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ABSTRACT
We develop a range-separated stochastic resolution of identity (RS-SRI) approach for the four-index electron repulsion integrals, where the
larger terms (above a predefined threshold) are treated using a deterministic RI and the remaining terms are treated using a SRI. The approach
is implemented within a second-order Green’s function formalism with an improved O(N3) scaling with the size of the basis set, N. Moreover,
the RS approach greatly reduces the statistical error compared to the full stochastic version [T. Y. Takeshita et al., J. Chem. Phys. 151, 044114
(2019)], resulting in computational speedups of ground and excited state energies of nearly two orders of magnitude, as demonstrated for
hydrogen dimer chains and water clusters.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0015177., s

I. INTRODUCTION

Many-body perturbation theory (MBPT) based on Green’s
function (GF) approaches [e.g., the Møller–Plesset (MP) perturba-
tion theory,1 the second-order Green’s function (GF2) approach,2

and the GW3 approximation] have proven very useful in predict-
ing the ground state properties beyond the limitations of den-
sity functional theory (DFT) and the Hartree–Fock (HF) method
as well as in predicting quasi-particle and neutral excitation. In

these methods, correlations are treated systemically by expand-
ing the self-energy (which contains the information of correla-
tions) in the Coulomb2,4 or screened Coulomb5–7 interactions.
MBPT has been applied to a variety of molecular and bulk sys-
tems in predicting, e.g., correlation energies, ionization potentials
and electron affinities,8–22 and excited states.7,15,23–26 Excluding sev-
eral recent applications,27–33 MBPT has been limited to relatively
small systems due to the steep computational scaling with the system
size.
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A particularly interesting implementation of MBPT, relevant to
the applications reported below, is based on a second-order approxi-
mation to the electron self-energy,2,4,34 which has received increasing
attention in recent years.8–10,35 In contrast to the GW approxima-
tion,1 dynamical exchange correlations are included explicitly in the
GF2 self-energy to the second order in Coulomb interactions, pro-
viding accurate ground state energies36,37 and quasi-particle ener-
gies.9,10,38,39 Although the results of recent studies are extremely
promising, the GF2 approach suffers from a high computational
cost [O(N5)], limiting its application to relatively small system
sizes.

To overcome this limitation, two stochastic formulations were
recently introduced to reduce the computational scaling. Neuhauser
et al.40 developed a stochastic decomposition of the imaginary time
GF to reduce the overall scaling of GF2 to O(N3). Takeshita et al.41

and Dou et al.42 proposed an approach that builds on the stochas-
tic resolution of identity (SRI) for the electron repulsion integrals
(ERIs)43 to describe both ground and quasi-particle excited states.
Similar to the deterministic resolution of identity (RI),44–48 the SRI
decouples the four-index ERIs. While the number of auxiliary bases
increases with the system size for the RI, the number of stochas-
tic orbitals in the SRI is independent of the system size, resulting
in an overall O(N3) scaling. However, the SRI technique comes at
the cost of introducing a statistical error in the energy and nuclear
forces,43,49–52 which can be controlled by increasing the number of
stochastic realizations, Ns. While the overall scaling of the stochastic
formulations of GF2 is similar to DFT and HF, achieving chem-
ical accuracy requires a large number of stochastic realizations,
resulting in increasingly longer computational time, even for small
systems.41,42

In this work, we develop a range-separated stochastic reso-
lution of identity (RS-SRI) approach to decouple the four-index
ERIs, where the short-range ERIs (larger values) are treated deter-
ministically using the resolution of identity (RI)44–48 and the
remaining terms are treated using the stochastic resolution of
identity (SRI).43 The RS-SRI approach allows for a significant
reduction in the statistical error without the need to increase the
number of stochastic realizations while maintaining the overall
O(N3) scaling. We apply the RS-SRI technique to GF2 theory and
demonstrate its ability to reduce the overall computational scal-
ing from O(N5) to O(N3) as well as increase the sampling effi-
ciency by nearly two orders of magnitude as compared to the SRI
technique.

II. RANGE-SEPARATED STOCHASTIC RESOLUTION
OF IDENTITY

Consider a generic many-body electronic Hamiltonian in the
second-quantization representation,

Ĥ =∑
ij
hijâ†

i âj +
1
2∑ijkl

vijklâ
†
i â

†
k âlâj, (1)

where â†
i and âi are the Fermionic creation and annihilation opera-

tors, respectively, for an electron in orbital χi(r). In the applications
below, χi(r) is chosen to be an atomic orbital, but we do not use
the locality of the basis to reduce the scaling or do we introduce
a cutoff to compute the ERIs [see Eq. (2)] or the overlap matrix

[see Eq. (3)]. Therefore, the formalism and the resulting scaling
reported below are general for any choice of basis. The creation
and annihilation operators obey the following anti-commutation
relationship:

{âi, â†
j } = Sij, (2)

where Sij = ∫χi(r)χj(r)dr is the matrix element of the overlap matrix
S. In Eq. (1), hij is the matrix element of the one-body Hamiltonian
and vijkl is the four-index ERI (vijkl ≡ (ij|kl)),

vijkl =∬ dr1dr2
χi(r1)χj(r1)χk(r2)χl(r2)

∣r1 − r2∣
. (3)

Describing correlations within a many-body perturbation tech-
nique beyond the mean-field approximation relies on the contrac-
tion of vijkl (or powers of vijkl), a task that becomes computa-
tionally intractable with increasing levels of accuracy. A common
approach to reduce the computational complexity is based on the
resolution of identity (RI), where the four-index ERIs in Eq. (3)
are approximated by products of three-index ERIs and two-index
ERIs,44,46–48

vijkl ≈
Naux

∑
AB
(ij∣A)(V)−1

AB(B∣kl). (4)

Here, χA(r) and χB(r) are the auxiliary orbitals, and (ij|A) and VAB
are the three-index and two-index ERIs respectively,

(ij∣A) =∬ dr1dr2
χi(r1)χj(r1)χA(r2)

∣r1 − r2∣
, (5)

VAB =∬ dr1dr2
χA(r1)χB(r2)

∣r1 − r2∣
. (6)

For convenience, we define a new set of three-index ERIs KQ
ij ,

KQ
ij =

Naux

∑
A
(ij∣A)(V)−

1
2

AQ , (7)

such that the four-index ERI can be expressed in terms of three-
index ERIs only,

vijkl =
Naux

∑
Q

KQ
ij K

Q
kl . (8)

The advantage of the above decomposition is that the resolution
of identity reduces the number of two-body ERIs from O(N4) to
O(N2Naux), where N is the size of the atomic basis and Naux is
the size of the auxiliary basis. However, since Naux increases nearly
linearly with the size of the atomic basis N and since the calcula-
tion of KQ

ij scales as O(N4), the approach does not always reduce
the computational scaling of the correlation energy for, e.g., MP2
and GF2.41–43

Recently, we have introduced a stochastic version of the reso-
lution of identity, which provides a framework to reduce the scal-
ing for contraction within many-body perturbation techniques at
the account of introducing a controlled statistical error in the cal-
culated observables (e.g., the forces on the nuclei and the energy
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per electron). The balance between accuracy and efficiency is con-
trolled by the number of stochastic realizations (Ns) according to
the central limit theorem. The stochastic RI approach utilizes the
same set of three-index ERIs (ij|A) while circumventing the need to
directly compute KQ

ij by introducing a set of Ns stochastic orbitals,
{θξ}, ξ = 1, 2, . . ., Ns. The stochastic orbitals are defined as arrays of
length Naux with randomly selected elements 1 or −1, i.e., θξA = ±1.
Defining

Rξ
ij =

Naux

∑
AQ
(ij∣A)(V)−

1
2

AQθ
ξ
Q

=

Naux

∑
A
(ij∣A)

Naux

∑
Q
(V)−

1
2

AQθ
ξ
Q, (9)

the expression for vijkl can be reduced to

vijkl ≈
1
Ns
∑
ξ
Rξ
ijR

ξ
kl ≡ ⟨RijRkl⟩θ, (10)

where ⟨⋯⟩θ implies a statistical average over the stochastic orbitals,
{θ}. The overall computational scaling of the Rξ

ij matrices is O(NsN3),
but Ns is found to be independent of the system size for different
applications.25,29,41–43,49,53 The SRI technique has been successfully
used to reduce the scaling of the correlation energy within MP2 and
GF2 theories, from O(N5) to O(N3).

The above approach has been implemented for simple
molecules and for hydrogen chains of different lengths in order to
assess its accuracy for large systems.41–43 To converge the results
to chemical accuracy required a rather large number of stochas-
tic orbitals (Ns ≈ 1000), which limits the application of the SRI
technique to relatively small systems (due to the large “prefac-
tor”), with N → 1000, still exceedingly larger than the deterministic
approach.41–43 In order to reduce the number of stochastic orbitals
and to allow for a smaller statistical error, we first sort the ERIs (ij|A)
according to their magnitude and keep only those that are larger
than a threshold,

(ij∣A)L =
⎧⎪⎪
⎨
⎪⎪⎩

(ij∣A) if ∣(ij∣A)∣ ≥ ϵ′
N {∣(ij∣A)∣}

max
j

0 otherwise.
(11)

Here, {∣(ij∣A)∣}max
j is the maximal value of |(ij|A)| for each j and ϵ′

is a predefined parameter. The superscript L (or S) denotes large
(or small) values. By setting the cutoff threshold to depend on ϵ′

N ,
the number of nonzero elements in (ij|A)L for each j scales as O(N)
[rather than O(N2) if no threshold is used or O(1) if a fixed thresh-
old ϵ′ is used]. This implies that the total non-vanishing elements in
(ij|A)L scale as O(N2). We then define [KQ

ij ]
L as

[KQ
ij ]

L
=

Naux

∑
A
(ij∣A)L(V)−

1
2

AQ (12)

and keep only the terms that are larger than a predefined threshold,
namely, we set [KQ

ij ]
L
= 0 for values below the threshold according

to

[KQ
ij ]

L
=

⎧⎪⎪
⎨
⎪⎪⎩

[KQ
ij ]

L if ∣[KQ
ij ]

L
∣ ≥ ϵ{∣[KQ

ij ]
L
∣}

max

0 otherwise.
(13)

The calculation of [KQ
ij ]

L using the above procedure scales as O(N3).
We proceed by defining

[Rξ
ij]

L
=

Naux

∑
Q
[KQ

ij ]
L
θξQ, (14)

[Rξ
ij]

S
= Rξ

ij − [R
ξ
ij]

L
, (15)

where Rξ
ij is defined above in Eq. (9) and the computational scaling

for both terms, [Rξ
ij]

L
and [Rξ

ij]
S
, is O(N3). Using these definitions,

the four-index tensor vijkl can be rewritten as

vijkl =
Naux

∑
Q
[KQ

ij ]
L
[KQ

kl]
L

+ ⟨RL
ijR

S
kl⟩θ + ⟨RS

ijR
L
kl⟩θ + ⟨RS

ijR
S
kl⟩θ. (16)

Equation (16) is referred to as the range-separated stochastic res-
olution of identity (RS-SRI). The RS-SRI reduces to the SRI for
ϵ = 1 and to the deterministic RI for ϵ = 0. This suggests that ϵ
can be used as a control parameter balancing the computational
efficiency and statistical errors. For optimal choices of ϵ, the contri-
bution of∑Naux

Q [KQ
ij ]

L
[KQ

kl]
L

in Eq. (16) must be larger than the other
terms.

III. APPLICATION TO SECOND-ORDER GREEN’S
FUNCTION

We now apply the above formalism to the second-order Mat-
subara Green’s function (GF2) theory.40–42 The main entity in
the GF2 theory is the Matsubara single-particle, finite tempera-
ture, Green’s function given by (we set h̵ = 1 unless otherwise
stated)

Gij(τ) = −⟨Tcâi(τ)â†
j ⟩, (17)

where âi and â†
j are defined above in Sec. II, Tc is a time ordering

operator, and τ is an imaginary time point along τ ∈ (0, −β). In
the above, we have used the Heisenberg picture for the operators:
âi(τ) = e(Ĥ−μN̂)τ âie−(Ĥ−μN̂)τ , where N̂ = ∑ij Sijâ

†
i âj is the number

operator and Ĥ is the many-body Hamiltonian defined in Eq. (1).
The average is taken with respect to the grand canonical partition
function ⟨⋯⟩ = Z−1Tr[(⋯)e−β(Ĥ−μN̂)], where Z = Tr[e−β(Ĥ−μN̂)] is
the normalization factor, β = 1/kBT is the inverse temperature, and
μ is the chemical potential.

The Matsubara GF obeys the following Dyson equation:

− S∂τG(τ) = δ(τ) + (F − μS)G(τ) + ∫
β

0
dτ1Σ(τ − τ1)G(τ1), (18)

where F is the Fock matrix given by

Fij = hij − 2∑
kl
Gkl(β

−
)(vijkl −

1
2
vilkj) (19)

and Σ is the self-energy. In the second-order Born approximation,
the self-energy (in the closed shell case) is given by
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Σij(τ) = ∑
klmnpq

vimqk(2vlpnj − vnplj)Gkl(τ)Gmn(τ)Gpq(β − τ). (20)

The above form scales as O(N5) using the appropriate contraction.
The Matsubara Green’s function for the Fermionic systems

obeys the following anti-symmetric relationship: G(τ) = −G(τ + β).
The anti-symmetry feature allows for a Fourier representation of
G(τ) in imaginary frequency,

G̃(iωn) = ∫

β

0
eiωnτG(τ). (21)

Here, iωn = i(2n + 1) πβ are the Matsubara frequencies, and the
inverse Fourier transform is defined by

G(τ) =
1
β∑n

e−iωnτG̃(iωn). (22)

The Dyson equation [cf. Eq. (18)] can then be solved in the fre-
quency domain,

G̃(iωn) =
1

[G̃0(iωn)]−1 − Σ̃(iωn)
, (23)

where Σ̃(iωn) is the Fourier transform of the self-energy [Eq. (20)]
and G̃0(iωn) is the non-interacting GF,

G̃0(iωn) = [(μ + iωn)S − F]−1. (24)

Since the self-energy Σ̃(iωn) depends on G̃(iωn) itself, Eq. (23) as
well as Eq. (20) must be solved self-consistently. This is done by
first performing a Hartree–Fock calculation to obtain the overlap
matrix S, the Fock matrix F, and the chemical potential μ. The Fock
matrix can then be used for constructing the non-interacting GF
[cf. Eq. (24)] that serves as our initial guess of G̃(iωn) = G̃0(iωn).
The next step involves the calculation of the self-energy, which is
preformed in the imaginary time domain [Eq. (20)]. The self-energy
is then used to update the GF in Eq. (23), and the latter is used
to update the Fock matrix in Eq. (19). It is often necessary to con-
serve the number of particles Ne = −2∑ijGij(τ = β−)Sij. This can be
achieved by tuning the chemical potential μ.

The computational bottleneck in GF2 is the calculation is the
self-energy, which scales formally as O(N5). Using the RS-SRI rep-
resentation for vijkl given by Eq. (16), the self-energy can be written
as

Σij(τ) = ∑
klmnpq

Gkl(τ)Gmn(τ)Gpq(β − τ)

×
⎛

⎝

Naux

∑
Q
[KQ

im]
L
[KQ

qk]
L

+ ⟨RL
imR

S
qk⟩θ + ⟨RS

imR
L
qk⟩θ + ⟨RS

imR
S
qk⟩θ

⎞

⎠

×

⎡
⎢
⎢
⎢
⎢
⎣

2
⎛

⎝

Naux

∑
Q
[KQ

lp]
L
[KQ

nj]
L

+ ⟨RL
lpR

S
nj⟩θ′ + ⟨RS

lpR
L
nj⟩θ′ + ⟨RS

lpR
S
nj⟩θ′
⎞

⎠

−
⎛

⎝

Naux

∑
Q
[KQ

np]
L
[KQ

lj ]
L

+ ⟨RL
npR

S
lj⟩θ′ + ⟨RS

npR
L
lj⟩θ′ + ⟨RS

npR
S
lj⟩θ′
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

.

(25)

In Sec. IV, we apply the RS-SRI to a series of hydrogen chain
molecules and compare the results to deterministic RI as well as

to SRI. We find, in practice, that the RS-SRI scales even better
than the upper theoretical limit of O(N3) and at the same time
reduces the statistical error by about an order of magnitude as shown
below.

IV. RESULTS AND DISCUSSION
In this section, we assess the performance of the RS-SRI-GF2

approach and compare the results to deterministic GF2 and SRI-
GF2 for hydrogen dimer chains HNH of length NH and on a series
of water clusters. We begin with the hydrogen chain that has been
the canonical model system to assess different electronic structure
methods. The distance between strongly bonded hydrogen atoms
was set to 0.74 Å, and the distance between weakly bonded hydro-
gen atoms was set to 1.26 Å. For each hydrogen, we used the STO-3G
basis and the CC-pVDZ-RI fitting basis for the resolution of identity
in evaluating the self-energy as well as the CC-pVDZ-JKFIT fitting
basis in evaluating the Fock matrix in Eq. (19). The inverse temper-
ature used for the calculation of the GFs was set to β = 50 inverse
Hartree, sufficient to converge the results due to the large quasi-
particle gap. We used the approach developed in Ref. 40 to perform
the discrete Fourier transform with 20 000 Matsubara frequencies
and 300 imaginary-time points.

We first test how ϵ′ and ϵ [in Eqs. (11) and (13)] affect the
final results. In Fig. 1, we plot the correlation energy per electron,
defined as40

Ecorr =
1
Ne
∫

β

0
dτ Tr (Σ(τ)G(β − τ)) (26)

for H10 as a function of ϵ for two values of ϵ′. The statistical errors
were estimated from the standard deviation σ over Nrun = 10 inde-
pendent RS-SRI-GF2 runs. The RS-SRI-GF2 results agree with the
deterministic GF2 results within the statistical error for all values of
ϵ and ϵ′. In general, we find that the statistical errors decrease with
the decreasing values of ϵ and ϵ′, consistent with the deterministic
limit defined by ϵ → 0 and ϵ′ → 0, respectively. However, for the

FIG. 1. Correlation energy per electron for H10 as a function of ϵ for two values of
ϵ′ from RS-SRI-GF2 calculations (blue symbols and lines). Orange lines denote
the deterministic results that are independent of ϵ and ϵ′. Note that the RS-SRI-
GF2 results agree with the deterministic GF2 results within the statistical error bar.
The statistical errors were estimated from the standard deviation σ over Nrun = 10
independent RS-SRI-GF2 runs.
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larger value of ϵ′, we find an optimal value of ϵ, suggesting that the
approach to the deterministic limit may not be monotonic. Clearly,
one needs to be careful when choosing the optimal thresholds for
range separation. Below, for hydrogen molecule chains, we will set
ϵ′ = 0.02 and ϵ = 0.1 as our thresholds for RS-SRI calculations unless
otherwise noted.

In Fig. 2, we plot the correlation energy per electron for a
series of hydrogen dimer chains. We compare the results obtained
using the RS-SRI-GF2 with SRI-GF2 and for small systems, with
deterministic calculations. We find, as expected, that the corre-
lation energy per electron is roughly independent of the length
of the chain. Furthermore, both RS-SRI-GF2 with SRI-GF2 agree
with the deterministic results within their statistical error. How-
ever, the statistical error for the same number of stochastic orbitals
(Ns) is significantly smaller (by nearly an order of magnitude) for
RS-SRI-GF2 compared to SRI-GF2 for the entire range of sys-
tem sizes. The error bar was estimated as the standard deviation
σ, where we have used Nrun = 10 runs to estimate the statistical
fluctuations.

In Fig. 3, we plot the correlation energy per electron as a
function of the inverse of the number of stochastic orbitals ( 1

Ns
)

for H80, H200, and H500. We find that the statistical fluctuations
decrease as 1

√

Ns
, indicated by the decrease in the magnitude of

the error bars. For Ns = 800, we compare the RS-SRI-GF2 with
the SRI-GF2 (red symbol, Fig. 3) for H500. Clearly, the statistical
noise is much larger (by about a factor of 10) compared to the
RS-SRI-GF2 result (green symbols). We also find that the statis-
tical fluctuations in the correlation energy per electron are inde-
pendent of the system size, consistent with Ns being indepen-
dent on N, similar to other implementation of stochastic orbital
techniques.25,29,41–43,49,53

A closer examination of the results shown in Fig. 3 suggests
that for H500, the correlation energy per electron depends linearly
on 1/Ns. This dependence has been discussed and analyzed in Ref. 40

FIG. 2. Correlation energy per electron [cf. Eq. (26)] for a series of hydrogen dimer
chains of different lengths (NH is the number of hydrogen atoms). The error bar
is estimated by the standard deviation σ over Nrun = 10 independent runs. We
have used Ns = 800 stochastic orbitals for both the RS-SRI-GF2 and the SRI-GF2
calculations. Note that both stochastic approaches agree with the determinis-
tic approach (calculated only for the smaller system sizes) within the statistical
error.54

FIG. 3. The correlation energy per electron as a function of 1/Ns for H80, H200, and
H500 obtained using the RS-SRI-GF2. For Ns = 800, we also show the result for
NH = 500 using the SRI-GF2 approach (red symbol). Note that, for clarity, we have
shifted slightly the values of the x axis for different system sizes.

and was attributed to the existence of a bias resulting from the non-
linear dependence of the correlation energy on the stochastic pro-
cess (see the Appendix for a complete derivation of the bias). In
comparison to a previous work,40 we find that the bias is rather
small, well within the statistical errors, and thus, its existence is
questionable.

In Fig. 4, we plot the computational wall time of the different
GF2 approaches (deterministic GF2, RS-SRI-GF2, and SRI-GF2) as
a function of the length of the hydrogen atom chain, NH. All calcu-
lations are performed on a single node with the 32-core Intel-Xeon
processor E5-2698 v3 (“Haswell”) at 2.3 GHz. The deterministic GF2
scales as O(N5.1), the SRI-GF2 scales as O(N3.1), and the current

FIG. 4. Computational wall time of the different GF2 approaches (deterministic
GF2, RS-SRI-GF2, and SRI-GF2) as a function of NH. Computational scalings are
O(N5.1), O(N2.2), and O(N3.1) from fitting (solid lines). The inset shows the scaling
of computing [KQ

ij ]L (black symbols), which is fitted by O(N3) (black solid line), as
well as the scaling of the deterministic portion of the self-energy (terms that only
involve [KQ

ij ]L but not RL
ij or RS

ij (cyan symbols), which is fitted by O(N2) (cyan
solid line).
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FIG. 5. Correlation energy per electron for the water molecule cluster. The error
bars were estimated from the standard deviation σ over Nrun = 10 runs. We have
used Ns = 800 stochastic orbitals for both RS-SRI-GF2 and SRI-GF2 calculations.
Note that both stochastic approaches agree with the deterministic approach within
the statistical error. We have set ϵ′ = 0.005 and ϵ = 0.025 in the RS-SRI-GF2
calculations.

approach, for the same level of accuracy as in the SRI-GF2, scales
as O(N2.2), slightly better than the theoretical limit of O(N3). Note
that the RS-SRI-GF2 approach has a much smaller total wall time
compared to the other approaches, across the entire system range
studied. As additional checks, the inset of Fig. 4 shows the scaling
of computing [KQ

ij ]
L as well as the scaling of the deterministic por-

tion of the self-energy (terms that only involve [KQ
ij ]

L but not RL
ij

or RS
ij). The former scales as O(N3), and the latter is found to scale

as O(N2).
Finally, we demonstrate that the range-separated stochastic res-

olution of identity method is also useful for three dimensional sys-
tems. In Fig. 5, we plot the correction function per electron for a
series of water clusters. We set ϵ′ = 0.005 and ϵ = 0.025 in the RS-
SRI-GF2 calculations. Note that, again, the SRI-GF2 as well as the
RS-SRI-GF2 results agree with the deterministic GF2 results within
the statistical errors, which are significantly smaller for the RS-SRI-
GF2 approach. The statistical error is estimated by the standard
deviation over Nrun = 10 runs. The computational scaling for the
water cluster is found numerically to beO(N2.4) (not shown), slightly
better than the theoretical limit of (N3). This implies that the range-
separated stochastic resolution of identity approach is also useful to
reduce the computational scaling as well as statistical error for 3D
structures.

V. CONCLUSIONS
We have developed a range-separated stochastic resolution of

identity approach to decouple the four-index electron repulsion
integrals and implemented the approach within the second-order
Green’s function formalism, GF2. The RS-SRI technique can be
viewed as a hybridization of the RI and SRI techniques, leveraging
from both the accuracy of the RI and the reduced computational
complexity of the SRI approaches. Results calculated for hydro-
gen dimer chains of varying lengths and for water clusters show
an improved scaling of O(N2.2) with the size of the basis, N. In

comparison to our previous fully stochastic approach, the RS-SRI-
GF2 approach significantly reduces the statistical error, resulting
in computational wall times that are nearly two orders of magni-
tude shorter compared to the SRI-GF2. While we focused in this
work on the specific implementation of the RS-SRI, the approach
lends itself to higher-order approximations to the self-energy and for
going beyond ground state properties. Future work should assess the
performance of this RS-SRI technique for a wider range of geome-
tries as well as its applicability to the calculation of excited state
properties.
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APPENDIX: BIAS AND STOCHASTIC ERROR
In this appendix, we provide a short analysis of the origin of the

bias and its interplay with the statistical error. Consider the general
case where g is the observable of interest given by

g = G(⟨x⟩), (A1)

where G is some smooth function and ⟨x⟩ is the expected value of a
random variable x, which also has the variance σ2 = ⟨(x − ⟨x⟩)2

⟩,
Using Ns independent samples, xn, n = 1, . . ., Ns, we define

yNs as

yNs =
1
Ns

Ns

∑
n=1

xn, (A2)

which has the following properties:

⟨yNs − ⟨x⟩⟩ = 0, (A3)

⟨(yNs − ⟨x⟩)
2
⟩ =

σ2

Ns
. (A4)

We now Taylor expand G(yNs) near ⟨x⟩,

G(yNs) = G(⟨x⟩) + G′(⟨x⟩)(yNs − ⟨x⟩) (A5)

+
1
2
G′′(⟨x⟩)(yNs − ⟨x⟩)

2 (A6)

+O((yNs − ⟨x⟩)
3
). (A7)
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According to the central limit theorem, the expectation value of
g = G(⟨x⟩) is then given by

⟨gNs⟩Nrun = G(⟨x⟩) +
1
2
G′′(⟨x⟩)

σ2

Ns
(A8)

±G′(⟨x⟩)
σ

√
NsNrun

. (A9)

The second term on the right-hand side of the above equation is
what we refer to as bias, and the last term is the statistical error.
Note that bias depends linearly on 1/Ns, whereas the statistical error
depends on 1/

√
Ns.
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