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Pinpointing extrema on a multidimensional hypersurface is an important generic problem with a
broad scope of application in statistical mechanics, biophysics, chemical reaction dynamics, and
quantum chemistry. Local minima of the hypersurface correspond to metastable structures and are
usually the most important points to look for. They are relatively easy to find using standard
minimizing algorithms. A considerably more difficult task is the location of saddle points. The
saddle points most sought for are those which form the lowest barriers between given minima and
are usually required for determining rates of rare events. We formulate a path functional minimum
principle for the saddle point. We then develop a cubic spline method for applying this principle and
locating the saddle point�s� separating two local minima on a potential hypersurface. A
quasi-Newton algorithm is used for minimization. The algorithm does not involve second
derivatives of the hypersurface and the number of potential gradients evaluated is usually less than
10% of the number of potential evaluations. We demonstrate the performance of the method on
several standard examples and on a concerted exchange mechanism for self-diffusion in diamond.
Finally, we show that the method may be used for solving large constrained minimization problems
which are relevant for self-consistent field iterations in large systems. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2916716�

I. INTRODUCTION

A detailed understanding of elementary chemical
reactions, i.e., determining the mechanisms and rates, can
be gained in principle directly from the relevant
Born—Oppenheimer potential hypersurface.1,2 However, in
all but the simplest cases, this is a multidimensional con-
glomerate and is much too intricate for direct human inter-
pretation, without additional computational steps. In prin-
ciple, molecular dynamics can be used to gain some insight
but in the case of chemical reactions, this by itself is seldom
useful because these are extremely rare events.

A topographical approach is often the only practical way
to obtain the essential characteristics of a chemical reaction.
Chemically, the most important “topographical features” are
the deep local minima, representing stable and metastable
chemical species. Next in line come the saddle points, con-
necting adjacent local minima, through which the dominant
chemically reactive paths pass. A saddle point can be de-
scribed by a limiting process. Consider all possible paths
leading from the reactants local minimum to that of the prod-
ucts. Each such path can be labeled by a number: The maxi-
mal value of the potential energy occurring as one travels
along it from reactants to products. One can now focus on
the path �there could be more than one� that has the smallest
such maximal potential and locate the point along it of maxi-
mal potential. This point is the saddle point. In the direction
of the tangent this point is a local maximum, and in any
perpendicular direction it must be nonincreasing �otherwise,
one can slightly distort the path in such a direction and ob-

tain a path of smaller maximal potential�. The gradient of the
potential function at the saddle point is therefore zero. Also,
the Hessian of the potential surface at the saddle point is
nondefinite: Some of its eigenvalues are positive while the
others are negative �typically, only one eigenvalue is nega-
tive and it points in the direction of the tangent�. Once the
location of the saddle point and its potential is determined,
one can make some rough estimates concerning the reaction
rate, using, for example, transition state theory,3,4 or some of
the more elaborate variants,5–9 or other methods.10

An additional significant topological feature is the con-
cept of minimum energy path. If one has already determined
a simple saddle point, one can reasonably easily slide from it
in two opposite directions along the instantaneous steepest
descent direction until a local minimum is reached on each
side. The paths thus taken are the two parts of the minimum
energy paths �MEPs� or reaction coordinate �other names
exist as well�.11–14 Mathematically, the MEP is a path con-
necting two local minima having the property that its tangent
is forever parallel to the local gradient of the surface. The
point of highest potential energy along the MEP is the saddle
point. Numerical methods have been developed for efficient
and stable “steepest descent sliding” along the MEP down to
the minimum.15,16

The importance of MEPs and saddle points in chemical
reaction dynamics has lead to the development of a wealth of
methods for locating them. Many of the concepts and ideas
were laid down already in early work, which was based on a
search of the saddle point.17–23 A different approach to the
problem consisted of paths represented by a chain of discrete
configurations.24,25 The configurations were iteratively im-
proved so as to bring them, in some sense, to a path similara�Electronic mail: roi.baer@huji.ac.il.
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as possible to the MEP. This approach inspired a large body
of subsequent work in which each configuration along the
path was augmented in a way that eliminates the nontangen-
tial component of the local gradient.26–28 Within these chain
of configurations or string approaches, many new and inter-
esting papers have emerged.29–33 Several excellent reviews
cover the resulting work.34–41

The importance of finding saddle points is not limited to
chemical reaction dynamics or statistical mechanics. An ef-
ficient method of saddle point search is of broad importance
for all problems that require constrained minimization. Con-
strained minimization problems can be mapped onto saddle
point searches using Lagrange multipliers.42 One important
example is in quantum chemistry, where the search for a
Kohn–Sham or Hartree–Fock self-consistent field �SCF� so-
lution can be done by minimization of the energy under the
constraints of orthonormal orbitals.43

In this paper we use a string method for locating a saddle
point on a multidimensional hypersurface. We do not try to
use the method for determining the MEP directly, because
once the saddle point is determined, one can use a variety of
existing methods for finding the MEP. As a demonstration of
the potential utility of our method for a general optimization
problem, we solve a simple constrained minimization
problem.

II. MINIMUM PRINCIPLE FOR THE SADDLE POINT

Extremal points, such as minima and saddle points, are
conventionally defined using the differential properties of the
potential energy surface �PES�.44 In this section we take a
different point of view which is necessary for understanding
the method. We define saddle points using a path functional
approach. This allows us to formulate a minimum principle
for the saddle point. Such a principle is then used in the next
section for locating the saddle point.

Consider a system of particles with coordinates
q= �q1 , . . . ,qN� and a N-dimensional potential hypersurface
v�q�. In future applications, it may be useful to consider the
nature of the coordinates �whether angular or Cartesian�.
Here, however, we simply treat the coordinates as Cartesian.
Suppose we are given two configurations, the reactants q�

and the products q�. These are assumed here to be local
minima of the potential, so the gradient vector �iv=−Fi van-
ishes and the N�N Hessian matrix of second derivatives
�i� jv is positive definite at these points. A smooth path q
connecting the reactants and products is a smooth series of
points q�t� parameterized by a parameter 0� t�1, with
q�0�=q� and q�1�=q�. Note that we use the symbol q in
several contexts: q is the entire path and q�t� is a point on it.
By “smooth” we mean that the first and second derivatives
q̇�t� and q̈�t� exist and are continuous at any t. Any path q is
a plausible chain of events leading from the reactants to the
products.

Let us now discuss how we find saddle points on the
hypersurface using paths. First, we define an energy
functional vmax�q� as the maximal energy along the path q,
mathematically,

vmax�q� � max
0�t�1

v�q�t�� . �2.1�

Let tmax�q� denote the time at which the potential maximum
is obtained �if it is obtained at several times let tmax be the
earliest�,

vmax�q� = v�q�tmax�q��� . �2.2�

As v�q�t�� obtains its maximum at t= tmax, the time derivative
of v�q�t�� must be zero and, therefore,

0 = � d

dt
v�q�t���

t=tmax

= �v�q�tmax�� · q̇�tmax� . �2.3�

The functional derivative of vmax�q� is calculated from

�vmax�q�
�q�t�

= �v�q�tmax�q���

· ��q�tmax�
�q�t�

+ q̇�tmax�
�tmax�q�

�q�t� � . �2.4�

Using Eq. �2.3� and the obvious,

�qi�tmax�
�qj�t�

= �ij��t − tmax�, i, j = 1, . . . ,N , �2.5�

we find

�vmax�q�
�q�t�

= �v�q�t����t − tmax� = �v�q�tmax�q�����t − tmax�

�2.6�

Thus, the functional derivative of vmax is different from zero
only at the maximum �when t= tmax� and then it is propor-
tional to the gradient of the potential at the maximum.

Now we minimize vmax, i.e., select the paths with the
smallest value of vmax. Suppose that q1 is one such a path.
Obviously,

vmax�q1� = min
q

vmax�q� . �2.7�

We denote also the saddle point qsp as a point of highest
potential,

qsp = q1�tmax�q1�� . �2.8�

Because q1 minimizes vmax, we must have, for all t
�vmax /�q�t�	q1

=0. Thus, using Eq. �2.6�, the gradient of the
potential at the saddle point vanishes,

�v�qsp� = 0 �2.9�

This shows that the way we defined the saddle point indeed
leads to an extremal point of the potential hypersurface.

One of the characteristics of the saddle point is that the
Hessian is not positive nor negative definite. Clearly the qsp

being a point of q1�t�, which is a minimizer of vmax, cannot
be a local maximum of the surface. We now show that it
cannot be a local minimum and, therefore, a true saddle
point. Indeed, consider the equalities
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d

dt
v�q1�t�� = �v�q1�t�� · q̇1�t�

�2.10�
d2

dt2v�q1�t�� = ���v�q1�t�� · q̇1�t�� · q̇1�t� + �v�q1�t�� · q̈1�t� .

At the saddle point �v�qsp�=0, so

d2

dt2v�q1�tmax�� = q̇1�tmax�THI q̇1�tmax� . �2.11�

Where HI =��vmax�qsp�. Since v�q�t�� obtains a maximum at
tmax, the second time derivative on the left hand side of
Eq. �2.11� must be negative. Thus,

q̇1�tmax�THI q̇1�tmax� � 0. �2.12�

This shows that HI must have negative eigenvalues and is
thus not positive definite.

III. A SPLINE FOR THE SADDLE

The path q�t� that minimizes vmax passes through the
saddle point at qsp. Let us exploit this fact in the following
way. Using cubic splines, we can define a family of smooth
paths that can be easily manipulated numerically. Within this
family, we search for a minimum of vmax. This will yield an
approximation for the saddle point. The quality of the ap-
proximation can be checked by calculating the norm of the
gradient g= 
�vmax
, which is exactly 0 at the saddle point. A
spline can be made rigid or flexible, by determining the num-
ber of anchor points �see below�. By increasing the flexibility
the saddle point can be approached. In practice, only a small
number of anchor points is necessary.

Let us now discuss the method in more detail. We use
smooth cubic splines45 �one in each dimension� for repre-
senting the paths. It is well known that splines are flexible
and are easily handled numerically. A spline is a path formed
by P polynomials connecting sequentially at P+1 anchor
points Q0 , . . . ,QP. Specifically, the spline path q̃�t� passes
through the anchor points Qp at times tp= p / P, p=0, . . . , P,

q̃�tp� = Qp. �3.1�

Any pair of sequential anchor points of the spline are con-
nected by cubic polynomials �in each dimension� of the pa-
rameter t. These are constructed in such a way as to ensure
second order smoothness: The path q̃�t�, its tangent, the ve-
locity q̇̃�t�, and the acceleration q̈̃�t� are continuous for all
t—including at the anchor points. A spline representation of
an analytical function converges as P−4. So splines form a
high order representation of any given smooth path.

For splines connecting local minima as ours, we choose
the initial and final anchors as the reactant and product con-
figurations, i.e.,

Q0 = q̃�0� � q�, QP = q̃�1� � q�. �3.2�

Furthermore, the splines are taken to be “natural splines,”
i.e., they have zero “acceleration” at the local minima,

q̈̃�0� = q̈̃�1� = 0. �3.3�

This is not necessary, but something has to be assumed for q̈
at the endpoints, and this is natural. A useful description of
splines and their construction appears in Numerical
Recipes.46

Suppose we have a spline passing near a saddle point.
One can then optimize the location of the anchor points Qp

�p=1, . . . , P−1� such that the maximal potential function,

ṽmax�Q1, . . . QP−1� = vmax�q̃� = v�q̃�tmax�� , �3.4�

is minimized. For any spline q̃, the maximal potential
vmax�q̃� and the time at which it is obtained, tmax�q̃�, can both
be determined by efficient one-dimensional maximization
methods as described below.

Similar arguments leading to Eqs. �2.4� and �2.6� can be
invoked to show that the gradient of ṽ�Q1 , . . . ,QP−1� is given
by

�ṽmax

�Qp
d =

�v�q̃�tmax��
�qn Jd

n,p, p = 1, . . . ,P − 1,

�3.5�
d = 1, . . . ,N ,

where we use the convention that repeated indices are
summed over. In Eq. �3.5�, the Jacobian is defined as

Jd
n,p �

�q̃n�tmax�
�Qp

d , n = 1, . . . ,N . �3.6�

We see from Eqs. �3.5� and �3.6� that the gradient of the
function to be minimized, ṽmax�Q1 , . . . ,QP� is established,
without the need to compute Hessians.

Using the gradient of ṽmax, Eq. �3.5�, a gradient-based
minimizing algorithm may be established to find the approxi-
mate saddle point. We found that the general purpose quasi-
Newton limited memory Broyden-Fletcher-Goldfarb-Shanno
�BFGS� method47 works extremely well for this purpose.

We are now summarizing two important numerical steps
of the method:

�1� The calculation of vmax for any given cubic spline is
done as follows. In order to find the global maximum,
we first compute the potential at K� P points equally
spaced in time along the spline curve �typically we take
K=4�. Then select the highest potential point, say at t
=k /KP. Now assume that the global maximum occurs
inside the time interval ��k−1� /KP , �k+1� /KP�. The
next step is to converge within this interval to the maxi-
mum. This is done using Brent’s method, which enjoys
fast �superlinear� convergence requiring no potential
gradients. Becuase the work done in this algorithm is
proportional to K, it is important to develop a method
for setting K to a small as possible value, without miss-
ing the global maximum. Work on this issue is along
the way.

�2� The optimal location of the spline anchor points is de-
termined by minimizing vmax using the Limited
Memory BFGS quasi-Newton method,47 based on the
gradient of the potential at tmax. This method too was
found to be super linear and highly efficient.
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The method thus suggested is variational, does not require
Hessian evaluation, and is well suited for small and large
problems. The success relies on a reasonable guess path that
passes sufficiently close to the saddle point.

IV. EXAMPLES

A. The Müller-Brown potential

We demonstrate the method on the popular benchmark,
the Müller–Brown �MB� potential surface48 �see Fig. 1�. This
system is also discussed in some detail in Ref. 30. The two-
dimensional MB potential surface consists of two main
minima with an intermediate minimum that deflects the path
at an angle. The lower minimum �“reactants”� is at r1

= �−0.5582,1.441 73� with Vmin=−146.70 and the second
�“products”� is at r2= �0.6235,0.0280� with Vmin=−108.17.
We start with a P+1=4 point spline, initially just a straight
line connecting the reactants and products.

After converging to the minimum of ṽ�Q1 , . . . ,QP�, we

can test the quality of q̃�tmax� by calculating F̃sp.
The converged spline path has no physical meaning ex-

cept for its ability to achieve a minimal vmax. This is evident
in Fig. 1 where two splines �differing in the number of an-
chor points� are shown. The paths are noticeably different
but they both pass very close to the saddle point. In Fig. 2 we

show the gradient at the saddle point F̃sp, as a function of
numerical work as the minimizing algorithm develops. The
numerical work is measured by the number of potential
evaluations �the number of gradient evaluations is about 10%
of the number of energy evaluations�. Interestingly, the effi-
ciency is not necessarily a monotonic function of the number
of anchor points P+1. This will be seen in the LEPS
problem as well.

The high precision of our method enables us to minimize
the gradient to less that 10−6. At such high precision of the
gradient, we expect the energy to be of �12 significant
digits: Vsp=−40.664 843 509. We can also determine the
position of the saddle point to 7–8 significant digits:
rsp= �−0.822 001 56,0.624 312 80�.

The efficiency of this method is studied in Fig. 3, where
the approach to the saddle point is shown as a function of the
number of potential and gradient evaluations. We compare
our results to that of other methods for this benchmark sys-
tem published in Ref. 30. The fact that we use a spline and
search for vmax along a smooth path enables us to quickly
converge to the saddle point even without actually having the
sampling points there.

FIG. 1. �Color� P+1=4 and P+1=6 anchor point spline paths minimizing
vmax. The splines start and end at the same points and both pass through the
saddle-point �center of the red circle�. Otherwise, the paths are generally
different.

FIG. 2. The gradient at the approximated saddle point of the Müller–Brown
potential as a function of number of potential evaluations during the LBFGS
minimizing iterations. Splines with 3, 4, and 5 anchor points are shown.

FIG. 3. The rate of convergence of to the saddle point of the Müller–Brown
potential. The present method using a P+1=4 point spline is compared to
the nudged elastic band �NEB� and growing string �GS� methods �data on
the latter two methods are taken from Ref. 30 for comparison�.
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B. The LEPS-type potential

The next example is again a two-dimensional benchmark
based on the LEPS potential and developed by Jonsson
et al.49 As seen in Fig. 5 this potential has two minima:
The lower minimum is at r1= �0.741 52,1.303 42�
with Vmin=−4.509 and the next minimum is at
r2= �3.001 28,−1.304 34� with Vmin=−2.620. Our method
starts with a simple approximation, which in our case is a
straight line connecting the minima. We use the simplest pos-
sible spline, having P+1=3 anchor points, i.e., only one an-
chor point is free to move. Because this is a simple problem,
this should suffice. However, it is our experience that using
very few points can lead to excessive iterations. We compare
the performance of P+1=3, 4, and 5 anchor point splines in
Fig. 4.

The most obvious feature we find is that the actual
amount of work is very sensitive to the number of anchor
points. The form of these splines is shown in Fig. 5. These
splines depict very different paths but they intersect at the
saddle point. In general, as the number of anchor points is
increased, the path is also more elaborate.

It may seem that increasing the number of anchor points
will allow faster convergence because of increased flexibil-
ity. But this is not necessarily so. The reason is that, besides
the need to evaluate the potential at more points, the surplus
flexibility of the spline tends to increase the number of mini-
mization steps. One should strive to incorporate additional
information to reduce the numerical effort. For example, if
the initial and final points of the spline are taken closer to the
saddle point, for example, at q0= �2.5,0� and q2= �1.5,0� one
still converges to the saddle point as before but with about
half the amount of numerical work �see Fig. 5 �right��.

C. Planar Lennard-Jones cluster

This example, taken from Dellago et al.,33 involves 14
dimensions. The system is a planar cluster of seven particles
with a potential energy given by the sum of the pair interac-
tions V=�i�jv�	ri−r j	�, where the pair potential is the
Lennard-Jones �LJ� potential v�r�=4�r−12−r−6�. The Initial
and final configurations are hexagonal shaped clusters �see
Fig. 8� with nearest neighbor distances that can be deter-
mined analytically to be: r0= �11952857 /6105888�1/6


1.11846006394.
We start by running a P+1=3 spline. The minimization

is quickly seen to yield a maximal energy that oscillates be-
tween two values around the value of −10 energy units. This
occurs because the spline encounters two identical barriers
and being short of anchor points it is unable to optimize one
without the other increasing. This is a typical problem when
there are not enough anchor points. In spite of this failure,
the resulting spline can serve as a good guess for a P+1=4
spline. Indeed, the situation improves somewhat: The mini-
mization still fails but now the oscillation takes place be-
tween two values close to −10.7 energy units. We further
increase the number of anchor points to P+1=6 and also
tested the cases of P+1=7 and P+1=8. This time the mini-
mization process converges �see Fig. 6� and the energy along
the spline is shown in Fig. 7. The saddle point energy is
−10.798 746. The energy of the endpoints is
−149 827 467 /11 952 857
=−12.534 867, so the barrier height is 1.736 121. The saddle
point energy is converged to these digits. To check stability,
we tried other initial guesses �random�. In all cases, we con-

FIG. 4. Convergence to the saddle point of the LEPS potential �measured by
the size of the potential surface gradient� vs the number of potential
evaluations.

FIG. 5. �Color� Left: Three splines,
with P+1=3, 4, and 5 anchor points,
for finding the saddle point. Right:
Two optimized P+1=3 splines with
different initial and final anchor
points.
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verge to the same saddle point, even though the splines are
somewhat different. This is seen in Fig. 7, where we see the
same saddle point energy �although it appears at different
values of the parameter t�. The saddle point configuration is
the same in all cases and it is shown in Fig. 8, along with the
initial and final states.

The work needed to reach the saddle point in this
14-dimensional space is about 500–600 energy calls. This is
about five to six times larger than the two-dimensional �2D�
examples considered above. This shows that, in terms of the
number of energy calls, the method scales gently
�approximately linearly� with the number of dimensions.

D. Self-diffusion in diamond

In order to study the performance of our method for
larger systems, we examine the problem of self-diffusion in a
diamond cluster. Carbon atom mobility in diamond is impor-
tant for diamond growth in thin single-crystal films50 and is

important for the understanding of self-diffusion in other tet-
rahedral crystals such as Si.51 Several conceptual mecha-
nisms involve the existence of defects such as interstitials,
vacancies, substitution atoms, etc. However, self-diffusion
can also happen in a perfect lattice via a concerted exchange
mechanism, as was studied in Si.51 An ab initio investigation
of such a self-diffusion mechanism in diamond found a large
activation energy of over 13 eV.52 Motivated by these stud-
ies, we applied our method to find the transition state for
concerted exchange in a diamond cluster involving 56 car-
bon atoms. The surface atoms of the cluster were saturated
by 78 hydrogen atoms. The electronic structure and nuclear
interactions are described using a tight binding method.53

In Fig. 9 �left�, we show the two exchanging atoms and
their six nearest neighboring atoms bonded in sp3 hybridiza-
tion. The C–C bond length calculated with the tight binding
method is 1.6 Å, slightly longer than the experimental value.
This configuration is the initial state. The final state has the
same structure, except the two atoms have exchanged.

The initial guess for the spline passing near the saddle
point was constructed from the configurations of the con-
certed exchange mechanism.51 We fed this path into the al-
gorithm allowing all carbon atoms to move during the search
for the saddle point. However, the algorithm converged ex-
tremely slowly. Thus, we decided to try another approach
composed of two stages. In the first stage, we froze all atoms
of the cluster except for the two exchanging atoms and their
six nearest neighbors. This 24 degrees of freedom �DOFs�
saddle search converged well within about 1300 iterations
�see Fig. 10�. The saddle point searches involved splines
with P+1=6 anchor points and the convergence criterion
was a gradient of 10−6 per DOF. The converged transition
state shows a planar structure with activation energy of
15.7 eV. In the second stage we used the converged spline as
the initial guess for a new saddle point search where all 56
carbon atoms were allowed to move. The number of poten-
tial evaluations for the second 168 DOF stage is also about
1300.

The saddle point shows a coplanar ethylene like struc-
ture �see Fig. 9, right� with the exchanging atoms exhibiting
double bond character �distance of �1.3Å� and sp2 bonding
�angle of 122°� with their neighbors. This transition state has
an activation energy of 12.8 eV, showing that almost 3 eV
are associated with lattice relaxation, beyond the immediate
neighborhood of the exchanging atoms. This barrier height is
similar to the value of 13.2 eV reported for the ab initio
calculation.52

The initial guess we supplied, based on the mechanism
suggested for Si,51 turned out to be problematic. This is the
reason for the nonmonotonic convergence pattern seen for
the first stage �24 DOFs� in Fig. 10. Indeed, the final saddle
point we found for the diamond cluster is not the configura-
tion suggested for the Si crystal. Even with this relatively
poor initial guess, the algorithm performed reasonably well.

V. CONSTRAINED MINIMIZATION

The saddle point search algorithm can also be used to
search for constrained minimization solutions. We raise this

FIG. 6. Convergence to the saddle point of the planar Lennard-Jones cluster
�measured by the size of the potential surface gradient� vs the number of
potential evaluations.

FIG. 7. The potential energy along the three splines �see text�.
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issue for two purposes. First, we want to check what happens
when the number of dimensions in the hypersurface grows.
Constrained minimization problems are easy to invent and
solve analytically. Second, many self-consistent field
approaches in quantum chemistry and statistical physics
involve constrained minimization.

A constrained minimization problem is stated as

minimize f�x�

subject to h�x� = 0. �5.1�

Here, x�RN is a N-dimensional vector, and h�x� are M
equality constraints. This problem can be solved once a
saddle point is located for the function

L�x,a� = f�x� − a · h�x� . �5.2�

a�RM are M Lagrange multipliers.42 The saddle point we
seek is built such that the function is a maximum in direc-
tions contained in the a space �holding x� and a minimum in
directions contained in the x space �holding a�. Thus, instead
of minimizing the function f�x�, one can find the saddle
point of L�x ,a�, considered as a function of N+M
variables.

As a warm up, let us consider the following trivial
example:

minimize x2

subject to x − 1 = 0. �5.3�

It is obvious that the constrained minimum is at x=1 and the
value of f�x� is 1. The saddle point formalism does not know
that this problem is trivial. The Lagrangian is

L�x,a� = x2 − a�x − 1� , �5.4�

as plotted in Fig. 11. Before searching for a saddle point, we
need to determine an initial and a final point of the path. This
is easily done by setting a point x̃0 for which h�x̃0��0 and a
negative ã0 and then repeatedly stepping down a descent
direction until reaching �x0 ,a0�, where L is smaller than the
estimated height of the saddle point. The same is done for xf

�but taking h�x̃f��0 and ãf �0�. Once the endpoints are set,
we use a P+1=3 anchor point spline �two points are fixed at

FIG. 8. �Color online� The initial �Q0�, saddle point �Q‡� and final �QP� configuration of the MEP. The same saddle point configuration is obtained for the two
splines.

FIG. 9. �Color online� A close-up view of two carbon atoms involved in
direct exchange along with their nearest neighbors. Left: The initial configu-
ration in the relaxed diamond and right: The saddle point configuration.
Bond lengths are in ångströms. The saddle-point structure was calculated
when all 56 carbon atoms were allowed to relax.

FIG. 10. The norm of the PES gradient per DOF vs number of potential
evaluations during the saddle point search for the concerted exchange reac-
tion in the diamond cluster. The two stages shown are the 8-mobile carbon
atom �24 DOFs� and the 56 mobile carbon atom search �168 DOFs�.
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the endpoints and thus only the middle point is free to
move�. The search for the saddle-point using our program
takes four LBFGS iterations and involves 70 L�x ,a� evalua-
tions. The saddle point is determined to be at �x ,a�= �1,2�,
and the function value is L�1,2�=12=1. The accuracy of the
algorithm allows finding the minimum accurate to 11 digits.
The minimizing spline is shown in Fig. 11.

As a last example, we want to study a multidimensional
saddle point problem. Our purpose is to demonstrate the
behavior of the algorithm as the scaling of the system grows.
Consider the minimization problem,

minimize e�1/2�2�xTx + qTx

�5.5�
subject to rTx = b ,

where x, q, and r are real vectors of dimension N. This is an
example for which the saddle point search involves N+1
variables. Thus, we can get a sense of the behavior of the
saddle point search method for many DOFs. For simplicity,
let us also require that r and q are orthogonal, rTq=0 �in the
applications bellow, q and r are selected at random and then
r is orthogonalized�.

This problem becomes a search for a saddle point of the
functional

L�x,a� = e�1/2�2�xTx + qTx − a�rTx − b� . �5.6�

We chose a simple enough problem so that there is a
tractable analytical solution. We give this solution in the
Appendix. The examples below uses �=1, random vectors
for r and q, and a random number between 0 and 1 for b.

We have repeated the saddle search associated with
Eq. �5.6� for increasingly large vales of N=10, 100,
and 1000. We find the number of iterations and function
evaluations almost independent of system size. At N=10,

there are 125 function evaluations, at N=100, 161, and at
N=1000, 185. Since each Lagrangian evaluation takes O�N�
operations, the saddle search is linear in system size. There
are also a few gradient evaluations �about 5% of the
Lagrangian evaluations�. In general, gradient evaluations
will scale quadratically for N-dimensional problems. How-
ever, in many applications, as, for example, in linear-scaling
electronic structure,43,54–57 they can be made to scale linearly
as well. Thus, this result is indicative that this saddle point
method may be useful for order-N electronic structure
calculations.

VI. SUMMARY

In this paper, we presented a straightforward method to
find the saddle point, be it the transition state of a potential
hypersurface or a solution of a constrained minimization
problem. The use of splines is the important element. This
allows us to start with a path between known initial and final
states �reactants and products� and to find a relevant saddle
point between them. The splines we use are cubic splines
having second order smoothness. This is required for the
efficiency of the saddle search.

The results we find are very encouraging since in all
cases we were able to converge to the saddle point with
extremely high accuracy and efficiency �small number of an-
chor points�. The combination of spline stiffness and flexibil-
ity allows finding solutions in multidimensional problems
such as the 2D Lennard-Jones cluster �14 DOFs�, the 56
carbon atom cluster �168 DOFs�, and the 103 DOFs in the
constrained minimization problems.

Once the saddle point is determined at high accuracy, the
minimum energy path can be constructed by standard meth-
ods developed for this purpose.15,16 In some cases this may
require some Hessian evaluations.

We have also studied a saddle point problem of con-
strained minimization, which has many chemical applica-
tions in quantum chemistry and statistical physics. While we
have not compared to other methods, we found initial indi-
cations that the present method allows an efficient minimi-
zation which is linear with the number of DOFs. In the con-
strained minimization problem, the constraints are inserted
with additional variables �the Lagrange multipliers� coming
in linearly. The same idea can be used for adding constraints
into the transition state search. This and other issues, such as
the incorporation of the present algorithm into a quantum
chemistry code, are deferred to later studies.
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APPENDIX: ANALYTICAL SOLUTION OF THE
CONSTRAINED MINIMIZATION EXAMPLE

In this appendix we simply state the analytical solution
of the constrained minimization problem setup in Sec. V
�Eq. �5.5�� and described as a saddle point problem
�Eq. �5.6��. Because of the constraint rTq=0, the optimal
x* is a linear combination of q and r, which we

FIG. 11. �Color� A contour plot of the Lagrangian in Eq. �5.4�. We depict a
spline used to locate the saddle point. The blue circles denote the position of
the P+1=3 anchor points.
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write as �1 /�2�x*= �b /�r
2�r+ �c /�q

2�q, where �r
2= �rTr��2

and �q
2= �qTq��2. The only unknown is the number c and it

can be obtained by solving the equation

c

�q
exp� c2

2�q
2� = − �q exp�−

b2

2�r
2� . �A1�

This shows that c is negative. Equation �A1� can be solved
by a few Newton–Raphson iterations. The optimal Lagrange
multiplier is a*=−��q

2b� / ��r
2c�. The constrained minimal

value is given by L�x* ,a*�=c−�q
2 /c.
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