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III. Many-electron wave functions  

A. The electron spin 

Zeeman has shown that a small magnetic field causes the splitting of energy 

levels in atoms. Each atomic level is split into a doublet. The amount of 

splitting is proportional to the field. At zero field these doublets are 

degenerate. The conclusion is that the electron has an intrinsic magnetic 

moment which can take two values. The states of the internal magnetic 

moment of the electron are assumed to be proportional to an internal angular 

momentum called “spin”. The spin of an electron can is assumed to have two 

values  
 

 
. This is an additional “degree of freedom”. It is not continuous, but 

is nevertheless it is degree of freedom. We denote a spin-orbital       

        where   is a point in 3D space and   is a “spin variable”, which allows 

us to perform a inner product of spin as explained now. There are two 

possible spin functions for an electron,      denotes spin up and      spin 

down. These two states are complete and orthonormal:  

                     

                     

                     

                     

The variable   is just a mneumonic. With new notation, we have: 

                                        (3.1.1) 
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B. The Pauli principle 

The electronic wavefunctions are functions of    electronic coordinates and 

spins           
 . Here           . The Pauli principle states that this 

wavefunction must be antisymmetric  with respect to interchange of two 

electrons: 

                             (3.2.1) 

This is a “boundary condition” we impose while solving for any electronic 

wave function. 

C. The Excited states of the Helium atom 

How should we represent the, in an approximate form, the low lying excited 

states of the Helium atom. He+ has two low lying orbitals 1s and 2s (the 2p 

orbitals are degenerate with the 2s, but we will not consider them because in 

the Helium atom they are of much higher energy. We can form a 2-electron 

wavefunction by:                                               . 

The excited states will involve excitation of an electron to the 2s orbital. We 

can then write: 

                                                    

                                                    

             

                                                      

                                                    

             

(3.3.1) 

The first 3 states form a triplet the total spin is 1. The last is again a singlet 

(like the ground state). 
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D. The Slater wave function is the basic anti-

symmetric function describing N electrons in 

N orbitals 

The previous example is difficult to generalize. In order to develop a way to 

easily represent antisymmetric functions of all types, we consider the 

following 2-electron function, composed of 2 1-electron spin-orbitals: 

         
 

  
                           

 
 

  
 
            
            

  

(3.4.1) 

If we choose the orbitals to be orthonormal,            
then: 

               
               

 
 

 
                            

       

 
 

 
        

       
        

       
 

                                    

(3.4.2) 

E. Without loss of generality, we may assume the 

orbitals of a Slater wave function are 

orthogonal 

But what happens if the orbitals are not orthogonal? Suppose that the orbitals 

were not orthonormal: 

            (3.5.1) 

It is then possible to “orthonormalize” them. i.e define two linear 

combinations which are orthonormal. Define: 
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 (3.5.2) 

and demand:            . Then: 

               
 

   

                    (3.5.3) 

Thus:        or        . Note also that                .There are 

many solutions to this equation. (For example, if    is a solution then so is 

    where   is any unitary matrix.) Each solution will give us a different set 

of orthonormal orbitals. The Slater wave function made out from these new 

orbitals is:  

                                              

 
 

     
             

(3.5.4) 

Thus, the new wavefunction is the same as the old one, up to multiplication 

by constant! Yet, it is always more convenient to work with normalized 

orbitals, so we can assume the orbitals are orthonormal without any loss of 

generality. This development also shows that given any set of N orbitals from 

which the Slater wave function has been constructed, we can take N linear 

combinations of the orbitals to obtain new orbitals that give the same Slater 

wave function up to a constant factor. 

F. Any antisymmetric function can be expanded as a 

sum of basic Slater (determinantal) functions 

For orthonormal orbitals, the normalization is easy to compute. We write 

explicitly the determinant as: 
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  (3.6.1) 

Where          is a permutation of the numbers     (there are    such 

permutations). Each permutation can be obtained from a series of pair 

swapping operations. For example:       is obtained from       by switching 

the pair of numbers in position 2 and 3. We write this as:               . 

        is obtained from        by three operations:  

                                                (3.6.2) 

If the number of switches is odd the permutation is odd and         ; if the 

number of switches is even, the permutation is even and         . The 

normalization of a determinantal wave function composed of orthonormal 

orbitals is: 
 

                      
        

     
          

            
    

 

   

        

 

   

       
          

     
          

                 

 

             

 

(3.6.3) 

Because of orthonormality the orbital integral           is zero unless k ki j . 

These integrals appear in products so the product is non-zero only if k ki j  

for all      . The only conclusion is, that the two permutations must be 

identical and: 

                      
           

           

    (3.6.4) 
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We conclude that the normalization factor of a determinantal wave function of 

orthonormal orbitals is 
 

   
 and write:  

 

   
                     (3.6.5) 

Given a set of     orthonormal single-electron spin-orbitals       

                  ,
 
we can consider the space of all linear combinations of 

all  -particle determinants that can be made. There are  
 
 
  

  

        
  ways 

to select determinants so this is the dimension of the space. The dimension 

grows factorially with  . A typical antisymmetric wave function can e 

approached by linear combinations of these determinants: 

           
 

   
         

         

        
        

       (3.6.6) 

The sum is over all selections of   integers, where each selection is ordered so 

that        . If the orbitals are orthogonal, the constants          are 

obtained from: 

         
 

   
        

        
                         (3.6.7) 

G. Determinant expectation values 

In this section we discuss the calculation of expectation values of many-

electron operators for   electrons within a given Slater wave function 

            
 

   
                   . We assume the orbitals       are 

orthonormal:            . 
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i. One-body operators 

Consider an operator        which operates on an electron with spin-

coordinates  . For   electrons we define the sum of     for each electron  

           

 

    

  (3.6.8) 

Examples: when electrons are in a potential well     , the total potential 

energy operator is          
 
   ; the total kinetic energy is: 

          
 
       

  

   

  

   
  

 
   .  

When the system of   electrons is in a given Slater wave function 

            
 

   
                   ,  then using the notation of (3.6.3), 

we have: 

          

 
 

  
                                              

 
 

  
                    

 

   
   

    
         

     
     

 

   

 

(3.6.9) 

Once again, a massive cancellation of terms happens in the first integral. 

Inspection shows that both permutations,   and  , must be equal otherwise 

there is always an orbital integral for which the integrals           is zero. 

When the permutations are identical we have: 

           
 

  
      

         

     

 

   

             

 

   

 (3.6.10) 

As an example, let us take the electron density               
 
   . Thus: 
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 (3.6.11) 

Conclusion: The matrix element of a 1-particle operator is the sum of its 

single-electron matrix elements. 

ii. Two-body operators 

Consider an operator             which operates on two electrons with spin-

coordinates    and   . For   electrons we define the sum of      on all pairs of 

electrons  

               

 

      

 
 

 
            

 

      

  (3.6.12) 

Examples: The 2-electron interaction potential is            
   

       
. The total 

interaction energy operator is:    
 

 
            

 
   
   

 
   .  

We compute the expectation value 

          

 
 

  
                                              

 
 

  

 

 
                            

            

 

   
   

     
     

 

     
   

 

(3.6.13) 

Where we used the notation: 

                                      
             

        (3.6.14) 

The following symmetry properties hold from the above definition: 
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(3.6.15) 

For a pair of permutations to contribute to the integral in Eq. (3.6.13), the 

permutations must either be identical or involve the permutation of a single 

pair of orbitals. Thus: 

           
 

 
                                    

 

     
   

 (3.6.16) 

 


