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Linear-scaling implementations of density functional theory (DFT) reach their
intended efficiency regime only when applied to systems having a physical size
larger than the range of their Kohn–Sham density matrix (DM). This causes a prob-
lem since many types of large systems of interest have a rather broad DM range
and are therefore not amenable to analysis using DFT methods. For this reason, the
recently proposed stochastic DFT (sDFT), avoiding exhaustive DM evaluations, is
emerging as an attractive alternative linear-scaling approach. This review develops
a general formulation of sDFT in terms of a (non)orthogonal basis representation
and offers an analysis of the statistical errors (SEs) involved in the calculation.
Using a new Gaussian-type basis-set implementation of sDFT, applied to water
clusters and silicon nanocrystals, it demonstrates and explains how the standard
deviation and the bias depend on the sampling rate and the system size in various
types of calculations. We also develop a basis-set embedded-fragments theory,
demonstrating its utility for reducing the SEs for energy, density of states and
nuclear force calculations. Finally, we discuss the algorithmic complexity of sDFT,
showing it has CPU wall-time linear-scaling. The method parallelizes well over
distributed processors with good scalability and therefore may find use in the
upcoming exascale computing architectures.
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1 | INTRODUCTION

Density functional theory (DFT) is emerging as a usefully accurate, general-purpose computational platform for predicting
from first principles the ground-state structure and properties of systems spanning a wide range of length scales, from single
atoms and gas-phase molecules, through macromolecules, proteins, nanocrystals, nanosheets, nanoribbons, surfaces, interfaces
up to periodic or amorphous homogeneous or heterogeneous materials.1–5 Significant efforts have been diverted toward the
development of numerical and computational methods enabling the use of DFT for studying extensive molecular systems.
Several routes have been suggested: linear-scaling approaches6–32 relying on the sparsity of the density matrix (DM),33 DFT-
based tight-binding (DFTB) methods34–36 which reduce the numerical scaling using model Hamiltonians. Moreover, signifi-
cant efforts have gone toward developing orbital-free DFT36,37 approaches using density-dependent kinetic energy functionals.
The first two types of approaches mentioned above are designed to answer questions typically asked about molecules, while
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for materials and other large-scale systems, we are more interested in coarse-grained properties. For example, with molecules,
one is interested in bond orders, bond lengths and spectral lines; while for large systems we are more interested in atomic den-
sities, pair-correlation distributions (measured using neutron scattering), as well as charge/spin densities, polarizabilities and
optical and electrical conductivity. In molecules, we strive to understand each occupied/unoccupied Kohn–Sham
(KS) eigenstate while in large systems we are concerned with the density of hole and electron states.

Of course, detailed “molecular type” questions can also arise in large systems, primarily when the processes of interest
occur in small pockets or localized regions — for example, biochemical processes in proteins, localized catalytic events on a
surface, impurities in solids, etc. Here, a combination of methods, where the small subsystem can be embedded in the larger
environment is required.

In this advanced review, we will focus on the stochastic DFT (sDFT) approach, developed using grids and plane-waves in
recent years38–42 but also based on ideas taken from works starting in the early 1990s, mainly within the tight-binding elec-
tronic structure framework.43–50 We make the point that the efficiency of sDFT results from its adherence to answering the
coarse-grained “large system questions” mentioned above, rather than those asked for molecules.

The new viewpoint taken here is that of stochastic DFT using nonorthogonal localized basis-sets. The primary motivation
behind choosing local basis-sets is that they are considerably more compact than plane-waves and therefore may enable study-
ing significantly larger systems. Deterministic calculations using local basis-sets are more readily applicable to large systems,
and thus can generate useful benchmarks with which the statistical errors (SEs) and other properties characterizing sDFT can
be studied in detail.

The review includes three additional sections, further divided into subsections, to be described later. Section 2 reviews the
theory and techniques used for nonorthogonal sDFT and studies in detail the SEs and their dependence on sampling and sys-
tem size. In Section 3 we explain the use of embedded fragments and show their efficiency in reducing the stochastic errors of
sDFT. Section 4 summarizes and discusses the findings.

2 | THEORY AND METHODS

In this section, we discuss three formulations of KS-DFT represented in nonorthogonal basis-sets. Since the issue of algorith-
mic scaling is at the heart of developing DFT methods for large systems, we emphasize for each formulation the associated
algorithmic complexity (so-called system-size scaling). We start with the traditional basis-set formulation of the KS equations
leading to standard cubic-scaling (Section 2.1). Then, showing how, by focusing on observables and exploiting the sparsity of
the matrices, a quadratic-scaling approach can be developed with no essential loss of rigor or accuracy (Section 2.2). Most of
the discussion will revolve around the third and final approach, stochastic DFT, which estimates expectation values using sto-
chastic sampling methods, as described in Section 2.3. This latter approach leads, to linear-scaling complexity.

2.1 | Traditional basis-set formulation of KS equations with cubic scaling

The KS-DFT is a molecular orbitals (MOs) approach which can be applied to a molecular system of Ne electrons using a
basis-set of atom-centered atomic orbitals (AOs) ϕα(r), α = 1, … , K. The basis functions were developed to describe the
electronic structure of the parent atom, and for molecules they are the building blocks from which the orthonormal MOs are
built as superpositions:

ψn rð Þ =
XK
α = 1

ϕα rð ÞCαn, n = 1,…,K ð1Þ

In the simplest “population” model, each MO can either “occupy” two electrons (of opposing spin) or be empty. The occupied
MOs (indexed as the first Nocc = Ne/2 MOs) are used to form the total electron density:

n rð Þ = 2 ×
XNocc

n

ψn rð Þj j2 ð2Þ

The coefficient matrix C in Equation (1) can be obtained from the variational principle applied to the Schrödinger equa-
tion, leading to the Roothaan-Hall generalized eigenvalue equations51,52 (we follow the notations in Refs.53–55):

FC = SCE ð3Þ
Here, Sαα0 = hϕα|ϕα0i is the K × K overlap matrix of the AO's, E is a diagonal matrix containing the MO energies, ε1,…, εK, and
F = T + V en + J [n] + V xc [n] is the KS Fock matrix which includes the kinetic energy integrals, Tαα0 = ϕα − 1

2r2
�� ��ϕα0

� �
,
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the nuclear attraction integrals Ven
αα0 = ϕα v̂enj jϕα0h i, where v̂en is the electron–nuclear interaction operator, the Coulomb inte-

grals Jαα0 = ϕα vH n½ � rð Þj jϕα0h i, where vH n½ � rð Þ = Ð n r0ð Þ
r− r0j j d

3r0 is the Hartree potential, and finally, the exchange-correlation inte-

grals, Vxc
αα0 = ϕα vxc n½ � rð Þj jϕα0h i where vxc n½ � rð Þ is the exchange correlation potential.

In KS theory, the Fock matrix F and the electron density n(r) are mutually dependent on each other and must be obtained
self-consistently. This is usually achieved by converging an iterative procedure,

… ! nðrÞ ! fvH ½n�ðrÞ, vxc½n�ðrÞg ! F !OðK
3Þ fC,Eg ! nðrÞ ! …, ð4Þ

where in each iteration, a previous density iterate n(r) is used to generate the Hartree vH[n](r) and exchange-correlation vxc[n](r)
potentials from which we construct the Fock matrix F. Then, by solving Equation (3) the coefficient matrix C is obtained, from
which a new density iterate n(r) is generated via Equations (1) and (2). The iterations continue until convergence (density stops
changing with a predetermined threshold), and a self-consistent field (SCF) solution is thus achieved.

This implementation of the basis-set-based approach becomes computationally expensive for very large systems due to the
cubic scaling of solving the algebraic Roothan–Hall equations (Equation (3)). This cubic-scaling step is marked by placing
O(K3) on the corresponding arrow in Equation (4). The Coulomb integral calculation has a much lower scaling and can be
completed in a O(K log K) scaling effort, either using continuous fast-multipole methods56,57 or fast-Fourier transforms on
grids, as done here.

2.2 | Equivalent trace-based formulation with quadratic scaling

In order to lower the scaling, we can take advantage of the fact that both F and S are very sparse matrices in the AO represen-
tation. The complication, however, is that the C matrix of Equation (3) is nonsparse and therefore should be circumvented.
This is challenging since the C matrix of Equation (3) is used to extract both the eigenvalues εn and at the same time to enforce
the MO orthogonalization, both described by the matrix equations:

CTFC = E, and CTSC = I ð5Þ
The first step in circumventing the calculation of the C matrix introduces the density matrix (DM) formally defined as

P = Cf E;T , μð ÞCT ð6Þ
where f (E; T, μ) is the diagonal matrix obtained by plugging E instead of ε in the Fermi–Dirac distribution function:

f ε;T , μð Þ � 1
1 + e ε− μð Þ=kBT ð7Þ

The diagonal matrix elements, 2f (εn) (we omit designating the temperature T and chemical potential μ in f when no confusion
is expected) represent the level occupation of the MO ψn(r) (which typically holds a spin-up and a spin-down electron, hence
the factor of 2). T can be a real finite temperature or a very low fictitious one. In the latter case, the T ! 0 limit of Equation (7)
yields f(εn) = 1 for n ≤ Nocc and 0 otherwise, assuming that μ has been chosen such that Ne = 2

P
n
f εnð Þ.

In contrast to the formal definition in Equation (6) of P as a matrix, sDFT regards P as an operator expressed in terms of
F and S through the relation

P = f S− 1F;T , μ
� �

S− 1 ð8Þ
Here, S−1F is “plugged” in place of ε into the function f of Equation (7).* Just like P is an operator, our method also views S−1 as
an operator which is applied to any vector u with linear-scaling cost using a preconditioned conjugate gradient method.58 The

operator P, applied to an arbitrary vector u, uses a Chebyshev expansion9,17,44,59 of length NC: Pu =
PNC

l = 0 al T , μð Þul where al
are the expansion coefficients and u0 = S−1u, u1 = Hu0 and then ul + 1 = 2Hul − ul − 1, l = 2, 3, …., NC. In this expansion
the operator H is a shifted-scaled version of the operator S−1F bringing its eigenvalue spectrum into the [−1, 1] interval. Every
operation Pu, which involves repeated applications of H to various vectors is automatically linear-scaling due to the fact that
F and S are sparse. Clearly, the numerical effort in the application of P to u depends on the length NC of the expansion. When

the calculation involves a finite physical temperature T, NC = 2 Emax −Emin
kBT

� �
, where Emax (Emin) is the largest (smallest) eigen-

value of H. Since NC is inversely proportional to T, the numerical effort of sDFT reduces as T−1 in contrast to deterministic
KS-DFT approaches41 where it rises as T3. For zero temperature calculations one still uses a finite temperature but chooses it
according to the criterion kBT � εg where εg is the KS energy gap. For metals it is common to take fictitious low
temperatures.
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The above analysis shows then, that the application of P to a vector can be performed in a linear-scaling cost without con-
structing P. We use this insight in combination with the fact that the expectation value of one-body observables

Ô =
PNe

n = 1 ôn (where ô is the underlying single electron operator and the sum is over all electrons) can be achieved as a
matrix trace with P:

Ô
� �

= 2Tr PO½ � ð9Þ
where Oαα0 = ϕα ôj jϕα0h i is the matrix representation of the operator within the atomic basis. Equation (9) can be used to
express various expectation values, such as the electron number

Ne = 2Tr PS½ �
= 2Tr f S− 1F;T , μ

� �	 
 ð10Þ

the orbital energy

Eorb = 2Tr PF½ �
= 2Tr e S− 1F;T , μ

� �	 
 ð11Þ

where e(ε) = f(ε)ε, and the fermionic entropy

ΣF = − 2kBTr PS lnPS + I −PSð Þ ln I −PSð Þ½ �
= 2Tr σF S− 1F;T , μ

� �	 
 ð12Þ

where σF = − kB(f ln f + (1 − f ) ln(1 − f )). The expectation value of another observable, the density of states
ρs Eð Þ =P

n
δ E− εnð Þ can also be written as a trace58:

ρs εð Þ = π − 1 lim
η!0

ImTr εS−F − iηSð Þ− 1S
h i

= π − 1ImTr g S− 1F;ε
� �	 
 ð13Þ

where gðε0; εÞ = lim
η!0

1
ε− ε0 − iη.

Since the DM is an operator in the present approach, the trace in Equation (9) can be evaluated by introducing the unit col-

umn vectors u α0ð Þ (α0 = 1, … , K) and operating with P on them, and the trace becomes:

Ô
� �

= 2
XK

α, α0 = 1

Puðα
0Þ

� �
α
Oαα0 ð14Þ

Evaluating this equation requires quadratic-scaling computational complexity since it involves K applications of P to unit
vectors u α0ð Þ. One important use of Equation (9) is to compute the electron density at spatial point r:

n rð Þ = 2Tr PN rð Þ½ � ð15Þ
where Nαα0(r) = ϕα(r)ϕα0(r) is the overlap distribution matrix, leading to the expression

n rð Þ = 2
XK

α, α0 = 1

Pu α0ð Þ
� �

α
ϕα rð Þϕα0 rð Þ ð16Þ

Here, given r, only a finite (system-size independent) number of α and α0 pairs must be summed over. Hence, the calculation
of the density at just this point involves a linear-scaling effort because of the need to apply P to a finite number of u α0ð Þ’s. It
follows, that the density function n(r) on the entire grid can be obtained in quadratic scaling effort.† This allows us to change
the SCF schema of Equation (4) to:

…! n rð Þ! vH n½ � rð Þ,vxc n½ � rð Þf g!F�!OðK2Þ n rð Þ!…, ð17Þ
where the quadratic step is marked O(K2).

Summarizing, we have shown an alternative trace-based formulation of KS theory which focuses on the ability to apply
the DM to vectors in a linear-scaling way, without actually calculating the matrix P itself. This leads to a deterministic imple-
mentation of KS-DFT theory of quadratic scaling complexity.
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2.3 | Basis-set stochastic density functional theory with linear-scaling

The first report of linear-scaling stochastic DFT (sDFT)38 used a grid-based implementation and focused on the SD error.
Other developments of sDFT included implementation of a stochastic approach to exact exchange in range-separated hybrid
functionals42 and periodic plane-waves applications to warm dense matter41 and materials science.59 These developments were
all done using orthogonal or grid representations and included limited discussions of the SEs.

Here, sDFT is presented in a general way (Section 2.3.1), applicable to any basis, orthogonal or not. We then present a
theoretical investigation of the variance (Section 2.3.3) and bias (Section 2.3.4) errors, and using our Gaussian-type basis
code, bs-Inbar,‡ we actually calculate these SEs in water clusters§ (by direct comparison to the deterministic results) and
study their behavior with sampling and system size. Finally, in Section 2.3.5 we discuss the scaling and the scalability of
the method.

2.3.1 | sDFT formulation

Having described the quadratic scaling in the previous section, we are but a step away from understanding the way sDFT
works. The basic idea is to evaluate the trace expressions (Equations (9)–(16)) using the stochastic trace formula60:

Tr M½ � = E
XK
αα0

χαMαα0χα0

( )
� E χTMχ

� � ð18Þ

where M is an arbitrary matrix, χα are K random variables taking the values ±1 and E{χTMχ} symbolizes the statistical
expected value of the functional χTMχ. One should notice that Equation (18) is an identity, since we actually take the expected
value. However, in practice we must take a finite sample of only I independent random vectors χ's. This gives an approximate
practical way of calculating the trace of M:

Tr M½ �≈TrI M½ � � 1
I

XI
i = 1

χi
� �T

Mχi ð19Þ

From the central limit theorem, this trace evaluation introduces a fluctuation error equal to

Var TrI M½ �ð Þ = Σ2
M

I
ð20Þ

where Σ2
M = Var Tr1 M½ �ð Þ is the variance ofPK

αα0 χαMαα0χα0 (discussed in detail below). This allows to balance between statis-
tical fluctuations and numerical effort, a trade-off which we exploit in sDFT.

With this stochastic technique, the expectation value of an operator Ô becomes (c.f., Equation (14)):

Ô
� �

= 2E Pχð ÞT Oχð Þ
n o

ð21Þ

where the application of P to the random vector χ is performed in the same manner as described above for u (see the text
immediately after Equation (8)). This gives the electronic density (see Equation (16)):

n rð Þ = 2E ψPχ rð Þψχ rð Þ� � ð22Þ

yielding a vector (called a grid-vector) of density values n(r) at each grid-point. This involves producing two grid-vectors,
ψPχ(r) = (Pχ)α0ϕα0(r) and ψχ(r) = χαϕα(r), and then multiplying them point by point and averaging on the I random vectors.

2.3.2 | sDFT calculation details in the basis-set formalism

It is perhaps worthwhile discussing one trick-of-the-trade allowing the efficient calculation of expectation values of some
observables, such as Ne, Eorb, ΣF and ρs, see Equations (10)–(13). These are all expressed as traces over a function z(ε), respec-
tively f(ε), εf(ε), σF(ε) and ρe(ε). As a result, all calculations of such expectation values can be expressed as

Tr z FS− 1� �	 

=
XNC

l = 0

alml ð23Þ
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where al are the Chebyshev expansion coefficients (defined above, in Section 2.2), easily calculable, depending on the func-
tion z and:

ml = Tr χTTlχ
	 


= E χTTlχ
� � ð24Þ

are the Chebyshev moments,46 where Tl is the lth Chebyshev polynomial. The computationally expensive part of the calcula-
tion, evaluating the moments ml, is done once and then used repeatedly for all relevant expectation values. One frequent use
of this moments method involves a repeated evaluation of the number of electrons Ne until the proper value of the chemical
potential is determined.

We should note that many types of expectation values cannot be calculated directly from the moments ml. For example,
the density, the kinetic and potential energies. For these a full stochastic evaluation is needed.

Let us digress a little to explain how we make the calculations, presented in this review, that enable us to study the proper-
ties of sDFT and compare them to deterministic calculations. The code we have written for that purpose is called bs-Inbar,
and implements both the deterministic KS-DFT approach described in the present and previous sections as well as the stochas-
tic DFT to be discussed below. Following previous works,23,61 we use an auxiliary equally spaced Cartesian grid (grid spacing
Δx = 0.5a0) for calculating the electron-nuclear interaction integrals Ven

αα0 , the Coulomb repulsion integrals Jαα0, built from the
grid vector representing the density n(r) using fast Fourier transform techniques, and the exchange correlation integrals Vxc

αα0 .
This is the n(r) ! {vH[n](r), vxc[n](r)} ! F step of Equation (4). We developed efficient methods to represent the basis func-
tions on the grid to quickly generate MOs of the type of Equation (1) on the grid. These techniques are necessary for the step
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FIGURE 1 The DOS as a function of energy for a hydrogen-saturated silicon cluster (Si87H76) calculated using the all-electron Q-CHEM65 and the bs-Inbar
codes. Comparison is made for three standard Gaussian basis-sets as indicated in the panels. We used the local density approximation (LDA) for the
exchange-correlation energy. Both calculations plot the DOS of Equation (13) using kBT = 0.01Eh
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F ! n(r) of Equation (17) for generating the density n(r) from the DM Equation (16). There are some technical details, such
as the effects of core electrons, which cannot be treated efficiently on the grid, and thus are taken into account using norm-
conserving pseudopotentials techniques,62,63 and the deleterious Coulomb/Ewald images which are screened out using
the method of Ref. 64. Additional technical elements concerning the bs-Inbar implementation will be presented
elsewhere. In Figure 1 we demonstrate the validity of the deterministic bs-Inbar implementation by comparing its Si87H76

density of states (DOS) function to that obtained from the eigenvalues of an all-electron calculation within the same basis-set
(using the Q-CHEM program65). For the largest basis-set (triple zeta 6-311G) the two codes produce almost identical DOS
(with small difference at high energies), while for the smallest basis (STO-3G) the all electron result shifts strongly to higher
energies. Clearly, the bs-Inbar results are less sensitive to the basis-set, likely due to the use of pseudopotentials instead of
treating core electrons explicitly.

Having demonstrated the validity of our deterministic numerical implementation by comparing to deterministic DFT
results of Q-CHEM, let us now turn our attention to demonstrating the validity of the sDFT calculation when comparing it
to a deterministic calculation under the same conditions. In Figure 2 (top panel) where we plot, for water clusters of three
indicated sizes, the energy per electron as a function of 1/I, where I is the number of random vector χ 's used for the stochas-
tic trace formulas (Equations (22)–(24)). As the number of random vectors I grows (and 1/I drops) the results converge to
the deterministic values (shown in the figure as stars at 1/I = 0). We repeated the calculations 10 times with different ran-
dom number generator seeds and used the scatter of results for estimating the standard deviation (SD), σ, and the expected
value (these are represented, respectively, as error bars and their midpoints in the figure). It is seen that σ in the energy per
particle drops as I increases and in Figure 3 it is demonstrated that the σ drops as I−1/2, in accordance with the central limit
theorem. The average values of the energy per particle in Figure 2 drop steadily toward the converged deterministic values
(stars). The fact that the average is always larger than the exact energy, as opposed to fluctuating around it, is a manifesta-
tion of a bias δE in the method. When δE is larger than σ it drops in proportion to I−1. In Sections (2.3.3) and (2.3.4) we will
discuss and explain this behavior.
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FIGURE 2 Top panel: The estimate of energy per electron as a function of the inverse number of random vectors (1/I) for water molecule clusters of
indicated sizes, without fragments (/f0) and with fragments (discussed in Section 3) of single H2O molecules (/f1). The dotted lines are linear fit to the data
(weighted by the inverse error bar length). The deterministic results are represented at 1/I = 0 by star symbols. Bottom panel: A zoomed view of the /f1
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2.3.3 | Statistical fluctuations

It is straightforward to show that the variance of the trace formula Equation (18) is:

Σ2
M � Var

XK
αα0

χαMαα0χα0

( )

=
1
2

XK
α 6¼α0

Mαα0 + Mα0αð Þ2 ð25Þ

= symð Þ2
XK
α 6¼α0

M2
αα0

where (sym) marks an equality when M is a symmetric matrix. Therefore, from Equation (15) the variance in the density
n rð Þ is

VarI n rð Þf g =
8
I

XK
α 6¼α0

XK
β

Pαβϕβ rð Þϕα0 rð Þ
" #2

ð26Þ

The quantity inside the square brackets involves a limited number, independent of system size, of α0-β index pairs [(PS)αα0]
2

and since tr[PS] = Ne we can assume that the magnitude of the brackets squared is O Ne
K

� �2
, that is, independent of system size.

Summing over α introduces a system size dependence, hence we conclude that VarI n rð Þf g has magnitude of O Ne
I

� �
. When the

system is large enough P becomes sparse and then VarI{n(r)} will tend to become of the magnitude O 1
I

� �
, that is, system-size

independent. The same kind of analysis applies to any single electron observable Ô with sparse matrix representation:

VarI Ô
� � / Ne

I
ð27Þ

and independent of system size once P localizes. Since intensive properties are obtained by dividing the related extensive
properties by Ne, the SD per electron of intensive properties will evaluate as:

σintensive /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarI n rð Þf gp

Ne
/ 1ffiffiffiffiffiffiffi

INe
p ð28Þ

The decay of the sDFT fluctuations with system size, first pointed out in Ref. 38, is compatible with the fact
that fluctuations in intensive variables decay to zero in the thermodynamic limit.66 A numerical demonstration of
Equation (28) is given in Figure 4, for systems of varying numbers Nwaters of water molecules (all using I = 100 ran-

dom vectors χ), where σ in the energy per particle (triangles) indeed drops with system size roughly as N − 1=2
water. For

nonmetallic systems P becomes sparse as system size grows. Once this sparsity kicks in, σintensive is expected to decay

as 1= Ne
ffiffi
I

p� �
.
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in (H2O)237 without fragments (/f0, blue) and with H2O fragments (/f1, yellow, discussed in Section 3) . The dashed lines are best fit functions αI−n to the data,
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2.3.4 | Bias due to nonlinearities

In sDFT, the Hamiltonian H = S−1F is estimated using a random density, and therefore it too, is a random variable with an
expected value �H = E Hf g and a fluctuation due to the a covariance matrix σ2ij;kl = E HijHkl

� �
− �Hkl. Consider an observable

Ô with an exact expectation value Ô
� �

�H = Tr f �H;T , μð ÞS− 1O
� �

(Equations (8) and (21)). We note, that even when �H is the

exact (deterministic) Hamiltonian, the expectation values Ô
� �

H will not average to the exact value Ô
� �

�H , simply because the

function of the average of a random variable is distinct or “biased” from the average of the function: E Ô
� �

H

� � 6¼ Ô
� �

�H.

Clearly, the extent of this bias stems from how E{f(H; T, μ)} deviates from f(E{H}; T, μ) and using Taylor's theorem this can
be estimated as

E f H;T , μð Þf g− f �H;T , μð Þ = 1
2

X
i, j, k, l

σ2ij;kl
∂

∂Hij

∂

∂Hkl
f �H;T , μð Þ ð29Þ

There are three lessons from this analysis: (a) all expectation values Ô
� �

based on I random vectors in the sDFT method

suffer a bias δ Ô
� � / coVarI Hf g / VarI Ô

� �
; (b) from Equation (27) this bias in the intensive value Ô

� �
=Ne is proportional

to I−1 but independent from system size; and lastly: (c) the double derivative of f on the right-hand side of Equation (29)
(called the “Hessian”) is related in a complicated way to the curvature f 00(ε; T, μ) of the Fermi–Dirac function. This curvature
is practically zero for almost all ε except near ε ≈ μ ± kBT, and for sufficiently small temperatures, the large Fermi–Dirac cur-
vature regions are safely tucked into the HOMO-LUMO gap, so that indeed the bias can be small.

Summarizing, we find the following trends in the SEs of intensive quantities:

σintensive / 1
NeI

� �1=2

ð30Þ

δintensive / 1
I

ð31Þ

Numerical demonstrations of Equation (31) are given in Figure 3 (squares) where the bias δE/Ne is seen to drop as I−1 and
in Figure 4 (squares) where the bias is seen to be independent of the system size.

2.3.5 | Scaling and scalability

In the left panel of Figure 5 we show, using a series of water clusters how wall times scale as a function of system size for the
sDFT calculation. Because the evaluation of the Hartree potential is made with fast Fourier transforms, the effort is expected
to scale as x = N log N where N indicates the number of water molecules. When considering a single SCF iteration we find
this near-linear-scaling as expected. When considering the entire calculation until SCF convergence (which is achieved when
the change in the total energy per electron is smaller than 10−5Eh), we find the number of SCF iterations growing gently with
system size and the scaling seems to be near O(x1.16).

As demonstrated in Figure 6, we see excellent scalability with number of processors with a mere 8% decrease from the
ideal speedup when the number of cores was increased by a factor of 8. This is a result of assigning to each thread a smaller
number of random vectors. Ideal wall times are achieved when there is but one stochastic orbital per thread.¶ For the
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fits to the σ values.

These results were calculated using the STO-3G basis-set within the LDA and employed I = 100 random vectors
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systems studied in Figure 5 it is an hour for a full SCF calculation of the (H2O)1,120 system (ca. 9,000 electrons, 13,000
orbitals).

Under these conditions, the sDFT wall-times can be significantly lower than those of “conventional” basis-set DFT calcu-
lations, as shown in the right panel of Figure 5. This happens despite the fact that the program used, Q-CHEM, was remark-
ably still showing quadratic scaling since the cubic scaling component was not yet dominant.

3 | EMBEDDED FRAGMENTS METHOD

3.1 | Theory

The notion of fragments, developed first in Ref. 39, was to break up the system into disjoint pieces called fragments labeled
by the index f, and for each fragment compute a DM Pf, such that to a good approximation we can write:

P≈
X
f

Pf ð32Þ

Clearly, the coherences between different fragments are also missing from
P
f
Pf and these too are assumed small but not

totally negligible. From Equation (9), the expectation value of an arbitrary one-electron operator Ô can be expressed as a con-

tribution of two terms, Ô
� �

= 2Tr
P
f
Pf O

" #
+ 2Tr P−

P
f
Pf

 !
O

" #
, where the first is the “fragment expected value” and the
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FIGURE 5 The timing of DFT calculations of (H2O)N water clusters using the 6-31G basis-set within the LDA. Left panel: The sDFT wall time as function
of x = N log N normalized to one random orbital per thread for a full SCF calculation (blue symbols) and for a single SCF cycle (orange symbols). Dashed
lines are functions t = Axn, where n is best-fitted to the data and shown in the legend. Right panel: Wall time of a conventional SCF calculation (using Q-
CHEM65), performed on a single node, as a function of x = NlogN for a full SCF calculation (blue symbols) and for a single SCF cycle (orange symbols). The
calculations were run on an Intel Xeon CPU E3-1230 v5 @ 3.40GHz 64 GB RAM (without Infiniband networking). Each processor supports eight threads.
The sDFT results were calculated with 800 random vectors and fragments of a representative size of 128 water molecules (denoted /f128)
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(H2O)1120 (at the 6-31G basis-set level within LDA) using a total of 2,400 random vectors. Calculations were performed on several 2.30GHz Intel Xeon
E5-2650 v3 with 252 GB and Infiniband networking
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second is a correction, expressed as a small trace to be evaluated using the stochastic trace formula. Applying the stochastic
trace formula to just a small trace obviously lowers the SEs when compared to using it for a full trace.

In Ref. 39 two fragmentation procedures were considered. The first was to use natural fragments which could just be con-
sidered separately, for example, a single water molecule in a water cluster or a single C60 molecule in a cluster of C60’s. Since
the molecules are not covalently bonded they are weakly interacting and Equation (32) is expected to be satisfied to a good
degree (however, adjacent water molecules can interact via hydrogen bonds and this may reduce the efficiency of the single-
molecule fragments, as discussed below).

The efficiency of the fragments depends entirely on the closeness of the approximation in Equation (32) and therefore sig-
nificant effort has to go to developing techniques for constructing fragments. One can probably make good use of the experi-
ence gained by the biological and materials embedding methods.67–73

The notion of saturated fragments was developed further in Ref. 40 and used in silicon clusters where covalent bonds were
cut when forming the bare fragment. The dangling bonds on the surface of the bare fragments were then saturated with for-
eign H or Si atoms. This produced a saturated fragment (see Figure 7) and a special algebraic technique was developed for
carving out the bare fragment DM Pf. The results facilitated what seems to be nearly unbiased force evaluations for the atoms
in large nanocrystals, with the structure studied using Langevin molecular dynamics.

3.2 | Efficiency of the embedded fragments

To assess the utility of fragments that do not strictly require saturation, such as water fragments in water clusters, consider first
Figure 2, where we compare the energy per particle of (H2O)n, with n = 100, 237, and 471, estimated using sDFT with no
fragments (denoted /f0) and using fragments of just one water molecule (/f1). It is seen that there is a dramatic decrease in the
SD and in the bias. In Figure 3 we study in more detail (H2O)n, finding that with no fragments we are in a bias dominated
regime while the use of fragments allows us to move to a regime controlled by fluctuations. Evidently, in the latter case, the
large fluctuations mask the linear decrease of the bias with 1/I, which was so clearly visible in the former one. In Figure 4, we
study the SEs as a function of system size N, comparing the calculations with and without fragments. We see that while frag-
ments help reducing SEs, they do not change the fact that the bias is largely independent of N.

The use of fragments greatly benefits other types of sDFT observables. Consider, for example, the density of states func-
tion ρe(E) of water.

39 In the left panels of Figure 8 we plot the DOS for a (H2O)1120 cluster described using the 6-31G basis-
set comparing to the deterministic result under an identical setup. We see in the top left panel, that by using I = 400 random
vectors and small single-molecule fragments (/f1), the sDFT DOS generally follows that of the exact calculation quite closely.
However, a zoom into the frontier orbital gap shows, that even though the stochastic-based calculation exhibits, as it should, a
very low DOS in the frontier gap region, there is clearly room for further improvement, since the gap is not sufficiently well
described. Increasing the number of random vectors used from I = 400 to 1,600 improves the overall accuracy but increasing
the fragment size to 128 water molecules (/f128) is even more advantageous, as can be seen in the lower left panel of the figure.
It is evident from this description that it is crucial to develop methods that enable better fragments (in the sense that the
approximation in Equation (32) is as tight as possible). Despite the obvious utility of the fragments for the water cluster sys-
tems, there is a need to reach quite large fragments for high accuracy. Perhaps this is due to the fact that we do not saturate the
bare fragments with their neighboring molecules, as first suggested in recent unpublished work.59 Future work will test this
hypothesis.

Finally we also show in Figure 8 (right panels) the effect of fragments on the DOS of a large silicon cluster. Here, we must
use saturated fragments, as was done in Ref. 40. The DOS, compared to a deterministic calculation is again greatly improved
when fragments of size 16 silicon atoms are used (bottom right panel).
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FIGURE 7 A schematic depiction of a bare fragment (blue region) as a localized set of atoms or molecules within the large system. The fragment is first
saturated by coating it with capping atoms (red region), its saturated-DM is calculated using a deterministic DFT calculation, from which a bare DM Pf is
“carved” out by an algebraic procedure
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3.3 | Localized energy changes

So far, we have dealt with two types of observables: intensive properties (such as energy per electron) which is a highly aver-
aged quantity, and density of states which, due to the tall number of levels in large systems can be smeared, that is, locally
averaged, with little loss of essential accuracy. We now demonstrate the possibility of calculating forces on a small atom or
molecule within the large system, using stochastic DFT. Previous works concerning this issue38,40 demonstrated that the

Hellman–Feynman force Fa = −
Ð
n rð Þ ∂

∂Ra veN rð Þdr + P
a 6¼a0

ZaZa0 Ra −Rbð Þ
Ra −Rbj j3 involves a controlled variance and small bias.

Here we consider a related but different question, the possibility of systematically reducing the bias in forces on nuclei
within a localized region of interest in a large system. This is useful when modeling reactions in biomolecular systems, as
often done using the QM/MM approach, where quantum chemistry forces are used for simulating chemical reactions and other
electronic processes (charge transfer or excitation) while force fields are used for the rest of the system.67–69,74–77

For this, we take a fragment which encapsulates the region of interest and “embed” it into the system using sDFT. We
study such a process in Figure 9 where the force F exerted on a certain, marked, water molecule in a larger (H2O)237 cluster is
calculated, first by deterministic DFT (shown as a dashed red line in the figure) and then by sDFT as a function of the number
of random vectors I (F(I)), using two types of fragment sizes: 12-molecule fragments (/f12), on the left, and larger 32-molecule
fragments (/f32) on the right. We note, that F(I = 0) is the deterministic force felt by the molecule in its parent fragment. In the
right panel we show the case of a parent fragment which fully encloses the marked molecule. At I = 0 the force is already
very close to the deterministic value, indicating

P
f
Pf is an excellent approximation for P. When embedded by I > 0 stochastic

iterations, we find that fluctuations are introduced, but the error bars (marking 95% chance that E{F(I)} always include the
exact value) indicate a small bias (such that the error is not dominated by the bias). If we repeat this calculation, but use small
fragments which do not encapsulate the marked molecule, the F(I = 0) is very different from the deterministic exact force
(
P
f
Pf is a deficient approximation for P). When embedded by I > 0 stochastic iterations, the bias is gradually removed as

I grows, in accordance with the steady diminishing of the bias discussed in Section 2.3.4.
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FIGURE 8 Left panels: The LDA DOS of a cluster of 1,120 water molecules using the 6-31G basis-set computed with I = 400 and 1,600 random vectors
and using single-molecule fragments (/f1 top panel) and 128 molecule fragments (/f128 bottom left). The insets zoom on the region of the band gap. Right
panels: The LDA DOS of Si705H300, a hydrogen-terminated silicon nanocrystal, using the STO-3G basis-set computed with I = 400 and 1,600 random
vectors and using no fragments (/f0 top panel) and 16 atom fragments (/f16 bottom panel). In all panels the results are compared to deterministic calculations
under the same conditions

12 of 15 FABIAN ET AL.



We may conclude from this computational experiment that sDFT may be especially useful for studying chemical processes in
small subsystems which can be encapsulated in fragments. Without using fragments an increase in the number of samplings I needs
to be employed in order to remove the bias.

4 | SUMMARY AND DISCUSSION

The sDFT approach has been used in various means and for a selection of applications.38–42,59 The common thread for all the
previous sDFT works was its formulation using an orthogonal basis (grid or plane-wave representation). In this review, we
have focused on studying sDFT in the perspective of a local nonorthogonal basis-set. One advantage of the localized basis-set
method is that even for large systems the deterministic calculation can still be performed allowing to study in detail errors and
their dependence on system size.

The sDFT theory was described using three stages, starting from the standard basis-set formulation of DFT, leading to
cubic scaling. Next, we developed a deterministic trace-based calculation, exploiting the sparsity of the Fock and overlap
matrices, which lead to a quadratic approach but remained numerically accurate. Finally, came the sDFT which uses stochastic
sampling to evaluate the trace-based calculations, thereby lowering the scaling to linear. The price to pay is the introduction of
SEs, which one can mitigate by increasing the sampling rate. In order to study and demonstrate the sDFT properties, we devel-
oped a basis-set DFT approach using an auxiliary grid for constructing the Hartree and exchange-correlation matrices. Based
on this code we also developed the stochastic sDFT implementation. We also developed a basis-set-based fragment method
and tested its utility.

Using the code, we analyzed the SEs associated with the stochastic calculations and their dependence on the number of
stochastic samples I, the system size, N (one can take the number of electrons Ne or the basis-set size K as N), and the frag-
ment size. As in previous sDFT papers, the results demonstrated a I−1/2 and N−1/2 dependence of the statistical fluctuations.
Furthermore, we were able to explore the nature of the systematic errors in the sDFT calculation. The bias errors in stochastic
methods have been discussed before.41,78 In sDFT we show that they do not grow with system size and that they decay as I−1.
We also developed an analytical model to explain these observations.

It has also been shown, that using fragments, the noise in the results can be significantly reduced, reaching a regime where
the statistical fluctuations are the dominating contributions to the error (rather than the bias). These conclusions are in line with
the previous studies.39,40,59 By implementing the fragments we were able to calculate other observables (such as the DOS and
forces) in a much more accurate fashion for a very similar cost.

We demonstrated that our sDFT implementation displays system-size linear-scaling CPU time (Figure 5) and that it is effi-
cacious in parallel architectures (Figure 6). Indeed, it seems to reach its full utility in CPU-abundant architectures, suggesting
it may be suitable for Exascale computing.

Future work in the sDFT implementation is required for speeding up the calculations on each node, this can be achieved
by shared-memory or Graphics Processing Unit parallelization. Further development is also needed for improved fragments
which will reduce the variance and bias errors as well as reduce the number of SCF iterations. Finally, as mentioned above,
using the sDFT code to drive a Langevin sampling of the nuclear configurations40 will allow us to compute observables
related to the thermal-nuclear structure of the molecular systems.
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FIGURE 9 The force on a marked water molecule in (H2O)237 (red dashed line is the deterministic DFT value) calculated as −δE/δx where δE is the energy
difference between two positions of the molecule displaced by a distance δx = 0.05a0. On the left (right) panel we present /f12 (/f32) results. The arrow points
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ENDNOTES

*This relation can be proved by plugging E = CTFC from Equation (5) into Equation (6), giving P = Cf(CTFC; T, μ)CT, then
using the rule Af(XA) = f(AX)A (valid for functions that can be represented as power series and square matrices) obtain P = f
(CCTF; T, μ)CCT and finally using CCT = S−1 from Equation (5).
†Note that when the DM P is sparse, the evaluation of the density of Eq. 16 can be performed in linear-scaling complexity.
The stochastic method (explained in Section 2.3.1) does not exploit this sparsity explicitly.
‡Bs-Inbar is the basis-set version of our electronic structure program named “Inbar”. Inbar is the Hebrew equivalent of the
Greek λεκτρον, that is, electron, which like Ambar and Amber, of Perisan/Arabic origins, refers to the yellowish glowing fos-
silized tree resin.
§The clusters we used were produced by Daniel Spångberg at Uppsala University, Department of Materials Chemistry, and
retrieved from the ergoscf webpage http://www.ergoscf.org/xyz/h2o.php.
¶Once we apply one stochastic orbital per thread, further gain from parallelization needs to be obtained from other sources,
such as open MP techniques. This has not been implemented yet.
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