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ABSTRACT
We develop a new scheme for determining molecular partial atomic charges (PACs) with external
electrostatic potential (ESP) closelymimicking that of themolecule. The PACs are the ‘minimal correc-
tions’to a reference set of PACsnecessary for reproducingexactly the tensor components of theCarte-
sian zero-, first- and second-molecular electrostatic multipoles. We evaluate the quality of ESP repro-
duction when ‘minimally correcting’ (MC) Mulliken, Hirshfeld or iterative-Hirshfeld reference PACs. In
all these cases, theMC-PACs significantly improve the ESPwhile preserving the reference PACs’ invari-
ance under themolecular symmetry operations. When iterative-Hirshfeld PACs are used as reference,
the MC-PACs yield ESPs of comparable quality to those of the ChElPG charge fitting method.

1. Introduction

Partial atomic charges (PACs), i.e. point charges placed
on the nuclei position of a molecule, are often used in
large-scale molecular mechanics calculations to replace
the detailed quantum mechanical charge distributions
[1–7]. The model is extremely useful, since by using
them, the long-range electrostatic forces acting between
molecules can be expressed as a sum of pairwise inter-
actions, enabling a fast computation, important espe-
cially as molecules jiggle around and rotate quite a
lot during the course of the simulation. The question
of just how to determine PACs for this purpose is
critical. We argue that the most important constraint
is the exact reproduction of the low-order electro-
static moments (ESM), the monopole Q = e

∫
ρ (r) dr,

which is the total charge of the system, the dipole
μi = e

∫
ρ (r) ridr (i = x, y, z) and the quadrupole

moment �i j = e
∫

ρ (r)
(
3rir j − δi jr2

)
dr, where eρ (r)

is the charge distribution within the molecule.1 These
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moments are of critical importance as they determine the
far-field potential produced by the molecule, as evident
from the monopole expansion:2

4πε0ϕ (r) ≡ e
∫

ρ
(
r′) ∣∣r − r′∣∣−1 dr′ (1)

= Q
r

+ μiri
r3

+ 1
2
ri�i jr j
r5

+ · · · . (2)

These low-order ESMs also control the electrostatic inter-
action energyWes between the molecule (and through it
the forces) with a weakly non-constant potential ϕother (r)
resulting from the other molecules or distant charged
sources [8]:

Wes = Qϕother + μiϕ
other
i + 1

6
�i jϕ

other
i j + · · · (3)

where ϕother
i = ∂ϕother

∂ri
and ϕother

i j = ∂2ϕother

∂ri∂r j
(estimated at

a central point within the molecule), etc. This pivotal
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3156 R. E. HADAD AND R. BAER

Figure . (Colour online) The PACs (top panels) and the ESP correlation (bottom panels) for the methyl-acetate molecule, using stan-
dard population analysis methods (left panels) and other PAC methods (right panels). The mean absolute relative deviation (MARD) of
Equation () appears in parenthesis near each PAC method. Each point in the ESP correlation plot describes a pair of potentials
[ϕPAC(r), ϕQM(r)], the abscissa is the PAC potential (Equation ()) and the ordinate is the quantum potential (Equation ()) where r is
taken from a subset of grid points of spacing	x= . Å around the molecule (see description of the grid in Section ).

dual role of ESMs is what drives the requirement that
the charge distribution of the PACs reproduces exactly
low-lying molecular ESMs (MOL-ESMs). This point was
discussed at length in [9] where the importance of
adherence to the ESMs was demonstrated. An efficient
elegant method for achieving this in as many as possible
moments has been developed [10] although inapplicable
for large molecule charges due to numerical instabilities
[11].

Another source of PACs is the quantum mechanical
population analysis (PA) techniques, such as theMulliken
(MPA) [12], Loewdin (LPA) [13], Hirshfeld (HPA) [14]
and natural population (NPA) [15] analyses. These PAs
reflect not only the charge distribution but also aspects
of the quantum mechanical wave function. In Figure 1
(top left), we show as bar-plot the PACs produced by
these methods applied to the methyl-acetate molecule.
It is seen that the different methods produce sometimes
significantly different sets of PACs, even PAC signs are
not preserved! For example, the LPA assigns positive
charges to oxygen atoms, which seems awkward given
their high electronegativity. Furthermore, standard PAs
do not reproduce the MOL-ESPs closely, as shown in
the ESP correlation plot of Figure 1 (bottom left), where

several PAC-ESPs,

ϕPAC (r) = e
4πε0

∑
a

qa
|r − Ra| , (4)

are plotted vs. the MOL-ESP ϕ (r) calculated from the
QM density (Equation (1)) at a grid point r. The thin
red line in the plot corresponds to the perfectly correlated
condition ϕPAC = ϕQM. In order to quantify the quality of
ϕPAC (r) , we define the mean absolute relative deviation
(MARD) from ϕ (r) as

MARD
(
ϕPAC, ϕ

) =
〈∣∣∣∣ϕ

PAC (r) − ϕ (r)
ϕ (r)

∣∣∣∣
〉
, (5)

where an average is taken over all grid points r for which:
(1) r is ‘outside of the molecule’, i.e. its distance from any
nucleus a is larger than the atomic van der Waals radius
RvdW
a [16]) and (2) r is not too far from the molecule, so

that its potential |ϕ (r)| is not smaller than the threshold
value of eϕthresh = 0.3 eV.3 PACs obtained by ‘standard’
PAs have large MARDs, ranging from 0.37 for HPA up
to a whopping 1.76 for NPA. On the right panel of the
figure, we show data concerning the same molecule, but
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MOLECULAR PHYSICS 3157

using the iterative-Hirshfeld method (iHPA) [17–19], the
CM5method [20], which is a parameterised database cor-
rection to HPA charges, and the ChElPG method [21],
which selects PACs that reconstruct the ab initio ESP on
a set of grid points as close as possible. The latter approach
is taken here as representative of a class of methods rou-
tinely used for PACs determination. Other members of
this method class are the ‘charge from ESPs’ (ChElP)
[22], the Merz–Kollman [16,23,24], the charge-restraint
ESPs (RESP) [25,26], atomic multipoles ESPs [27], in
combination with molecular multipoles [28] (related to
the method proposed here), the dynamical RESP (D-
RESP) [29] and Hu-Yang fitting [30].The iHPA, CM5
and ChElPG methods yield much improved description
of the ESP with MARD going from 0.3 for iHPA and
CM5 down to 0.08 for ChElPG. Despite the close ESP
fit, ChElPG produces PACs that are usually not invari-
ant under transformations preserving the point symme-
try of the molecule or under rotations or translations
of the nuclei with respect to the real space grid used to
perform the fit. Furthermore, in larger molecules, the
PACs of atoms distant from the molecular surface can
become unwieldy large. Both of these issues are discussed
in the literature [30,31]. This instability is likely linked
to the fact that the number of parameters derivable from
the ESP in a statistically significant way is considerably
less than the number of atoms [32]. Therefore, iHPA and
CM5 are often considered preferred approaches for PACs,
although as seen in the figure, both methods leave ample
room for improvement. Note that the iHPA charges for
this molecule are close to the ChElPG PACs.

Here, we study a new idea: take PACs which are as
close as possible to a reference set, for example the MPA,
HPA or iHPAPACs, but insist that they reproduce exactly
the components of the lowest ESM tensors (dipole and
quadrupole) characterising the molecular charge distri-
bution. We formulate a straightforward method to deter-
mine such ‘minimally corrected PACs’ (Section 2) and
then benchmark the results using a subset of molecules
taken from the database of [20] (Section 3). Final con-
clusions are summarised in Section 4. All MPA, HPA
and iHPA PACs, as well as the associated MOL-ESPs and
MOL-ESMs, were computed using developer versions of
Q-Chem 4.3 and 4.4 [33] at theM06-LDFT level [34] and
using the MG3 semi-diffuse (MG3S) basis set [35]. This
functional/basis set combination was used for developing
the CM5 approach. The CM5, NPA and LPA results were
taken from [20].

2. Method

Consider a molecule having A nuclei at given
Cartesian positions Ra=

(
Ra
x,Ra

y ,Ra
z

)
(a = 1, …, A), for

which a QM calculation has determined the charge den-
sity ρ (r) of themolecule and from it, low ordermoments
the charge Q, the dipole μi and the symmetric traceless
quadrupole moment tensor �ij. Note that below, we use
the notation �D

i ≡ �ii for the diagonal elements of �

and �OD
i ≡ � jk where i = x, y, z and ijk is a cyclic per-

mutation of xyz. For any set of PACs q = (q1, . . . , qA),
we define the PAC-ESMs as the monopole (total charge)
QPAC � e�aqa, the dipole μPAC

i ≡ e
∑

a qaR
a
i and the

quadrupole �PAC
i j ≡e

∑
a qa(3R

a
i R

a
j−δi j(Ra)2), (i, j = x, y, z).

Given a set of reference PACs qre f , we seek to determine
a ‘minimally corrected’ set of PACs qmc = qre f + 	q
such that the size of the correction ‖	q‖2 = 	q · 	q
is minimal but the multipoles are equal to the QM-
determined multipoles, i.e. the following constraints are
satisfied:

c = Q − QPAC = 0,
ci = μi − μPAC

i = 0, (6)
ci j = �i j − �PAC

i j = 0.

Note that the number of constraints (denotedC) in Equa-
tion (6) is 9 and not 13 since the electric quadrupole
tensor is symmetric and traceless. Point symmetries can
reduce this number of constraints further. If, for exam-
ple, both positive and negative charge densities are sym-
metric against the reflection through a plane (the x–
y plane, for example) then there are three constraint
less (one from the z component of the dipole and two
from the XZ and YZ components of the quadrupole,
which are zero by symmetry). Only when the number of
atoms A in the molecule is greater than the number of
constraints C can we hope to reproduce the constraints
exactly. We therefore demand that A > 9 and use the
A − C additional ‘degrees of freedom’ to minimise the
deviance 	q. When 2 � A � 9, we avoid the quadrupole
moment constraint and use only the dipole moment
constraint.

We are led to consider the Lagrangian

LmcDQ = 1
2
∑

a

(
qmc
a − qre fa

)2
− λc − λici (7)

− ∑
xy,yz,zx λOD

i j ci j −
∑

x,y,z λD
ii cii

as a function of theA q’s and the ten Lagrangemultipliers:
one λ, three λi’s , three diagonal λD

ii and three off-diagonal
λOD
jk where i = x, y, z and ijk is a cyclic permutation of

xyz. Taking derivatives with respect to these variables and
equating to zero leads to the following set of (10 + A)
linear equations in (10 + A) unknowns, given here in
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3158 R. E. HADAD AND R. BAER

block-matrix/vector form4:

S

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

qmc
1
...

qmc
A

λ1×1
λ3×1
λD
3×1

λOD
3×1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

qre f1
...

qre fA
Q1×1
μ3×1
�D

3×1
�OD

3×1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

The (A+10)× (A+10)matrix S is of the following form:

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� · · · � −1 � � � � � �
... IA×A

...
...

... −DA×3
...
... −TD

A×3
...
... −TOD

A×3
...

� · · · � −1 � � � � � �
1 · · · 1 0 0 0 0 0 0 0 0 0 0
� · · · � 0 0 0 0 0 0 0 0 0 0
D3×A 0 0 0 0 0 0 0 0 0 0

� · · · � 0 0 0 0 0 0 0 0 0 0
� · · · � 0 0 0 0 0 0 0 0 0 0
TD
3×A 0 0 0 0 0 0 0 0 0 0

� · · · � 0 0 0 0 0 0 0 0 0 0
� · · · � 0 0 0 0 0 0 0 0 0 0
TOD
3×A 0 0 0 0 0 0 0 0 0 0

� · · · � 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(9)

and depends only on the location of the atomic nuclei.
The matrix is composed of blocks: the IA × A block is a
A × A unit matrix, DA × 3, TD

A×3 and TOD
A×3 are matrices

of dimension A × 3 (three columns each of length A) of
matrix elements:Dai = eRa

i andTD
ai = e

(
3Ra

i Ra
i − ‖Ra‖2)

for a= 1, …, A and i= x, y, z and TOD
ai = 3eRa

jRa
k (where

the ordered set i, j, k is a cyclic permutation of x, y, z). The
D3 × A, TD

3×A, and TOD
3×A blocks are, respectively, the trans-

posed matrices. The A + 10 column-vector on the left-
hand side of Equation (8) includes the unknowns, the A
partial charges qmc

a and the λ′s, the ten Lagrange multipli-
ers for the ten constraints. The 10 + A column-vector on
the right-hand-side has A values of the reference charges
qre fa , followed by the total charge on the moleculeQ, then
the three values of the QMdipole momentμi followed by
the three values of the diagonal elements of the given QM
quadrupole tensor�D

i = �ii and finally theQMvalues of
the three off-diagonal elements �OD

i = � jk where i = x,
y, z and ijk is a cyclic permutation of xyz. A similar equa-
tion holds for the mcD method, where the last six rows
are erased from S and from the column vectors and the
six right columns are erased from S as well. This leaves us
with a (A + 4) × (A + 4) system of equations.

The structural matrix S may become singular or rank
deficient. One trivial source for singularity is the use of
three diagonal constraints while their sum is composed
to be zero. The use of the singular-value-decomposition
pseudo-inverse [36] for solving Equation (8) helps to
bypass such a singularity. A more delicate source of sin-
gularities may arise from symmetry. For example, when
the molecule is perfectly planar (or has a plane of sym-
metry) in the x–y plane, then the row corresponding to
the dipole in the z directionDaz = eRa

z must be identically
zero and the matrix S will be rank deficient. In this case,
the TOD

ai with i= x and ymust also be zero. In these cases,
the SVDpseudo-inversewill automatically eliminate con-
straints that cannot be met due to this kind of symme-
try. But for near-symmetrical configurations, instabilities
may exist. In cases such as these, we can still spot prob-
lems by examining the values of the Lagrange multipliers
λ, λi and λij in the solution vector of Equation (8). The
Lagrange multiplier is equal to the derivative of the min-
imal value of the Lagrangian L with respect to the con-
straint value (Q, μi and �ij, respectively). Thus, if the ab
initio dipole moment μx is given to precision δμx, the
product |λxδμx| is expected to be the error in theminimal
value of L. Clearly, the minimising procedure is mean-
ingless unless this error is much smaller than 1. Hence,
it is important to eliminate ‘offending’ constraints from
the matrix equation (the corresponding row and column
in the matrix and the entry in the column vectors) for
those having large Lagrangemultipliers.We know that ab
initiomultipole properties are usually given to three dig-
its, and hence we eliminate constraints corresponding to
Lagrange multipliers large than 1000. The reduced equa-
tion is then solved and the remaining Lagrange multipli-
ers are examined again. We repeat such elimination until
all Lagrange multipliers have proper magnitudes. This
pruning procedure helps avoid cases where small inaccu-
racies of the input data dominate the final result. Within
themolecules studied here, such a pruning procedurewas
used only for few cases of molecules having a near-plane
symmetry.

When symmetry is active, our procedures reduce the
number of constraints and hence the number of indepen-
dent qa’s (called number of degrees of freedom (NDOFs)).
For example, the water molecule has three nuclei, but
due to symmetry, the two H nuclei will have the same
PACs and so NDOF = 2. Due to the symmetry, only
the dipole moment in the direction of the C2 axis is
a constraint (the components perpendicular to the C2
axis are zero by symmetry). Together with the charge
of water (0), we already have two constraints so one
must give up imposing the quadrupole moment for
water.
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MOLECULAR PHYSICS 3159

Figure . (Colour online) The PACs (top panels) and ESP correlation plots (bottom panels) for MPA, mcD-MPA and mcDQ-MPA (left pan-
els) and iHPA, mcD-iHPA and mcDQ-iHPA (right panels) in the -fluoro--nitrobenzene molecule. The mean absolute relative deviations
(MARD) appear in parenthesis near each PAC method.

3. Results

To demonstrate the efficacy of the method, we show in
Figure 2 the MPA and iHPA PACs and their ESP corre-
lation plots before and after applying the minimal cor-
rections required for imposing dipole and quadrupole
moments (denoted mcD/mcDQ-MPA and mcD/mcDQ-
iHPA respectively).5

Note that the MPA-ESP has low correlation with the
MOL-ESP, as can be evident visually and also by the
reported MARD of 2. The mcD corrections improve
the ESP but only mcDQ corrections show high-quality
ESP (with MARD of 0.05). In accordance with previ-
ous reports [19], the iHPA ESP already correlates nicely
with theMOL-ESP (MARDof 0.16) but themcDQ-iHPA
improves the correlation significantly and the MARD
reduces by a factor of 4. For this molecule, both mcDQ-
MPA and mcDQ-iHPA have similar MARDs but this is
not typical; formostmolecules, themcDQ-iHPAMARDs
are much smaller than those of mcDQ-MPA (see Figure
3). The mcDQ-MPA PACs are not drastically different
from the MPA PACs, yet their MARDs are considerably
lower. This shows the power of the minimally corrected
PACs, where a small change in PACs can improve the
PAC-based ESP considerably.

In Figure 3, we display a log-scale bar-plot of MARDs
of several PAC-based potentials on selected molecules
containing 10–18 atoms. Each PAC method can be char-
acterised by a pair of numbers (shown in parenthesis
within the legend box) indicating the median/maximal
MARD taken over the given set of molecules. The PACs
obtained by minimally correcting the q � 0 reference
(called 0PA) are actually the minimal PACs that give the
dipole and quadrupole of the molecules. It is seen that
their correlationwith the exact ESP is considerably higher
than that of MPA and HPA, somewhat similar to that
of mcDQ-MPA and mcDQ-HPA, and close to that of
CM5. This goes to show that the fit of just the dipole
and quadrupole, keeping the charges as small as possible,
gives a reasonably behaved ESP, although in general, for
very large molecules the mcDQ-0PA performance may
degrade with size compared to the PA methods. We see
that MPA and HPA have similar MARDs while iHPA
seems to give considerably smallerMARDs (by a factor of
2–3). Theminimally corrected (mcDQ) toMPA andHPA
yield smaller MARDs by a factor of 4 and for iHPA by a
factor of 2. Altogether, the mcDQ significantly improves
the ESP. The mcDQ-iHPAmedian MARD is 7% which is
similar to that of ChElPG (5%).
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3160 R. E. HADAD AND R. BAER

Figure . (Colour online) TheMARD (Equation ()) of various PACs schemes for a subset ofmolecule taken from []. Numbers in parenthe-
sis appearing near the molecule names indicate the number of atoms in that molecule. The pair of numbers (median/max) appearing in
the legend box near each scheme is, respectively, themedian andmaximumof the relative deviance taken over the shown setmolecules.

It is worthwhile to examine the sensitivity of the
MARD estimation with respect to the distance of grid
points from the nearest nuclei. In Figure 3, all sampling
grid points were at a distance larger than 1.5× rvdW from
any atom. When MARD is estimated using points fur-
ther way (distance larger than a value of 2 × rvdW), the
iHPA MARD dropped from 0.14 to 0.09 and mcDQ-
iHPAMARDdropped from 0.07 to 0.03. ChElPGMARD
also reduced from 0.05 to 0.03. This finding is consis-
tent with the fact that the MCDQ methods provide an
asymptotically exact far-field ESP resulting from their
reconstruction of the molecular dipole and quadrupole
moments.

In Table 1, we show, for each set of PACs, the mag-
nitude of the charge correction ‖	q‖�. For a given
molecule, the mcD correction is largest for 0PA and then
for MPA and HPA and it is smallest for iHPA. mcDQ
corrections are in general considerably larger than mcD
but in both methods ‖	q‖� decreases as the number of
atoms in themolecule grows. This is due to the fact that in
large systems, even small charge shifts have a large affect
on the dipole and the quadrupole moments.

InTable 2, we summarise theMARDstatistics (median
and maximal) for four sets of reference charges: 0PA
(reference charges are equal to zero) and MPA, HPA,

iHPA. The efficiency of the mc procedure is apparent
for MPA, HPA and iHPA, where the mcD reduces the
median/maximal MARD by about a factor of 2. mcDQ
reduces the MARD further, by a factor of 3 for 0PA and
�2 for MPA and HPA and only 1.1 for iHPA. We thus
see that iHPA reconstruction of the ESP strongly benefits
from a dipole correction and, interestingly, much less a
quadrupole correction.

PACs are sometimes used when molecules distort.
In this case, it is important that they remain continu-
ous under the distortion, so as to enable force calcula-
tions. The MPA/HPA/iHPA do not show non-smooth
behaviour and the mcDQ which is a minimisation pro-
cedure does not show it as well.6 In Figure 4, we show
the MPA, mcDQ-MPA and ChElPG PACs of the oxy-
gen atom in N-methylethanamide [30] as a function of
the dihedral angle φ. It is seen that as the angle increases
from 0, the mcDQ-MPA PAC slightly decreases and then
increases rapidly followed by a rapid yet continuous drop
near φc = 0.25 from a value of qO = −0.25 to qO �
−0.64. An additional very sharp feature is seen near φ =
π . We have checked that this sharp feature is not discon-
tinuous (see inset in Figure 4) and that the matrix S of
Equation (9) does not become rank deficient. A similar
behaviour is seen for the PACs of other atoms. We thus
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MOLECULAR PHYSICS 3161

Table . The PAC change ‖	q‖� = max� a� A|	qa| induced by mcD and mcDQ for PA (where the refer-
ence PACs are all zero), MPA, HPA and iHPA for the set of molecules of Figure . Also shown are the number
of atoms A, the number of degrees of freedom F and the number of constraints C for each molecule.

‖	q‖� (mcD) ‖	q‖� (mcDQ)

Molecule Sym A F C PA MPA HPA iHPA PA MPA HPA iHPA

Pyridazine Cv    . . . . . . . .
Ethylamine Cs    . . . . . . . .
Acetoacetic acid C    . . . . . . . .
Acetone Cv    . . . . . . . .
Ethylene-glycol C    . . . . . . . .
Cyclopentadienone Cv    . . . . . . . .
Oxetane Cs    . . . . . . . .
-Imino-,-dihydroisoxzole Cs    . . . . . . . .
Lithium-dimethylamine Cv    . . . . . . . .
Methyl-acetate Cs    . . . . . . . .
Pyridine Cv    . . . . . . . .
-Cyanopyridine Cs    . . . . . . . .
-Fluoro--nitrobenzene Cv    . . . . . . . .
Morpholine Cs    . . . . . . . .
Quinoline Cs    . . . . . . . .
Fluorocyclohexane (A) Cs    . . . . . . . .
Fluorocyclohexane (E) Cs    . . . . . . . .
Median 0.07 0.03 0.03 0.01 0.31 0.23 0.17 0.04
Max 0.31 0.16 0.06 0.04 1.17 1.61 1.22 1.28

Table . The median/maximal MARD (for the set of
molecules used above) determined for each PAC refer-
ence found for non-corrected and minimally corrected
schemes, mcD and mcDQ.

PA MPA HPA iHPA

No correction NA ./. ./. ./.
mcD ./. ./. ./. ./.
mcDQ ./. ./. ./. ./.

conclude that the charges change continuously although
sometimes very rapid charge fluctuations can occur.

4. Summary and conclusions

We have studied a new scheme for minimally
correcting reference PACs so that they reproduce the
exact dipole and quadrupole moments of a molecule

Figure . (Colour online) The partial charge, determined by MPA,
mcDQ-MPA and ChElPG on the oxygen atom as a function of the
O–C–N–H dihedral angle φ in N-methylethanamide (NMA). Inset
on the right shows the sharp feature near φ = π .

and we found that such a minimal correction greatly
improves the correlation of the PAC-ESP with respect
to the MOL-ESP. The minimal correction scheme
does not alter symmetry properties of the reference
PACs. Hence, minimally corrected PACs (mc-PACs)
based on MPA, HPA and iHPA fully respect the point-
symmetry and rotational/translational symmetries of the
molecule.

An additional benefit of the mc-PACs is their sta-
bility for inner (or buried) atoms of large molecules.
This rises from the stability of the standard population
schemes themselves and the fact that mc-PACs involve
rather small corrections. As an example, consider the
2-(dimethylamino)-2-propanol molecule:
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Figure . (Colour online) The ChElPG, MPA and mc-MPA PACs for the -(dimethylamino)--propanol.

for which the ChElPG, HPA and mcDQ-HPA PACs
are shown in Figure 5. Here, ChElPG tends to polarise the
molecule: the oxygen and nitrogen share between them a
negative unit charge and this is counteracted by the pos-
itive unit charge of the central carbon atom C3. On the
other hand, MPA assigns a low charge for C3 and spreads
rather evenly the remaining positive charge on the 12 ter-
minal hydrogen atoms. mc-MPA charges are very close to
those of MPA and thus yet they improve significantly the
ESPdescription for thismolecule: theMPAMARD is 0.35
while that of the mc-MPA is 0.1. It is worthwhile to note
that the PACs assigned by ChElPG also have a MARD
of 0.1.

When the underlying reference is the iHPA set of
PACs, the resulting ESP is of similar quality to that of
the ChElPG set of PACs resulting from a best-fit to
ESPs. The dependence of the PACs on the molecular
distortion was demonstrated to have sometimes very
sharp features; however, all the changes were smooth,
and hence forces can be calculated on the atoms of the
molecule.

The method here bears a similarity to the optimal
point-charge model of [10] which determines PACs that
reproduce as many low-order moments as possible. The
crucial difference is best seen when systems grow; the
model of [10] would target increasingly higher ESMs as
more atoms are includedwhile the presentmethod targets
multipoles up to second order and not beyond, thereby
avoiding the numerical instabilities described in see [11].
The present approach avoids this problem by capping
the highest reconstructed moment order to 2. This type
of order-capping was first proposed in [37], although its
implementation was based on a different approach than
here. On the other hand, the optimal point-charge model
treats the multipole constraints in a more systematic way

by minimising the error over unused moments in the last
incomplete spherical shell.

Notes

1. When defining the moments, it is customary to take the
origin in the centre of the positive charge distribution.

2. See [8]; we use the Einstein convention by which repeated
Cartesian indices are summed over.

3. Note that the expression in Equation (5) cannot become
singular due to this requirement.

4. Since the matrix is dominated by zeros, one can formu-
late the linear equation in a more concise way. However,
this form is straightforward to derive andmanipulatewhen
there are instabilities, discussed later.

5. Minimally corrected PACs that reproduce only the dipole
moment are designated mcD and those that reproduce the
components of the dipole and the quadrupole ESMs are
designated mcDQ.

6. We cannot rule out possible issues if the matrix S of
Equation (9) becomes rank deficient. However, we believe
this is an unlikely or quite rare event.
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