1) 

for some      . The density of the positive charge can be reconstructed 

from this potential is also obtained from the Thomas-Fermi equation: 

          
 

    
        

   

 
 

  
          

Now, since             
           we can write: 

          
 

    
       

   

 
 

  
             

Using Eq. (2.4.8) once more gives the following expression: 

          
 

    
      

   

                      

Choosing      eliminates the first term and we are left with: 

                (2.7.2) 

And this density creates the potential of (2.7.1):  

              (2.7.3) 

Since          has the same charge as       we see that the family of TF 

systems thus generated involves  

1) Multiplication of the total positive charge by    and 
2) Simultaneously scaling the distances by  .  
3) The result is a potential which is the scaled potential but 

multiplied by    

It is straightforward to check that the negative charge density which solves 

the TF equations behaves similarly to the positive charge, i.e. from Eq. (2.4.7): 

             . From this one can check that the TF kinetic energy scales as 
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                 and a similarly relation holds for the potential energy. 

Thus, the total energy, minimizing the TF functional scales as: 

              
            (2.7.4) 

Suppose our system is an atom of total positive charge            . We can 

now transform to the Hydrogen atom, by taking         system,   
     

    . The energy will be denoted by   . Then for charge   one has: 

                  

  
         

         

                      

(2.7.5) 

Thus, in TF theory, determining    for the H atom, as we did in the previous 

subsection, allows to determine of all the energies of any other atom. 

Interestingly, the dependence of the energy on  , as      was also found from 

our crude statistical model in subsection A. The main difference is in the value 

of    which was very small in the crude limit. When the Hartree-Fock 

method is used to estimate the total energy      of rare gas atoms with   

electrons, the results of           is plotted in the following graph. 
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Figure 1: The Hartree-Fock             
     as a function of   for rare gas atoms. The 

horizontal axis depicts      for convenience. The        is the Thomas Fermi     

      . 

The energy of the TF atom has a consequence for exact energies of real atoms, 

which is supposed to be determined by the exact solutions of the Schrödinger 

equation. This was first discussed by by Lieb and Simon[3]. They considered 

the Schrödinger equation for   electrons in the presence of   static nuclei 

located at   
    

   (        ) each having a charge        where      and 

      . If    
     is the exact electronic density of ground state and    

  its 

exact total energy (including the nuclei) then in the limit that     they find: 

 

  
   
                               

        
     

(2.7.6) 

Thus, for large   the Schrödinger atom and the TF atom have the same energy 

and the “same” density. The last sentence has to be qualified since we must 

keep   fixed. Essentially, this means that the TF theory describes the core and 

mantle of the infinite   atom, while the valence electrons are not described. 
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Since the majority of electrons are core and mantle we do get the correct 

energy. What we do not get is chemistry. We do not get binding…  

H. Teller’s Lemma and the instability of molecules 

in TF theory 

Teller [4] proved the following Lemma:  

If one makes a positive change           in the positive density at some 

point   , keeping the system neutral by adding the corresponding amount of 

electrons, then the change       in the potential is positive everywhere.  

Proof: This relies on the fact that       always has the same sign as      . 

(This is immediate from the relation        
  

 

   

    
 
 

      ).  

Now consider the point   . Since we added some positive charge there and 

also added some electronic charge the electron density there must have 

increased there, i.e         . Hence         . Now we show a 

contradiction arises if we suppose the theorem is violated. Indeed, if there is a 

volume   away from    inside which        . This volume can be encircled 

by a surface   on which        . Inside   we have: 

1) Since       and       have same sign it too is negative. 
2) From Eq. (2.4.6)             , integrating over   and using 

Gauss’ theorem yields:              
 

          
 

 

3) Because    is negative inside   and zero on its boundary   the 
gradient     must point outward, i.e.          on  . 

Now from 1) and 2)              
 

   in contradiction to 3). QED. 

Based on this lemma Teller discovered that TF theory cannot stabilize 

molecules. Remember that the work to build an atom by adding     to the 

positive core (and simultaneously compensating by electronic charge   ) 

involves investment of energy       (Eq. (2.5.3)). Now, when the atom is 
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built in the presence of another atom, Teller’s Lemma shows that      is 

always larger than when it is built in solitude. Thus the energy invested in 

building the atom in the presence of another atom is larger than the energy 

invested in building the atom in solitude. This shows that the energy of 

distant atoms is smaller than the energy of nearby atoms. 

I. Absence of shell structure in TF description of 

atomic densities 

TF theory gives a smoothed value for the atomic density, not showing the 

shell structure. This is exemplified in the following figure, where the radial 

density of HF theory and TFD (Thomas-Fermi-Dirac) theory. 

 

There is a question of how does the minimal energy of the Thomas Fermi 

functional compare with the accurate quantum mechanical energy. This 

question has been examined. It was found that for atoms with    we have:  

   
   

         

            
   (2.9.1) 

For        (i.e. the number of electrons is smaller than that of the protons 

and 
 

 
 is held while    ). Note that the Thomas Fermi energy for an atom 

has the property that: 
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        (2.9.2) 

J. Some relations between the various energies 

If we multiply Eq. (2.4.4) by      and integrate we obtain    
 

 
       

    and so: 

       
 

 
     (2.10.1) 

Using            we have: 

    
 

 
   

 

 
  

 

 
   (2.10.2) 

K. Thomas-Fermi Screening 

When a point impurity     is inserted into an electronic system, it pulls (Z 

positive) or repels (  negative) electrons towards it. This has an effect that the 

impurity is partially screened by opposite charge and so it has a smaller effect 

on distant charges. Let us study this phenomenon in the electron gas, using 

Thomas-Fermi theory. The homogeneous gas of electrons is a model for ideal 

metals, so the screening effect we address here is relevant for many metallic 

systems. Macroscopically, the “free” metal electrons completely screen the 

charged impurity. However microscopically, perfect screening is not possible 

because electrons have kinetic energy – even at zero temperature – and a short 

ranged electric field develops around the impurity. Thomas Fermi theory 

takes kinetic energy effects into account and can be used to estimate the form 

of the local electric field, specifically its size or length scale.  

Let us study an unperturbed homogeneous electron gas using Thomas-Fermi 

theory. Such a “gas” has no structure and it is characterized by only one 

parameter: its density   . In order to neutralize it and support the electron 
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homogeneity, we add positive smeared homogeneous charge density     . 

All the Coulomb energies (e-e, e-N and N-N) cancel exactly so the only energy 

left is the electronic kinetic energy: 

                 
       (2.11.1) 

The constraint minimization of this functional yields the following condition, 

relating the density to the chemical potential: 

  
    
      

 
 

 
        

    (2.11.2) 

Comparing with Eq. (2.2.15), and using Eq. (2.2.18) we find for the chemical 

potential: 

  
    
      

 
 

 
    

  
 

   
 

   

 
    

 

   
 (2.11.3) 

Thus we see that indeed the electron density is constant and the chemical 

potential is equal to the kinetic energy corresponding to the maximal 

occupied momentum    .  

Now we introduce a positive charge   . The density of electrons is changed: 

              (2.11.4) 

It is physically clear that       is localized around the impurity (assumed at 

the origin). We therefore have for the total energy of the system in terms of     

                      
   
     

        

 
   

 
  

 
 

         
  

      
        

(2.11.5) 

The corresponding TF equation comes from minimizing: 
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     (2.11.6) 

We write:        
    

  

      
     and  so: 

  
    
      

 
 

 
             

   
 
   

 
       (2.11.7) 

Upon linearizing, assuming      : 

 

 
     

   
   

 

 

  
  
  

   

 
         (2.11.8) 

We can write: 
 

 
     

   
    and so: 

  

 
     

    
   

   

 
            (2.11.9) 

Finally since            we have: 

 
  

      
  
    

    
   

  

 
      

    
 

 (2.11.10) 

We have from Eq. (2.2.15)           
 

   and we use the definition of the 

Bohr radius     
  

    
  defining the Thomas Fermi screening parameter    : 

  

      
  
    

    
   
   

 
 

   
  (2.11.11) 

With this we have the equation: 

       
       

  

 
 
    
 

  (2.11.12) 

Passing to spherical coordinates we find: 

 

 
       

  
    

       
  

 
       (2.11.13) 

Defining      we find: 
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            (2.11.14) 

The homogeneous equation is        
   which has the solution    

              . Clearly, for a localized potential solution we must take 

   . To this we need add any solution of the inhomogeneous equation 

which clearly is             Thus: 

                 (2.11.15) 

This leads to: 

  
       

 
 
  

 
    (2.11.16) 

In the limit that     we must have         since the electronic charge    

has no cusps. Thus       . The total electrostatic potential is 

             
  

 
 
   

 
          (2.11.17) 

Aside from the constant   , far from the impurity the surface integral of       

evaluates to zero and by Gauss’s theorem a large sphere around the impurity 

includes zero charge in it, meaning that the total amount of electronic charge 

pulled into the sphere is exactly equal to that of the impurity ( ).  

It is interesting that the screening length is proportional to   
    

 or to   
    

. 

The higher the density the smaller the length, i.e. the more efficient is the 

screening, however, the dependence on    is mild because of the small 

exponent. It is also interesting to note that     is independent of  . However, 

this latter results holds only in so far as our linearization is valid. For strong 

impurities the non-linear equation will give a different result and the 

screening will depend on    
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L. Von Weizsäcker kinetic energy 

The Thomas Fermi kinetic energy density functional is exact in the limit of 

non-interacting homogeneous gas of electrons in an infinite box. We would 

like to mention here another density functional which is exact in a certain 

limit, i.e the limit of a single electron. In this case the kinetic energy is: 

         
  

   
           . For wave functions that decay to zero at   

 , one can integrate by parts and obtain   
  

   
        

 
   , stressing the 

absolute positivity of kinetic energy (it cannot be zero). Finally, if      is a 

non-degenerate ground-state it can be written as            and so we 

obtain the kinetic energy functional of von Weizsäcker: 

       
  

   
         

 

    (2.12.1) 

Which can be written as follows, using local wave vector: 

     
 

 

     

    
 (2.12.2) 

So: 

        
       

   
        (2.12.3) 

This functional is now used for any density, even a many electron one. The 

variation is: 

     
  

   
  

                 
 

            
 
          

 

     
      (2.12.4) 

Working this out to linear terms in  , using:               
  
           

        we obtain: 
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      (2.12.5) 

Which after integration by parts of the first term finally gives: 

     
  

   
        

      

     
   

        

     
 

 

           (2.12.6) 

Thus the von-Weizsäcker potential is: 

        
  

   
     

     

    
   

       

    
 

 

  (2.12.7) 

Which can be written more compactly as: 

        
  

   
                   (2.12.8) 

Exercise: For 1-electron system, discuss the claims: 1) The wave vector      is 

the gradient of the log of the of the wavefunction:                (2) the 

von Weizsäcker potential is the potential for which      is the ground state 

density. 
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