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VII. The Kohn-Sham method 

Kohn and Sham noticed that the HK theory is valid for both interacting and 

non-interacting electrons. Now, they ask, what happens if for any system of 

interacting electrons, with density   there is a non-interacting system of the 

same density? It is clear that if such two systems exist they are unique. The 

non-interacting system has one advantage over the interacting system: we can 

find its ground-state rather easily, since the many-body wavefunction is a 

Slater wave function. So, the problem is: how to perform such a mapping. 

A. Non-interacting electrons  

If non-interacting electrons are tractable, let’s study their density functionals. 

Given a density      we assume it is non-interacting v-representable, i.e that 

there exists a potential       such that the ground-state        of the non-

interacting Hamiltonian            admits a ground-state having density 

    . The Hohenberg-Kohn functional for non-interacting electrons is reduced 

to just the kinetic energy, i.e. we define: 

                         (7.1.1) 

As a private case of Eq. Error! Reference source not found. we have:  

                            (7.1.2) 

Thus, since our density is v-representable,        is the minimizer of         . 

In other words, the ground-state wave function of non-interacting particles 

associated with      minimizes the kinetic energy! Let us see some 

consequence this minimum principle. 
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A corollary, valid if the non-interacting system is non-degenerate, any 

function      for which                equals       must be the ground state 

of the non-interacting system with density  . 

Let        be the ground state wave function of the system of non interacting 

electrons realizing the density     . From the first equation in Eq. 

Error! Reference source not found. one sees that         realizes      , thus 

one can plug it into the right hand side of Eq. (7.1.2), with       plugged into 

  : 

                                                 (7.1.3) 

Since now the right hand side is an expression of a scaled wave-function, one 

can use Eq. Error! Reference source not found. and obtain: 

                                                         (7.1.4) 

And so               . But we can also use this equation to scale    back to 

  by dilating by    , since:          . Then, the same rule applies and we 

get:                , and so               . We obtained two contradicting 

equations which can agree only if both are reduced to equality. Thus: 

                (7.1.5) 

This should be compared with the analogous result of Eq. 

Error! Reference source not found. which is an inequality. The dilation effects 

for non-interacting electrons is obviously much simpler. One important 

corollary of (7.1.5) is that the non-interacting wave functions scale with the 

density. We saw that         gives the correct kinetic energy of for the system 

with density   ,       , and therefore, necessarily: 

                                               (7.1.6) 
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Exercise 

1) We can define a functional called the Hartree energy, which is the 

classical electrostatic energy associated with the charge distribution 

    :  

       
         

      
        (7.1.7) 

Prove the following dilation relation: 

              (7.1.8) 

2) Now define the exchange energy functional (see also Eq. 

Error! Reference source not found. for a definition based on the 

orbitals): 

                              (7.1.9) 

Use (7.1.6). Prove: 

            (7.1.10) 

What is the relation between the potential       for which      is a non-

interacting ground state density and         for which       is a non-

interacting ground state? We can use the basic DFT equation to answer this. 

From the basic definition of functional derivation: 

         
       

      
 
  

    
   

                              

 
 (7.1.11) 

The 3D delta-function has the density dilation structure:         

           , so: 

         
      

   

     
                         

        

 
 (7.1.12) 
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Then using Eq.: 

         
      

   

                               

 

            
    

(7.1.13) 

By dilating in the reverse direction we can easily see that: 

        

      
          

   
(7.1.14) 

We could have obtained this result directly from the Schrödinger equation. 

Suppose        is a many-body eigenfunction of Hamiltonian             , 

i.e           . Define a scaled wavefunction: 

              
  

              (7.1.15) 

Then clearly: 

              
  

                                  (7.1.16) 

And so                                   with energy and potential given 

by: 

                  

       
(7.1.17) 

For a ground state of non-interacting the first equation means that         

         is the one-particle potential for the scaled determinant, and thus for 

the scaled density (since the scaled determinant realizes the scaled density). 

B. Orbitals for the non-interacting electrons 

Consider the ground state wave function for the non-interacting electrons 

      . Suppose the non-interacting electrons reside in the potential    (the 
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subscript   is in honor of Slater) then                        . In most 

cases this wave function is a normalized Slater wave function. We introduce 

   orthormal spin-orbitals             , from which        is built. These 

orbitals are excited states of the potential well in which the non-interacting 

electrons reside. Thus the orbitals must each obey the single-electron 

Schrödinger equation: 

 
  

   
                           (7.1.18) 

The orbitals correspond to the    lowest eigenvalues   . The fact that     

realizes the density       is expressed as : 

             
 

  

   

 (7.1.19) 

The non-interacting kinetic energy       is then: 

               
  

   
          

  

   

 (7.1.20) 

When one wants to find the functional derivative of    with respect to       

one can turn to basic equation, Eq. Error! Reference source not found. which 

in case of non-interacting electrons becomes: 

      

     
         (7.1.21) 

We will see that this equation is important for the method known as the 

Kohn-Sham method.  

Note that the discussion of dilation in the previous subsection can be carried 

on to the orbitals. The only additional information to convey is that the 
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orbitals scale as the density and each of the orbital energies scale as the total 

energy: 

          (7.1.22) 

C. The correlation energy functional: definition 

and some formal properties 

The ground state energy of the an system of electrons in density      can be 

written in terms of the non-interacting (Slater wave function) wave function 

      : 

                              (7.2.1) 

This equation is actually a definition of a new density functional, the 

correlation energy functional      . If we suppose for the time being that 

       is known, this expression can be used to define a working procedure 

for DFT known as the Kohn-Sham method. From our studies of the Hartree-

Fock theory, we know that the expectation value of    within a determinant 

can be written as: 

                                    (7.2.2) 

Where    is the Hartree energy: 

      
  

 
 

         

      
        (7.2.3) 

And   is given in terms of the orbitals from which        is composed (Eq. 

Error! Reference source not found.): 

      
  

 
 

          

      
        (7.2.4) 

Based on this, we rewrite        as:  
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                                                   (7.2.5) 

This allows us to write Eq. (7.2.5) compactly as: 

                         (7.2.6) 

Clearly we have also the equivalent equation: 

                            (7.2.7) 

Physical intuition concerning molecules and solids tells us that       is a 

small quantity when compared to       or      . Thus, it is reasonable to look 

for approximations to this quantity. Approximation to the correlation energy 

functional is the most important issue in DFT. It is an open question, still 

being worked upon.  

We shall deal with approximations later. Meanwhile, let us ask what can be 

safely said about the correlation  functional. We prove here several important 

inequalities. First, consider the difference                 , the correlation 

kinetic energy.  

Exercise 

Show       is a positive quantity. This is actually intuitively clear: the 

interacting electrons must have much more complicated "paths" in the 

interacting case because they want to avoid "bumping into" other electrons. 

Anything with more swirls must have higher kinetic energy.  

Solution 

Using the variational theorem: 

                                                         

            
(7.2.8) 



Electron Density Functional Theory Page 8 

© Roi Baer 

 

Where        is the interacting ground-state wave function determined by  . 

Comparing the two sides we have:  

           (7.2.9) 

Next, we can show that the exchange correlation energy is always negative. 

This comes about from our experience with expectation values of 

determinants: 

                                                    (7.2.10) 

Using Eq. (7.2.6) we find: 

        (7.2.11) 

Furthermore                  is negative as can be seen from the fact that 

   is negative and    is positive: 

                    (7.2.12) 

An additional property is the dilating relations. We have proved that 

                     and               ,              . Thus: 

                                    (7.2.13) 

One way to proceed is to substitute    with      . The other is to substitute 

   with      . We obtain from each possibility: 

                          

                           
(7.2.14) 

And, since     is always positive and    negative, we find that: 

                        

                         
(7.2.15) 

Obviously, the second relation is contained in the first (since     ) and so 

only the first relation is important; it can be used to derive complementary 

inequalities. Indeed, applying them for       we find: 
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                            (7.2.16) 

This holds for any  , so we stick in (7.2.16)    instead of   and using the fact 

that           to obtain: 

                        (7.2.17) 

In absolute values: 

                            (7.2.18) 

Intuitively, the larger         the more correlation we have. We see that 

compressing the density, say on the average by a factor 8 (   ) does not 

necessarily raise the abs value of the correlation energy, certainly not by more 

than a factor 2. 

D. The Kohn Sham equations 

i. The Kohn-Sham equation from a system of  non-interacting problem 

Let us now turn to the issue of determining      , required for the mapping 

between the interacting non-interacting systems. Let us start form the basic 

equation Eq. Error! Reference source not found. which becomes, using Eq. 

(7.2.6): 

      

     
                     (7.3.1) 

Where: 

       
      

     
             (7.3.2) 

 is the Hartree-Exchange potential. Notice that: 

      
      

     
  

     

      
     (7.3.3) 

and: 
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 (7.3.4) 

Thus, from Eq. (7.1.21) and Eq. (7.3.1) (up to a constant): 

                        (7.3.5) 

This equation gives us the potential of the non-interacting system. Thus, we 

have made a definite connection between the interacting and non-interacting 

systems. 

Now, an important observation allows us to set up a simple method for 

obtaining the ground-state of an interacting system of electrons. We need to 

find a density that obeys two conditions: 

a) It is the density of the non-interacting electrons so it is the sum of square 

orbitals (Eq. (7.1.19)) that obey the Schrödinger equations (7.1.18) with 

potential      . 

b) The potential       must be related to the interacting system by Eq. (7.3.5) 

This leads to a simple SCF procedure, called "The Kohn-Sham method" 

reminiscent of the Hartree-Fock algorithm: 

1. Guess     . 

Build       ,       from      (Eq. (7.3.3) and (7.3.4)). 

Obtain the orbitals       from the lowest    eigenvalues of Eq. (7.1.18). 

Compute the density from Eq. (7.1.19) 

Redo from step 2 using the new density until you converge – i.e. until the 

density changes no more. 

When the process convergence, we have the exact ground-state density      . 

It can be used to compute the ground-state energy by plugging it into the 

energy functional of Eq. Error! Reference source not found.: 

                                     (7.3.6) 
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ii. Systems with partially occupied orbitals 

Partially occupied orbitals arise in the realm of ensemble-DFT, i.e. when the 

density searched for is not “non-interacting v-representable”. We still assume 

the density is a sum of orbital densities as follows: 

             
 

 

  (7.3.7) 

but unlike Eq. (7.1.19) we do not impose exactly     orbitals. The orbitals are 

almost completely unconstrained, except for the Fermionic condition, that 

their norm must be not be great than 1: 

              (7.3.8) 

but the total number of electrons is still   : 

            

 

    (7.3.9) 

And the kinetic energy is written similarly to Eq. (7.1.20): 

               
  

   
          

 

  (7.3.10) 

We generalized Eqs. (7.1.19) and (7.1.20) any number of orbitals leading to the 

following orbital Lagrangian: 

               

            
 

 

                 

 

      

 

     

(7.3.11) 
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              and   are Lagrange multipliers assuring orbital normality and 

total number of particles. We minimize the Lagrangian with respect to the 

orbitals       and the occupation numbers (constraint to be non-negative and 

not greater than 1). The constraint minimum procedure thus requires that: 

     

      
               

     

   
   (7.3.12) 

The first equation leads to the KS equations: 

 
  

   
                           (7.3.13) 

For convenience, we order the indexing so that the series of orbital energies is 

ascending:          The orbitals are now eigenfunctions of a Hermitian 

Hamiltonian, and so we can assume they are orthogonal: 

                 (7.3.14) 

We define as a short-hand notation                         (see Eq. 

(7.3.5)). By multiplying Eq. (7.3.13) by       integrating on   and summing on 

q we find: 

              
        

 

 (7.3.15) 

The second condition for minimum of       holds only in cases that the 

minimum is attained with non-integer electron number,     . The cases 

     or      are the boundary of the constraints and the derivative need 

not be zero there. From this second part of the equation, we have: 

                (7.3.16) 

This shows that all incompletely occupied orbitals have the same orbital 

energy equal to the chemical potential  , the Lagrange multiplier imposing 
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the number of particle constraint of the Hohenberg-Kohn theory (Eq. 

Error! Reference source not found.).  

Typically, all orbitals with      are fully occupied (      and those with 

     are fully unoccupied (     . The interacting electron energy is 

obtained using Eqs. (7.3.6) and  (7.3.15) as 

        

 

                                   
   (7.3.17) 

We should note that the development here assumed non-interacting v-

representability. In cases where this is not valid other occupation rules may 

apply.  

iii. Is the ground state wave function of  non-interacting particles always a 

Slater wave function 

The standard KS approach to the non-interacting kinetic energy is by defining 

the functional    as a minimum principle on the manifold of single 

determinants: 

         
      

         (7.3.18) 

Setting up a Lagrangian and searching for the constrained minimum yields   

occupied orbitals. If the density is not v-representable one or more of the low 

energy orbitals may have 0 occupation numbers. 

Another way to define a non-interacting kinetic energy functional is by an 

extended minimum search over more general wave functions: 

          
      

         (7.3.19) 

Usually this search ends with   being a single Slater wave function and for 

these case     and    given are the same. Yet, this may not always be the case. 
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Let us assume that we are searching through all                 

where    or    are Slater wave functions. In general, the kinetic energy is 

then: 

          
      

             
                  

              
   

(7.3.20) 

Now, if    and    differ by only one orbital (say   
    

  for           ) 

then   is actually a Slater wave function: its orbitals are the       
 ’s and 

then a new orbital   
          

        
  is added. Next, if    and    

differ by two (or more) orbitals the cross term in (7.3.20) is zero and the 

kinetic energy is simply the sum of orbitals kinetic energies with occupation 

numbers given by       and      . The orbitals shared by the two 

determinants will have unity occupation number (since              ) 

while orbitals in the   determinant but not in the B determinant will have 

occupation number       and those in the   determinant but not in the A 

determinant will have occupation number      . The orbitals coming out 

from the minimization will all solve a Schrödinger equation with the same 

potential. The 4 odd orbitals (2 from each determinant) will all have the same 

orbital energy equal to  . When there are more than 2 Slater wavefunctions a 

similar treatment will result and even more orbitals will be degenerate at the 

chemical potential. Even if   is v-representable this type of wave function can 

arise.  

A third way to define the kinetic energy is as an ensemble average. Instead of 

a wave function, one uses a mixed density matrix               . The 

constants    are positive and sum to 1. The density is the convex sum 

          of densities from each participating determinant. A similar 

expression will arise for the kinetic energy. This approach is designed to solve 
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the problems of non-interacting v-representability emanating from convex 

sums of degenerate wave functions (see section XXX).  

iv. Janak’s Theorem 

A very general theorem was noted by Janak 5, based on earlier work of Slater 

and Wood6 concerning the meaning of orbital energies. Let us return to the 

functional of Eq. (7.3.11) and assume now that the occupation numbers    are 

given and they are all non-negative and not larger than 1 and that they sum 

up to the number of electrons. Thus, for a given set of occupation numbers we 

can search for the orbitals that minimize the following functional: 

                   
 

 

                 

 

 (7.3.21) 

The equations that the orbitals must obey are still derived from Eq. (7.3.12) 

leading to the same equations as in (7.3.13), the KS equation. Now, let us ask: 

what happens to the energy when we change the occupation number of one 

of the orbitals    by an infinitesimal amount       When we do this the “total 

number of electrons”    changes by this amount as well. This is not a physical  

change (since electrons cannot change by non-intereger amounts) but still 

mathematically speaking the change can be studied. Since    are the 

constraints and    the Lagrange multipliers in a minimization problem we can 

use the general result of Eq. Error! Reference source not found. that the rate 

at which the minimized function changes when the constraints change is 

equal to the Lagrange multiplier: 

   

   
    (7.3.22) 
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This relation, giving some meaning to the orbital energies is called Janak’s 

theorem. This theorem is quite general but relies on some analytical 

assumptions of the energy functional. For example, when the occupation 

number is 1 the change can only be by a negative amount and when it is zero 

– only positive. For approximate functionals, that are analytical with respect 

to any      and       this relation holds. Such is the case for the often used 

local, semilocal and even most hybrid functionals, including Hartree-Fock 

theorem. 

In the conext of Hartree-Fock theory this result is a restatement of Koopmans’ 

theorem, by which     is the unrelaxed ionization energy from orbital  . The 

orbital relaxation is a second order effect and thus negligible when occupation 

numbers change infinitesimally. 

E. “Virial Theorem” related identities in DFT 

The following development is inspired by the virial theorem treatment. It 

continues to consider dilation relations. Taking the derivative of      with 

respect to  , we have 
 

  
                          and since,            

             , we find 

 

  
                    

    
 (7.4.1) 

For a general density functional,     , we have, using the chain rule for 

derivatives,                      and Eq. (7.4.1)then: 
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From which a completely general virial-dilation relation holds for any 

functional: 

      

  
                             (7.4.2) 

We will be especially interested in the case of    . Thus the basic relation: 

 
      

  
 
   

                        (7.4.3) 

We further find that 

                           
              

  
 
   

 (7.4.4) 

Let us apply this for the Hartree energy. From Eq. (7.1.8) we find the following 

relation, valid for any  :                  so: 

                             (7.4.5) 

A similar relation, namely                 hold also for the exchange 

energy       (see Eq. (7.1.10)), and so: 

                             (7.4.6) 

Where                       is the exchange potential.  

Now, what about the correlation energy? Let us consider the KS DFT 

functional: 

                                      (7.4.7) 

Suppose      is the density minimizing minimizer of       and now plug into 

the latter the scaled density. This will give a   dependent energy: 

             (7.4.8) 
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And clearly, the minimum is at     so: 

         (7.4.9) 

Now, let us evaluate        using Eq. (7.1.5): 

               
 

  
            

          
 

  
        (7.4.10) 

and plug in    . We obtain: 

 

  
                   

   
   

                (7.4.11) 

or, using Eq. (7.4.3): 

                                            (7.4.12) 

The second term in the parenthesis can be related to the interacting system. 

Indeed we have, using Eqs. Error! Reference source not found.: 

                              
  

                          
   

(7.4.13) 

Taking the derivative with respect to  , remembering that          
   we 

find, for    : 

             
 

  
             

   
   

 (7.4.14) 

(As a sidenote, you can see that substituting this relation in Eq. (7.4.1) gives 

after trivial manipulation the virial theorem                

             ). Continuing the above development, using Eqs. (7.4.11) and 

(7.4.14) we finally find: 
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                    (7.4.15) 

which can be written equivalently as: 

      
 

  
                    (7.4.16) 

or, using Eq. (7.4.3): 

                          
             (7.4.17) 

The Hartree and exchange energies give zero while the correlation energy 

gives a negative quantity equal exactly to          

This result shows that the correlation energy functional and the correlation 

potential are enough for determining the correlation kinetic energy (and from 

it, by        ) the kinetic energy itself.  

This latter result is related to the virial theorem of Slater, which shows that 

one can derive the kinetic energy of the electrons from the Born-Oppneheimer 

potential surface itself (Eq. Error! Reference source not found.). Since DFT 

gives, in principle the Born-Oppenheimer potential surface, one can access the 

kinetic energy (and the potential energy) from the DFT calculation. 

F. Galilean invariance 

A basic property of the electron-electron interaction is that if the coordinates 

of all electrons are shifted by a constant  : 

  
       (7.5.1) 

the e-e interaction enegy does not change 

   
 

 
 

 

   
    

  
   

 
 

 
 

 

       
   

   (7.5.2) 
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This property is shows that the e-e interaction is translationally invariant. This 

property is also called Galilean invariance. The same property holds when the 

coordinates of each electron are rotated around some axis. This roatation can 

be described by a 3×3 orthogonal matrix  , where          : 

  
       (7.5.3) 

The lengths of vectors are preserved under a rotation: 

   
       

     
        

       
         

        
  (7.5.4) 

Thus the e-e interaction enegy does not change 

    
 

 
 

 

   
     

   
   

 
 

 
 

 

         
   

 
 

 
 

 

          
   

 
 

 
 

 

       
   

   

(7.5.5) 

Thus the e-e energy is rotational invariant. 

These relations indeed hold for the density functional       since it is a 

reflection of the e-e functional. Indeed, define the shifted density: 

                    (7.5.6) 

Then: 

       
 

 
 

     
       

  

   
    

  
    

     
 

 
 

 
 

    
        

    

   
    

  
    

     
  

(7.5.7) 

We now make a variable replacement:   
       and obtain:  
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(7.5.8) 

This condition, that              is called Galilean invariance. It is easy to 

show that       functional is also rotational invariant.  

The exchange energy is also Galilean invariant, since the translation of the 

density will cause a translation of the density matrix: 

        
    

               (7.5.9) 

It is easy based on this to show that           
     

Finally, the same will hold for the kinetic energies     ,      . All this shows 

that we must demand this invariance of the correlation energy: 

    
        

         (7.5.10) 

One consequence is the property of Galilean covariance of the potentials for 

each of the above energy functionals. For example, for the correlation energy 

we have the following result. Suppose we shift the density by a small 

displacement: 

                               

Thus: 

    
     

                     
   

      
           (7.5.11) 

Since we demand Galilean invariance     
         we find: 

    
   

      
             (7.5.12) 

Since 
   

      
          and    is arbitrary: 
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                    (7.5.13) 

For finite systemswhere the density drops to zero at infinity we can move the 

nabla sign to the potential: 

                
     (7.5.14) 

           is the force derived from the correlation potential. This shows that 

the total correlation force is always zero. Another consequence from Galilean 

invariance of the correlation energy is the Galilean covariance: 

    
                       

     (7.5.15) 

Similar conditions can be proved from rotational invariance. For example the 

torque: 

                 
     (7.5.16) 

G. Holes and the adiabatic connection 

i. The exchange and correlation holes 

Let us now take a step back and return to wave function theory. We examine 

the electron-electron interaction energy  

               (7.6.1) 

Which we write using the following operator: 

   
  

 
 

 

   
   

 
  

 
 

       
  

      
        (7.6.2) 

In the first term, we sum over the pairs of r-vectors of each of the   

coordiantes (indices   and  ). In the second term we use the definition: 
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  (7.6.3) 

which is the pair density operator. Note the relation between the one and two 

densties: 

       
                     

   

                   

 

                                                 

(7.6.4) 

With               
 
   . With this definition, we have: 

            

        
                  

        
                      

(7.6.5) 

The expectation value of          is the "two electron density function": 

                    
        (7.6.6) 

With the two-electron density function, the interaction energy is: 

  
  

 
 

       

      
        (7.6.7) 

This pair density function has the symmetry, positivity and normalization 

properties given by: 

                

          

                       

                       

(7.6.8) 
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The normalization allows interpretation of 
       

      
 as the probability density to 

find an electron at   and another electron at   . One property that is intuitively 

expected of         is as the limit           is approached electrons will 

gradually uncorrelate and         collapse to the density product           . 

Indeed, this is insight bears out in most cases: 

                                               (7.6.9) 

but not always. For example, the ground state wavefunction of the Carbon 

atom             (we are neglecting to write spin indices for sake of 

notational simplicity) in the large    limit: for minimal energy reasons the 

remaining electrons will lower their energy to a maximal extent thus, the 

wave function should obey:              
     

 
      

       where 

      
       is the ground state wave function of the cation    and  

     

 
 is 

the root of the propability to find an electron far at   . Note however that this 

cation has a 3-fold degeneracy in its groundstate energy and thus for any 

finite   , no matter how large, the       
       wave function is that 

degenerate wave function distorts in a certain fashion in correlation with the 

direction       (for more details see Phys. Rev. A 49, 809 (1994) or J. Chem. 

Phys. 105, 2798 (1996)). 

We can also look at the conditional probability density to find an electron at   

given that there is one at    (this latter probability is         ), given by  

        
       

           
 (7.6.10) 

Obviously, if one integrates on   one gets unity. We can thus view: 
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 (7.6.11) 

as a “conditional” density, the density at   of      electrons: all “other” 

electrons except that one electron is known to be at   . Indeed, upon 

integration over  , we get, irrespective of    : 

          
             (7.6.12) 

Furthermore, we have for         : 

         
                                     (7.6.13) 

This shows that the density far from the localized electron is unperturbed.  

Now, let us subtract from this conditional density the total   -electron density 

     and obtain the Fermi-Coulomb hole function:  

       
            

        (7.6.14) 

Since we localized an electron at    the rest of the electrons will “rearrange” so 

as to be repelled from the stationary source. This will give us a “missing 

density” or “hole density”, i.e. the charge density at   expelled by an electron 

at   . We expect the total charge of the hole is   . Indeed plugging Eq. (7.6.14) 

into (7.6.12) we find: 

        
          (7.6.15) 

Furthermore far from the hole center we have from Eqs. (7.6.13) and  (7.6.14) : 

       
  

    
                                (7.6.16) 

This shows that the FC hole decays faster than the density far from the 

system: for localized systems it is, in most cases, a highly localized overall 

singly charged distribution. 
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Now, because                       
                     

   , the 

Coulomb interaction energy can be written as: 

  
  

 
 

                  
   

      
        (7.6.17) 

And in terms of the FC hole: 

     
  

 
 

            
  

      
        (7.6.18) 

Thus the part of the interaction energy beyond the Hartree energy is the sum 

of all interaction energies      
   

  

 
 

       
  

      
    between an electron at    

and its Fermi-Coulomb hole        
  . We will shortly see that the correlation 

energy adimits a similar analysis only with slightly modified quantities. 

By using non-interacting electrons we can also pull out of the integral the 

exchange energy and write: 

     
  

 
 

           
  

      
        (7.6.19) 

This leaves a Coulomb hole which is overall neutral. It too is localized. We 

discuss this in the section after next. 

ii. The Fermi-Coulomb hole for harmonic electrons 

Let us calculate these quantities for our 2-harmonic electrons in their ground 

state triplet (so we have both exchange and correlation). The pair density and 

density for the wave function in Error! Reference source not found. is: 

         
 

 
   

    
 

                     

        
  (7.6.20) 

The density can be obtained by integrating: 
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               (7.6.21) 

The density is plotted for several values of the correlation constant  , 

      
 

 
 
 
. This calculation is for    : 

 

Figure VII-1: The 1-particle density, for a system of two harmonic fermions placed in a 

harmonic well in their triplet ground state for various interaction strengths. When   
 

 
  

there is no interaction and the dip in     is due to the “Pauli repulsion”. As interaction 

grows the dip becomes deeper and broader. 

 

We plot the conditional probability         for this system in Figure VII-2. 
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Figure VII-2: Contour plots for the conditional probability distribution         for a 

system of two Fermions in their triplet ground state for various interaction strengths. 

When   
 

 
  there is no interaction and the only correlation is due to the Pauli principle. 

As interaction grows the probability distribution rotates by    . 

The XC hole is plotted next in Figure VII-3. 
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Figure VII-3: Contour plots for the FC hole           for a system of two Fermions in their 

triplet ground state for various interaction strengths. When   
 

 
  there is no interaction 

and the only correlation is due to the Pauli principle.  

iii. The Fermi hole in the non-interacting system 

Let us consider now the FC hole in the non-interacting system. Since there is 

no correlation in absence of interactions, we attribute the hole only to the 

exchange (Fermi) effects. A non-interacting system having the density      

that has a closed shell Kohn-Sham determinant, composed of orthonormal 

orbitals      , where 1 indicates spin up and -1 spin down. 
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(7.6.22) 

Where the sum is over the orbitals in    (the occupied KS orbitals) and we 

defined the density non-interacting matrix                   
   .  

Exercise: Prove that  

                   (7.6.23) 

Exercise: As a check, integrate       
   over   and find: 

       
                  (7.6.24) 

The Fermi-conditional density is: 

             
        

     
 (7.6.25) 

And the Fermi-hole is: 

      
    

        

     
 (7.6.26) 

It can be shown7 that in most cases the density matrix         decays 

exponentially as         , although this could be much slower than     . 

Thus we may say: 

      
                                  (7.6.27) 

This is weaker than Eq. (7.6.16) for the total FC hole. This shows that    

       decays to zero in a similar but opposite way than        
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                                (7.6.28) 

Based on Eq. (7.6.23) the Fermi hole carries all the charge of the FC hole: 

       
         (7.6.29) 

This allows one to say that it is the Fermi or “exchange”-hole in the non-

interacting system that “carries the charge” of the exchange correlation-hole 

in the interacting system. Once the interacting system has been mapped onto 

the non-interacting system the Fermi-hole is easily calculated. This can be 

used to define the Coulomb hole by: 

      
          

         
   (7.6.30) 

It has no total charge: 

       
        (7.6.31) 

The interaction energy can be written now as: 

     
 

 
 

           
  

      
        (7.6.32) 

Exercise: Compute the Fermi-hole function of the homogeneous electron gas 

Solution: We already determined the density matrix (see Eq. 

Error! Reference source not found.)  

       
       

   
 (7.6.33) 

where          and       
          

  . The x-hole is of course independent 

of  : 

  
            

     

 
    

       
 

     
 

 (7.6.34) 
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Plotting shows the form of the HEG x-hole function: 

 

Here   
       (unpolarized gas). Since    

      

 
  

 

 
   , we find HEG 

exchange energy is, : 

  

 
 

 

 

 

 
 

      
         

      
        

 

 
   

  
      

 
    

 

 

  
  

   
    

     
 

 
  

 

 

  
 

  
      

 

  
  

   

 

(7.6.35) 

This is indeed the LDA exchange energy per particle. 

iv. The Adiabatic Connection 

Having written down the relation between the interaction energy   and the 

XC hole, we still have no such relation for the correlation energy   . We now 

derive such a relation. Remember the correlation energy is defined as: 

                                          (7.6.36) 

Given a ground-state electron density     , consider a family of   -"electron" 

systems, with parameter      , where: 

                   
       (7.6.37) 

The ground-state is denoted   . The potential       is chosen in such a 

manner that the density at the ground-state wave function is     , i.e.: 

20 10 10 20
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                   (7.6.38) 

This is a generalization of the idea by Kohn and Sham, that the interacting 

electron system is mapped onto a non-interacting electron system with the 

same density. Except that now we map our system to a system of electrons 

with interaction    . When     we have the non-interacting system and 

        is the Kohn-Sham potential       and we have: 

                       
   (7.6.39) 

where       is the kinetic energy of non-interacting electrons. When     we 

have the fully interacting system and              is the actual external 

potential on the electron system and the energy is: 

                            
        (7.6.40) 

We can also define the obvious quantities: 

                       
         (7.6.41) 

From Eq. (7.6.36): 

                         
               

                         
                  

(7.6.42) 

With: 

                                      

Now, the ground-state energy of the intermediately interacting electrons 

obeys, by Hellmann-Feynman’s theorem: 
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              (7.6.43) 

From the second equation then: 

 

 

  
                                 (7.6.44) 

This expression is the differential form of the adiabatic connection. If we 

integrate it with respect to   from 0 to 1, we find: 

                      
 

 

        (7.6.45) 

This formula is called the "adiabatic connection" formula for the XC energy 8.  

We may write:                . Then  
 

  
        

 

  
           

 

  
     

and so 

        

  
  

        

  
    (7.6.46) 

We can rewrite      in terms of the correlation hole. Indeed, if   
       , is the 

correlation hole for the   system then using (7.6.32): 

        
 

 
 

       
       

      
        (7.6.47) 

From which: 

      
 

 
 

            
  

      
        (7.6.48) 

And we see that the correlation energy can be obtained from the the  -

averaged Coulomb hole, called the correlation hole (since it is associated with 

the correlation energy): 
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 (7.6.49) 

Note that because    
            , we have also: 

        
        (7.6.50) 

It is interesting that the correlation energy, like to Coulomb energy, can be 

represented as a Coulomb interaction of the density and a hole as in Eq. 

(7.6.48). Note however that the relevant hole as a coupling-constant  ( ) 

averaged correlation hole and not the Coulomb hole itself.  

Let us discuss one of the important consequences of Eq. (7.6.50) i.e. that the 

total charge of the correlation hole is zero for localized charge systems. If we 

rewrite the correlation energy as: 

      
 

 
 

             
  

      
        (7.6.51) 

We see that the correlation energy can be written as 

                   
    (7.6.52) 

where:  

       
  

 
 

       
  

      
    (7.6.53) 

(Note that this is just a suggestion since adding to     
   any function      

   

for which               
      will give the same correlation energy). 

Because for a fix           
   is an oveall neutral charge density in   space its 

“Coulombic potential” 
    

  

 
 is expected to decay relatively fast for r’(faster 

than     ). 



Electron Density Functional Theory Page 36 

© Roi Baer 

 

H. Derivative Discontinuity in the exchange 

correlation potential functional 

 


