
THE JOURNAL OF CHEMICAL PHYSICS 125, 094102 �2006�
D matrix analysis of the Renner-Teller effect: An accurate three-state
diabatization for NH2
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Some time ago we published our first article on the Renner-Teller �RT� model to treat the electronic
interaction for a triatomic molecule �J. Chem. Phys. 124, 081106 �2006��. The main purpose of that
Communication was to suggest considering the RT phenomenon as a topological effect, just like the
Jahn-Teller phenomenon. However, whereas in the first publication we just summarized a few basic
features to support that idea, here in the present article, we extend the topological approach and
show that all the expected features that characterize a three �multi� state RT-type’3 system of a
triatomic molecule can be studied and analyzed within the framework of that approach. This, among
other things, enables us to employ the topological D matrix �Phys. Rev. A 62, 032506 �2000�� to
determine, a priori, under what conditions a three-state system can be diabatized. The theoretical
presentation is accompanied by a detailed numerical study as carried out for the HNH system. The
D-matrix analysis shows that the two original electronic states 2A1 and 2B1 �evolving from the
collinear degenerate � doublet�, frequently used to study this Renner-Teller-type system, are
insufficient for diabatization. This is true, in particular, for the stable ground-state configurations of
the HNH molecule. However, by including just one additional electronic state—a B state
�originating from a collinear � state�—it is found that a rigorous, meaningful three-state
diabatization can be carried out for large regions of configuration space, particularly for those, near
the stable configuration of NH2. This opens the way for an accurate study of this important molecule
even where the electronic angular momentum deviates significantly from an integer value. © 2006
American Institute of Physics. �DOI: 10.1063/1.2336219�
I. INTRODUCTION

In 1934 Renner published a detailed study of a linear
polyatomic molecule, which possesses a single adiabatic po-
tential energy surface but then, upon bending, splits into two
surfaces.1

As long as a �triatomic� molecule is limited to its linear
configuration we expect the electronic orbital angular mo-
mentum quantum number �� �defined with respect to the
molecular axis� to serve as a good quantum number �i.e., to
be conserved�. Moving slightly away from linearity intro-
duces another quantum number, namely, the nuclear angular
momentum quantum number, ��. As long as the deviation is
small enough both � and � serve as good quantum
numbers.1–5

This deviation from collinearity has one additional effect
on the molecular structure. All electronic states �with a given
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energy�, except for the � state, split into two states with
different energies. Renner was the first to study this splitting
and the corresponding physical implications �for a � state�
and therefore the whole phenomenon, which is also well sup-
ported by numerous experiments, bears his name.

Introducing the radial coordinate q �which measures the
deviation from collinearity�, Renner assumed that for q�0
the � state splits into two states, i.e., E�±��q�, where
��q�=�0q2. Renner showed that as long as �0 is small
enough � and � are, as mentioned earlier, good quantum
numbers, but once it becomes large the two quantum num-
bers lose their relevance as such, and K, defined as K
=�±�, becomes the good quantum number.1–5 In this way
the spectrum of a triatomic molecule which for a weak cou-
pling is characterized by the quantum numbers �v�±�, �, �
= ±1� turns, for a strong coupling, into a new spectrum of
states, characterized by the quantum numbers �v�±�, K
=�±1�.

In fact, the more relevant part �to our issue� in Renner’s

treatment is the nonadiabatic coupling term �NACT� that
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couples the two adiabatic states: E�±��q�. Expressing this
coupling in terms of polar coordinates our main interest is in
the angular component: �1/q� p̃��

±� �s� where p̃��
±� �s� is given

in the form1–13

p̃��
±� �s� = ���+��se�s��

�

��
��−��se�s�� . �1�

Here, ��±��se �s� are the two electronic eigenfunctions, se and
s are the electronic and the nuclear coordinates, respectively,
and � is the corresponding �nuclear� polar coordinate asso-
ciated with �. This kind of interaction term is also expected
from the Born-Oppenheimer �BO� treatment.14,15

Comment: It is important to realize that � is not a regu-
lar internal body-fixed coordinate but an out-of-plane coor-
dinate associated with a rigid rotation of the molecule around
an axis located in the plane formed by the three atoms �see,
i.e., Fig. 1.

Applying his model, Renner assumed that p̃��
±� �s� is a

constant independent of s and established that in the vicinity
of the collinear axis p̃��

±� �s� is equal to �, which is an integer.
In case of a � state we have �=1 and therefore

p̃��
±� �s� = � = 1. �2�

In the earlier years until the end of the 1950s this value
for p̃��

±� �s� was employed in numerous applications. Later,
efforts were made to calculate this value as a function of q
and to apply the actual value �which was found to differ from
1 or from any other integer�.6–13 However, this �noninteger�
calculated value cannot be used in a straightforward way due
to difficulties related to the diabatic potentials, which be-
come multivalued.13 To avoid this difficulty the value of
p��

±� �s� is assumed to be �=1 in those expressions that are
directly related to the diabatic potentials, whereas in other

6,7,9–13

FIG. 1. Ab initio RT nonadiabatic coupling terms, ��12�q �z� and ��23�q �z�, a
as a function of q—the vertical distance of the rotating atom from the fixed �
the calculations are done for z=1.95 a.u. �the C2v symmetry�; �b� the rotatin
atom is hydrogen and the calculations are done for z=3.9 a.u. �—� ��12�q �z
instances the calculated value is used. It seems that all
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the numerical treatments related to the Renner-Teller �RT�
interaction are based on the two-state approximation and in
no situation was a three-state diabatization carried out.

Our main interest in the Renner-Teller-type molecules is
that due to the vibronic coupling, their electronic state of a
given energy splits into two �or more� states �with different
energies�, and that this splitting disappears once q=0,
namely, when the molecule becomes linear. This situation is
reminiscent of the Jahn-Teller �JT� interaction3,16–28 which
stems from the fact that two �or more� electronic states be-
come degenerate. The similarity between the two interactions
is even more pronounced because just like the points of de-
generacy within the JT framework that arrange themselves
along seams,29�a� the degeneracy points within the RT frame-
work are located along the collinear axis which for all prac-
tical purposes can be considered as a seam.

To continue, we switch from Renner’s notation for the
NACT �presented in terms of p̃��

±� �s�� to our notation that has
been used, now for several years, while treating the JT effect.
We consider the NACT, � jk�s� �known to be a vectorial ma-
trix element�, which couples the two adiabatic states j and k,
and is given as a function of the coordinates of the nuclei.
These NACTs are of the form

� jk�s� = �� j�se�s����k�se�s�	 , �3�

where � j�se �s� and �k�se �s� are the corresponding two �elec-
tronic� eigenfunctions and � is the grad operator.

Recently we published a Communication30 in which we
discussed the RT interaction and how it is related to the
corresponding RT NACTs and the degeneracy points. To be
more specific we considered the HNH molecule and em-
ployed an ab initio package to calculate p̃��

±� �s� for the case
�=�=1. In what follows this particular magnitude is desig-

ulated for the collinear and planar HNH molecule. The results are presented
ear� axis—for different configurations: �a� the rotating atom is nitrogen and
m is nitrogen and the calculations are done for z=1.0 a.u.; �c� the rotating
� ��23�q �z�.
s calc
collin
g ato
�; �¯
nated ��12�s� and is written in the form
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	�12�s� = ��1�se�s��
�

��
�2�se�s�� . �4�

To carry out this calculation we assume that two out of the
three atoms are clamped at their positions and only one atom
is allowed to rotate around the molecular axis. Consequently
��12�s� described in terms of three cylindrical coordinates
related to this atom, namely, s= �� ,q ,z� �see Fig. 1�. Locat-
ing the origin at the position of the left hand side clamped
hydrogen and assuming the z axis to be along the molecular
axis, we get that �1� the coordinate z measures, for the col-
linear configuration, the distance of the rotating atom from
the origin �2� the radius q measures its vertical distance from
the �molecule� axis; and �3� the angle � is the corresponding
�out-of-plane� cylindrical angular coordinate around the axis
�see Fig. 1�. It is important to emphasize that such calcula-
tions were carried out not only for the two � states �desig-
nated as states 1 and 2� but for any two states included in the
numerical study.

Preliminary results along these lines �for the two �
states� were published in that Communication.30 For com-
pleteness they are presented once again �following an im-
proved convergence�. Thus, we consider three different con-
figurations: two configurations refer to the case that nitrogen
is rotating around the fixed HH axis �see panels �a� and �b��
and one configuration refers to the case that hydrogen is
rotating around the fixed HN axis �see panel �c��. All calcu-
lations are done for the case that at the collinear arrangement
the distance RHH, between the two hydrogens, is RHH

=3.9 a.u. In panel �a� are presented results for which the
nitrogen is located along the symmetry line �the C2v configu-
ration� and therefore z=1.95 a.u.: in panel �b� are presented
results for the case where the nitrogen is shifted away from
the symmetry line, namely, for z=1.0 a.u. �thus, the nitrogen
is much closer to one of the hydrogens�. In panel �c� we
show results for the case where a hydrogen and the �single�
nitrogen are clamped whereas the second hydrogen is al-
lowed to rotate around the axis �in this case the HN axis�.

The two main features to be noted are �1� the value
��12�q
0.0,z�
1.0 for all three cases; this implies �in “our”
language� that the RT NACTs, in the slightly bent HNH sys-
tem, are quantized and that their value is 1 �and not, e.g., 1 /2
like in the cases of JT NACTs�. This result is expected, as
elaborated in the literature.1–5 �2� However, it is also noted
that ��12�q ,z� decreases monotonically as q increases �i.e., as
the molecule becomes more and more bent�; but the rate of
decrease is z dependent. This feature too is mentioned in the
literature6,7,9–14 �mainly for the C2v configuration presented
in panel �a��.

It is well known that the deviation of ��12�q ,z� from 1
leads to multivalued diabatic potentials.6–12 However, it is
not clear if a rigorous treatment was ever done to resolve the
multivaluedness of the diabatic potentials. We intend to show
that our theory that supplies the means to rigorously resolve
such difficulties in case of the JT interaction, applies also for
the RT interaction.

The present article contains the following sections: In
Sec. II is given a brief account of the theory as developed for

the JT intersections and their NACTs. Certain aspects of this
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theory are then applied for the RT NACTs. In Sec. III are
given numerical results as obtained for the HNH molecule:
We present potential energy curves and the RT NACTs as a
function of q, for different z values, related to the three lower
states of this molecule, namely, the two � states and the state
that evolves from the � state. A discussion and the conclu-
sions are given in Sec. IV in which we also briefly relate to
JT cis located in the same region of configuration space.

II. THEORY

A. Background comments

As mentioned earlier the theoretical treatment applies to
the NACTs due to both the RT interaction and the JT inter-
action. The RT interaction, like the JT interaction, can be
traced back to the BO treatment14,15 but what really makes
the two types similar is the fact that both are caused by the
degeneracy of eigenfunctions at certain points in configura-
tion space. Moreover, in both cases, these points have the
tendency to arrange themselves along continuous, usually in-
finite, lines defined in configuration space. These lines are
known, in case of the JT interaction, as seams and we sug-
gest applying the same name to the lines in case of the RT
interaction. The main difference between the two kinds is
that the JT seams are usually accidental and therefore have to
be exposed numerically by trial and error, whereas the RT
seams are a result of bending modes and therefore run along
well defined geometrical lines such as the axes of triatomic
molecules, etc.

The theory we intend to present is based on closed con-
tours that surround the seams.20�b�,29�b� The main outcome of
this theory is that it supplies the conditions for a group of
states to yield, in a given region in configuration space,
single-valued diabatic potentials. This theory is successfully
applied in case of the JT interaction and we intend to show
that it applies also in case of the RT interaction.

The difference in treating these two kinds of interaction
is the positions of the seams with regard to the plane formed
by the three atoms �A, B, and C�. In case of the JT interac-
tion the seam intersects that plane at one point �or at most, at
a few isolated points� and therefore the contour that sur-
rounds the seam can be assumed, without detracting from
generality, to be fully located in that plane. In case of the RT
interaction the seam is always located in the plane and there-
fore the �closed� contour that surrounds it has to be located
outside that plane. The simplest choice is to assume it to be
in a plane perpendicular to the seam �see Fig. 1�, although
any other contour �that surrounds the seam� is expected to
yield similar results.

Although the seams are located in different positions
�with regard to the triatom plane� the contours are con-
structed by clamping two atoms and permitting the third
atom, that is atom A, to move freely and form the �closed�
contour. In both cases we assume the contour to be in a plane
and therefore if the origin of the system of coordinates is in
that plane the position of the free atom is determined by two
coordinates �usually polar coordinates�. This description can

be easily generalized to more elaborate contours.
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In both cases the free atom �atom A in our case� is used
to examine the values of the various NACTs, � jk�s�; j ,k
= �1,N� where N is the number of states included in the
manifold and s is a nuclear coordinate in the region of inter-
est. According to our way of presenting the NACTs the point
s is written as s= �� ,q �z� where �� ,q� are the two polar
coordinates mentioned earlier and z is an indirect coordinate
�or describes numerous indirect coordinates� to characterize
different contours.

In the present study we consider systems with two or
three states, thus N=2,3, and treat only more significant
NACTs, namely, �12�s� and �23�s� �the third NACT, i.e.,
�13�s�, is usually negligibly small and therefore is ignored in
our study�.

Before we start elaborating on the theoretical tools to be
applied in this study we mention another issue, namely, the
Hilbert subspace.20�b�,29�b� A Hilbert subspace, usually in a
given region in configuration space, is defined as a group of
states which approximately are not coupled �or at most are
weakly coupled� to states outside the group. Thus if �jk�s� is
a NACT that couples states j and k where state j belongs to
the subspace and state k does not, then for all practical pur-
poses all its components are negligibly small. The impor-
tance of the subspace stems from the fact that the corre-
sponding NACTs �see Eq. �3�� can form single-valued
diabatic potentials. In others words if a group of states does
not form a Hilbert subspace the corresponding NACTs will
deliver multivalued diabatic potentials which cannot be ap-
plied in any further studies.

In the next subsections we briefly discuss the connection
between the ability to form single-valued diabatic states and
the features of the nonadiabatic coupling matrix �NACM�.
This was done on numerous occasions in case of the JT
NACM and here, among other things, we emphasize the
friendly features of the RT NACM.

B. The NACM and the diabatic potential matrix

Having the BO �diagonal� adiabatic potential matrix,
u�s�, the diabatic potential matrix W�s� is obtained following
the adiabatic-diabatic transformation �ADT� matrix
A�s�:20�b�,29�c�,31

W�s� = A†�s�u�s�A�s� . �5�

The ADT matrix A�s� can be shown to be an orthogonal
�unitary� matrix that fulfills the following first order differ-
ential �vector� equation31

�A�s� + ��s�A�s� = 0 , �6�

where ��s� is the NACM with the elements as defined in Eq.
�3�. The solution of this equation can be written as an expo-
nentiated line integral,

A�s�s0,
� = � exp− �
s0

s

ds · ��s�
��A�s0,
� , �7�

where � is the ordering operator, s0 is the initial point of
integration, 
 is the contour along which Eq. �6� is required
to be solved, the dot stands for a scalar product, and A�s0 ,
�

is the initial value of A�s� on 
. In what follows A�s0 ,
� is
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assumed to be the unit matrix. It is well noticed that the only
component of ��s� that affects the above line integral is the
tangential component along the contour 
.

Another matrix of interest is the topological matrix D�
�
which is identical to the A matrix but is calculated for a
closed contour.20�b�,23�b�,23�c�,29�b�,29�c� Thus

D�
� = A�s0�s0,
� = � exp− �



ds · ��s�
�� . �8�

It can be shown that in order for the diabatic potential matrix
W�s� to be single valued in the region of interest the D
matrix, for any chosen closed contour 
 in the region, has to
be diagonal. Since D �just like A�s�� is unitary its elements
are expected to be20�b�,23�b�,23�c�,29�b�,29�c�

D jk�
� = � jk exp�i� j�
��, j = �1,N� , �9a�

where � j�
�; j= �1,N� are real phases. In case of real eigen-
functions the phases become integer multiples of  so that
the D-matrix elements are

D jk�
� = ± � jk, j = �1,N� . �9b�

Next we briefly analyze what happens in case 
 is chosen to
be a circle defined by the position of its center and the rel-
evant radius q. In this situation the ADT matrix can be writ-
ten as

A���q,
� = � exp− �
0

�

d������q,
�� , �10�

where we identify �1/q����� �q� as the angular component of
�. In the same way the topological matrix D takes the form

D�q,
� = � exp− �
0

2

d������q,
�� . �11�

Earlier we said �without proof� that the condition for the
diabatic potentials to be single valued is the fulfillment of
Eqs. �9�. Moreover, it is seen that the single valuedness is
solely determined by the NACM. Therefore in order to find
out if a group of N states is capable of yielding single-valued
diabatic potentials all that is needed is to calculate the corre-
sponding N�N D matrix and see to what extent it is diago-
nal.

Comment: Equation �9b� presents two possibilities for
the various diagonal D-matrix elements, namely, ±1. These
two possibilities are typical for the JT NACTs. However, in
case of the RT NACTs we encounter one sign only that can
be assumed to be +1.

C. The Renner-Teller topological matrix

Assuming the center of the circular contour 
 to be lo-
cated on the collinear axis, we find that the NACM is inde-
pendent of the polar coordinate � so that the D matrix as
given in Eq. �10� takes the form

D�q�z� = exp�− 2��q�z�� , �12�

where the integration over � was done trivially because the
NACTs, just like the potentials, do not depend on out-of-

plane coordinates. To continue we replaced 
 by z to specify
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the circle that is employed �this circle is also characterized
by q�. In what follows we discuss two cases, namely, the
two-state Hilbert subspace and the three-state Hilbert sub-
space.

Comment: In Eq. �12� we dropped the subscript � be-
cause, from now on, we refer only to the angular compo-
nents of both the NACM and its NACTs and no confusion is
expected. Thus � and � jk stand for �� and ��jk

, respectively.�

1. The two-state Hilbert subspace

Since the 2�2 � matrix is of the form

��q�z� =  0 	12�q�z�
− 	12�q�z� 0

� , �13�

substituting Eq. �13� in Eq. �12� can be shown to yield the
following D matrix:20�b�

D�2��q,z� =  cos�2	12� sin�2	12�
− sin�2	12� cos�2	12�

� . �14�

In order for the D matrix to be diagonal the NACT, 	12�q �z�,
has to be

�12�q,z� = � n; �a�
�2n + 1�/2; �b� � �15�

where n is an integer. In other words, the two states under
consideration form a Hilbert subspace in a region if and only
if for each point �q ,z� in that region n is an integer. Later, in
the numerical part, we show that case �a� applies to the RT
interaction.

2. The three-state Hilbert subspace

To treat the three-state case we assume the 3�3 � ma-
trix to be of the form

��q�z� = � 0 	12�q�z� 0

− 	12�q�z� 0 	23�q�z�
0 − 	23�q�z� 0

� , �16�

where 	13 is assumed to be negligibly small and therefore is
ignored. Moreover here it can be shown that substituting Eq.
�16� in Eq. �12� yields, for the D matrix, the following
result:23�b�,23�c�

D�3��q,z� = �−2� 	23
2 + 	12

2 C 	12�S 	12	23�1 − C�
	12�S �2C − 	23�S

	12	23�1 − C� 	23�S 	12
2 + 	23

2 C
� ,

�17�
where
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C = cos�2�� ,

�18�
S = sin�2�� ,

� = �	12
2 + 	23

2 ,

and we recall that � jk�� jk�q �z�. It is well noticed that the
D�3� matrix in Eq. �17� becomes diagonal if and only if �
=n where n is an integer. It is interesting to mention that the
eigenvalues of 	�q �z� are �i� ,−i� ,0�.

Since our main concern is the diagonal elements of the
D�3� matrix we calculate them employing the following ex-
pressions:

�D11,D22,D33� =  	12
2 C + 	23

2

	12
2 + 	23

2 ,C,
	12

2 + 	23
2 C

	12
2 + 	23

2 � . �19�

Summary: In order for the three states to form single-valued
diabatic potentials �in the region of interest� each of the three
matrix elements in Eq. �19� has to be equal to 1 at each point
in that region. Among other things this implies that the ei-
genvalues of 	�q �z� at each such a point are �i ,−i ,0�.

III. NUMERICAL RESULTS

Three kinds of results are discussed in the article: the
�two� tridiagonal elements of the NACM, the corresponding
�three� potential energy surfaces, and the diagonal elements
of the topological D matrix. These results are presented as a
function of q for the three configurations already given in
Fig. 1 �details related to Fig. 1 are given in the paragraph that
follows Eq. �4��. The calculation of the �angular� NACTs was
carried out at the state-average completed active space self-
consistent-field �CASSCF� level employing the following
basis functions: For the nitrogen we applied s, p, d, and f
functions and for the hydrogens we employed s, p, and d
functions all from the aug-cc-pVTZ set. We used the active
space, including all seven valence electrons distributed on 10
orbitals. Six electronic states, including the three states spe-
cifically studied, were computed by the state-average
CASSCF method with equal weights. In certain cases these
calculations were repeated with seven states to check for
convergence. The relevant �angular� NACTs, namely,
�12�q �z� and �23�q �z� as well as the corresponding potential
energy surfaces Ej�q �z�; j=1,2 ,3 were calculated employing
the MOLPRO program.32

In what follows we discuss three adiabatic states of the
HNH system, namely, the two � states that evolve to be-
come 2A1 and 2B1 states and a third state which evolves from
the �collinear� � state to become a second B state. In what
follows we designate that second B state as B�. While doing
that we show that as long as the region of interest is close
enough to the axis of the molecule �for any z value and any
geometry� the 2A1 and 2B1 states are strongly coupled to each
other but only loosely coupled to other states of the molecule
and therefore form, by themselves, a �two-state� Hilbert sub-
space. However, once this region is increased to include sec-
tions further away from the axis, these two states get coupled
to other states and therefore fail to form a Hilbert subspace in

the enlarged region. We intend to show that adding a third
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state, which in this case is the above mentioned B� state,
leads to a Hilbert subspace formed by these three states. The
main purpose of this article is to supply the numerical evi-
dence for these assertions.

A. Potential energy curves

In Fig. 2 are presented the three potential energy curves
under consideration as a function of q for the three different
configurations. It turns out that the two ��� states 2A1 and
2B1 are the two lower �planar� states and that the 2B1 is the
lowest of the two.33 It is also well noticed that in all three
configurations these two states are close to each other as long
as q is rather small and eventually become degenerate once
q=0. As for the B� state, it is seen to be the highest among
the three and that as long as q is small enough it is well
separated from any state. As q increases it seems to approach
the 2A1 state.

B. Nonadiabatic coupling terms

In Fig. 1 are presented the two major �angular� NACTs,
namely, �12 which couples states 2A1 and 2B1 and �23 which
couples the 2A1 state and the B� state. It is well noticed that
along the HNH axis �where q
0� the values of �12
1 but
then as q increases the values of �12 decrease. The rate of
decrease is uniform but z dependent. A different situation is
encountered for �23. Along the axis �where q
0� the values
of �23 are very small �and, in fact, are expected to become
zero, once q=0� but they increase as a function of q. The rate
of increase depends on z and is not always uniform.

Of all three configurations the C2v case �namely, when
z=1.95 a.u.� requires more attention, in particular, the
second NACT, �23�q �z=1.95 a.u.�. As long as �0�q
�1.1 a.u.� �23 is well defined as it couples the second state

2

FIG. 2. Energy curves related to three electronic states: the 2B1 state the 2A1 s
from the �collinear� � state to become the B�. These three states are the lowe
EA�q �z�; �---� EB��q �z�.
�that is, the state A1� and, energetically, the third state,
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which is the B� state. Unexpected things happen once q
�1.1 a.u. If again we assume �23�q �z=1.95 a.u.� to be the
NACT between 2A1 and the third �energetically� state we find
that �23�q�1.1 a.u. �z=1.95 a.u.��0. The reason is that the
third state, in that interval, is not the expected B� state but an
A state. This, among other things explains why this NACT is
identically zero. Continuing in the same manner we could
establish that in along this interval the B� state is, energeti-
cally, only the fifth state. In other words it is �25�q
�1.1 a.u. �z=1.95 a.u.� which, along the interval q
�1.1 a.u., is the �natural� continuation of �23�q�1.1 a.u. �z
=1.95 a.u.�. More details on these and similar issues will be
presented in a forthcoming publication.

The behavior of the RT NACTs is reminiscent on what is
encountered in case of the JT NACTs. We found that at a
given JT point of degeneracy all NACTs are zero except
those that are formed at that particular point.29�a� Assuming
the same to happen in the present case implies that since the
�1,2� NACTs, �12, are formed at points located along the
HNH axis, the �2,3� NACTs, �23, are expected to be zero
along this axis. This simply means that the source for the �23

is located at other region�s� in configuration space but then is
forced to decay to zero while approaching the molecular
axis.

C. The topological D-matrix and the single-valued
diabatic potentials

In Figs. 3 and 4 are presented the diagonal elements of
the D matrix calculated once for the two-state case �thus
D�2�� and once for the three-state case �thus D�3��. The main
issue in the present section is the comparison between the
diagonal elements of these two matrices. In both cases we

both evolving from the two degenerate � states� and the state which evolves
s for the collinear arrangement and at regions close to it: �¯� EB�q �z�; �—�
tate �
r one
expect them �as a function of q but for various z values� to be
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1. Whereas when they are close enough to the molecular
collinear axis they are practically equal to 1, we start notic-
ing deteriorations as q increases.

Since the two diagonal elements of D�2�, namely,
D11

�2��q �z� and D22
�2��q �z�, are always identical �see Eq. �14��.

we show, in Fig. 3, only one of them. A different situation is
encountered in case of D�3�. Here the three diagonal ele-
ments, D j j

�3��q �z�; j=1,2 ,3, are not necessarily identical and
therefore the three of them are presented in Fig. 4.

Comparing the curves in Figs. 3 and 4 one notices that
the unit value for the various D-matrix elements is better
preserved �as a function of q� in case of the three-state case.

FIG. 3. The two-state and the three-state D-matrix elements. Two curves are

average value, D̄�3��q �z�, of the three diagonal elements of the D�3� matrix �
FIG. 4. The three-state D-matrix elements: �¯
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A more direct comparison between the two-state case and the
three-state case is given in Fig. 3 where a second curve,
related to the three-state case, is presented. The values of this
curve are defined as the geometric average of the three diag-
onal elements of D�3�, namely,

D̄�3��q�z� = �D11
�3�D22

�3�D33
�3���1/3�. �20�

It is obvious that for the cases that D j j
�3��q �z�=1; j=1,2 ,3 we

also have D̄�3��q �z�=1.
From Fig. 3 it can be seen that as long as the calculations

are done close enough to the molecular axis the D11
�2��q �z�

n. Oone represents the �1,1� element of the D�2� matrix and the second the

q. �20��: �¯� D11
�2��q �z�; �—� D̄�3��q �z�.

�3� �3� �3�
show
� D11 �q �z�; �—� D22 �q �z�; �---� D33 �q �z�.
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values are indeed close to 1. However, when the calculations
are performed further away from the axis �i.e., when q be-
comes larger� D11

�2��q �z� values deteriorate, sometimes even
quite rapidly �except for the C2v configuration where the de-
terioration is slower�. A significant different situation is en-

countered for the D̄�3��q �z� values. They are not only close to
1 for small q values but remain 1 for a much larger q inter-
val.

As mentioned earlier the diagonal elements of the D ma-
trix contain information regarding the single valuedness of
the diabatic potentials. Thus if the N�N D matrix is diago-
nal then the corresponding N�N diabatic potential matrix is
single valued in the relevant region.

In general, we prefer N to be as small as possible. There-
fore as long the region is close enough to the molecular axis
the two-state ADT �see Eq. �5�� is expected to yield a single
valued 2�2 diabatic potential matrix.29�d� However, as the
region extends to larger q values, D�2� deviates significantly
from the unit matrix while the three-state diabatization re-
mains single valued �sometimes even for relative large q
values� because D�3� is either equal to the unit matrix or very
close to being a unit matrix. In other words if dynamic cal-
culations have to be extended to such regions we have to
employ the 3�3 ADT matrix in order to form the required
single-valued diabatic potentials. In the present study the
three states are the two states 2A1 and 2B1 that evolve from
the two degenerate � states and the B� state that evolves
from the � state.

IV. ANALYSIS AND CONCLUSIONS

In this study we showed for the first time that the theory
developed in recent years to study the topological effects
formed by the JT degeneracy applies also in the case of the
topological effects formed by the RT degeneracy. In order to
achieve that, we had to define the molecular axis as the cor-
responding seam and refer to contours that surround this
axis. In the present article we employed circular contours
perpendicular to the molecular axis and centered at the axis;
however, we expect the results to be unaffected if different
contours are applied �as long as they surround the molecular
axis, close enough to the axis�.

Whereas the idea to use the ab initio treatment to calcu-
late the terms that couple the two � states has been known
for some time,13 the way to incorporate the effect of the
interaction due to other states seems to be new. The ability to
incorporate the effect of RT coupling terms related to higher
states opens up possibilities to predict the effect of indirect
coupling terms due to remote states on processes that take
place at lower states. An example for such a study is given
here where we show how the interaction due to the “isolated”
B� state �which evolves from the collinear � state� can be
included.

One major issue has not been mentioned so far, namely,
the possibility that the RT topological effects are affected by
JT interactions. It is not obvious that these two interactions
are connected because they are formed by two orthogonal
angular motions, one is an in-plane �angular� motion and the

other is an out-of-plane �angular� motion.
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In Fig. 5 are shown the position of four degeneracy
points responsible for the formation of the JT cis �recently
we reported on such a study for the NHH configuration34�:
two of them, namely, ��12

JT �� ,� �q ,z� and ��23
JT �� ,� �q ,z�, that

couple the two lower 2A states �i.e., 2A1 and 2A2� and the two
upper 2A states �i.e., 2A2 and 2A3� are located along the C2v
line and the other two form two ci-twins of the type
��23

JT �� ,� �q ,z� located on both sides of the C2v line and
couple the two upper 2A states35 �the two corresponding
NACTs are of opposite signs�. Here � is the angular coordi-
nate and � is the radial coordinate of a point with respect to
the position of the considered �JT� ci. Near each of the ci
points is given the value of the corresponding topological
�Berry� phase calculated according to the well known line
integral which in case of a circular contour becomes29�c�

� j j+1
JT ���q,z� = �

0

2

d���j j+1
JT ��,��q,z�, j = 1,2. �21�

It is noticed that in all four cases the � phases are close to
± �and not 2� indicating that indeed the NACTs are
formed by JT cis. A similar study, although for a spatial
configuration determined by a different fixed RHH distances,
supports the existence of four similar JT cis.36

It is also noticed that the region that contains the four cis
is the region where the RT interaction is relatively strong.
Nevertheless the JT topological phases do not seem to be

FIG. 5. The position of the four JT cis in configuration space as found for
RHH=3.95 a.u.: ��� �12

JT�q �z�; ��� �23
JT�q �z�. The C2v �1,2� ci is located at a

distance q=2.27 a.u. from the collinear axis. The C2v �2,3� ci is located at a
distance q=1.08 a.u. from the collinear axis. The two �2,3� ci twins are
located at a distance q=2.26 a.u. from the collinear axis and at a distance of
0.867 a.u. from the symmetry line. The numerical value near each ci stands
for the topological phase ��� �q ,z� as calculated for �=0.01 a.u. �see Eq.
�20��.
affected.
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From the present study it is not clear yet whether the JT
interaction interferes with the RT coupling �and vice versa�
to the extent that it affects, for instance, the RT D-matrix
elements. Although we have indications that these two types
of interactions are transparent to one another still this issue
has to be studied in more detail which will be done in forth-
coming publications.

To summarize the findings of the present article we say
the following: �1� The RT NACTs are similar to the JT ones;
they are a result of a line of degeneracy points—seam—that
yields a line of poles �called�. �2� Their behavior and their
effect on the diabatization process is well treated by the
theory that originally was developed to study the JT NACTs.

Before concluding this article we would like to call at-
tention to one important issue; while deriving the BO
Schrödinger equation we anticipate it to contain both JT and
RT singular coupling terms. Therefore the two have to be
eliminated simultaneously in order to permit solving the re-
sulting equations. This procedure, to the best of our knowl-
edge, has never really been carried out.
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