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ABSTRACT
Absorption cross-section spectra for gold nanoparticles were calculated using fully quantum
Stochastic Density Functional Theory and a classical Finite-Difference Time Domain Maxwell solver.
Spectral shifts were monitored as a function of size (1.3–3.1 nm) and shape (octahedron, cubeoc-
tahedron and truncated cube). Even though the classical approach is forced to fit the quantum
time-dependent density functional theory at 3.1 nm, at smaller sizes there is a significant deviation
as the classical theory is unable to account for peak splitting and spectral blueshifts even after quan-
tum spectral corrections. We attribute the failure of classical methods at predicting these features
to quantum effects and low density of states in small nanoparticles. Classically, plasmon resonances
are modelled as collective conduction electron excitations, but at small nanoparticle size these exci-
tations transition to few or even individual conductive electron excitations, as indicated by our
results.
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Introduction

The unique physical and chemical properties of nanopar-
ticles have generated intense academic and indus-
trial interest, in hope that these properties, once
well-understood, could be used for technological
advances. Nanoparticle materials exhibit physical and
chemical properties very different from those of their
bulk counterparts, often resulting from enhanced surface
interactions or quantum effects [1]. For example, noble
metal nanoparticles are drawing intense interest because
of their ability to sustain localised surface-plasmon reso-
nances (LSPRs) [2]. LSPRs are collective oscillations of
surface conduction band electrons excited by an oscil-
lating electric field, typically a photon. These oscillations
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enable strong absorption and scattering of subwavelength
structures. Coupling of photons to conduction band elec-
trons at metal interfaces improves efficiency for ultrafine
sensing methods [3,4], enhanced catalysis [5], energy
transfer [6,7], and has enabled applications such as light
concentrators in solar cells [8] and cancer therapies [9].

Experimental characterisation of metallic nanoparti-
cles is extremely difficult, since optical detection in the
far-field is hampered by low signal to noise ratio due to
low scattering and absorption intensities [10]. The LSPR
peaks are further broadened and damped as the size of
the particle decreases below the electron mean free path
(40 nm for gold [11]). Finally, the spectral properties are
strongly coupled to the stoichiometry, size, shape and
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surrounding medium [2,12,13] making an a priori pre-
diction difficult. The difficulty in observing broad, weak
LSPR signals has led to conflicting results from experi-
ments involving quantum-sized plasmonic particles, with
multiple reports of LSPR redshifts or blueshifts as the size
is reduced [14,15].

Theoretical investigations often rely on classical meth-
ods, such as Mie Theory [16] and Finite-Difference Time
Domain (FDTD) Maxwell Solvers [17] which, however,
inherently do not capture quantum effects important
at scales of few nm. Size-dependent electron scattering
terms have been included in the classical approaches, but
the use of these correction results in predictions with
redshifts and imperceptible plasmon resonances at small
size scales [18] that conflict with experimental findings
[19–21]. Additionally, the classical models assume a den-
sity of states (DOS) sufficiently populated in the Fermi
level such that the LSPRs are a collective electron oscilla-
tion. This picture is, however, challenged by experiments,
which suggest that small clusters (below 3 nm) exhibit
nonmetallic character so that with decreasing size, dis-
crete peaks appear in their optical spectra [19,22].

In this work fully first-principles quantum meth-
ods such as time-dependent density functional theory
(TDDFT) are used to investigate the transition to the
quantum regime of photoabsorption cross sections in
gold nanoparticles. Observation of the transition in gold
requires applying TDDFT to large nanoparticles includ-
ing several hundreds of atoms. For this, we employ
the recently developed stochastic approach to elec-
tronic structure [23–25] and in particular the stochastic
TDDFT (sTDDFT) approach [26], which allows linear-
scaling effort with respect to system size. We studied a
range of stable [27,28] closed-shell nanoparticles con-
taining between 44 and 344 atoms, corresponding to
diameters of 1.34–3.12 nm. By comparing with classi-
cal Maxwell simulations, we find that systems having
less than ∼200 atoms exhibit strong quantum signatures
(appearance of new absorption maxima and peak split-
ting) which depend on the shape of the nanoparticle and
are missing in the FDTD results.

Theory

In this section, we begin by reviewing the theory of
absorption of light by small particles, in both the quan-
tum mechanical and classical picture. Next, we present
the respective implementation of the quantum and clas-
sical theories in computational chemistry, namely the
sTDDFT and the FDTDMaxwell Equations, and explain
their merits and limitations.

Within the linear response approach, the photoab-
sorption cross section at frequency ω is given by

σ(ω) = e2

3ε0c
ω

∫
r · χ(r, r′,ω) · r′ dr dr′, (1)

where ε0 is vacuum permittivity, c is speed of light and
e is the elementary charge polarisability relates induced
charge density δn and external perturbing potential δv:

χ(r, r′, t − t′) = δn(r, t)
δv(r′, t′)

. (2)

The external perturbing potential takes the form of a
dipole that perturbs the system instantaneously at t=0:

δv(r, t) = γ rjδ(t), (3)

where rj = x, y or z is one of the components of theCarte-
sian vector r, γ is the perturbation strength and δ(t) is a
delta function in time. Here, the particles we consider are
symmetric so the absorption spectrum will be identical
for all polarisation directions. Therefore, with no loss of
generality j=1 and rj = x below.

The impulsive perturbation excites the system at all
frequencies. The perturbed system is propagated in time,
and the induced dipole moment signal is computed:

μi(t) = 1
γ

∫
riδn(r, t) dr. (4)

Finally the absorption cross section σ(ω) = ∑
j=x,y,z

σjj(ω) is obtained from

σjj(ω) = e2

ε0c
ω

∫ ∞

0
dt eiωtμj(t). (5)

We compute the time-evolution of the induced charge
density δn(r, t) = n(r, t) − n(r). Here,n(r) is the ground-
state density andn(r, t) is the time-dependent density cal-
culated using TDDFT. Specifically, we are starting from
the ground-state Kohn–Sham (KS) system with Hamil-
tonian (in atomic units)

H[n] = − 1
2∇2 + vext(r) + vH[n](r) + vxc(n(r)), (6)

where vext(r) is the external (nuclear) potential energy
and vH[n](r) = ∫

n(r′)|r − r′|−1 dr′ is the Hartree
potential. The last term vxc(n) is the exchange-correlation
potential in the local density approximation (LDA) [29].

The Hamiltonian is associated with a complete set of
eigenstates {φj(r)} and corresponding eigenvalues {εj}
(j = 1, 2, . . . , is the state index) which are used as initial
states of the system at time t=0 when the perturbation
of Equation (3) is applied. At this moment and for subse-
quent times t ≥ 0, the total density is a weighted sum of
the instantaneous state densities |φj(r, t)|2

n(r, t) = 2
∑
j
fβ(εj,μ)|φj(r, t)|2, (7)
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where fβ is the Fermi-Dirac occupation function depend-
ing on the temperature 1/β and chemical potential μ

at time t=0 (the factor of 2 is due to spin degener-
acy). Simultaneously, the states φj(r, t) evolve in time
according to the time-dependent KS equation

i
∂φj(r, t)

∂t
= (H[n(t)] + δv(r, t))φj(r, t), (8)

where the Hamiltonian changes with time due to its
implicit dependence on the time-evolving density. A gen-
eral exchange-correlation potential would include mem-
ory effects and would therefore be non-local in time. But
here we resort to adiabatic local density approximation
(ALDA), in which vxc(n(r, t)) is a function of n(r, t) only.

The LDA and ALDA calculations are performed using
Troullier–Martins pseudopotentials on a real-space grid
with Ng points and a spacing of 0.6a0, sufficient to con-
verge the occupied eigenvalues to within 10meV. The
real-time propagation in its canonical form, i.e. propa-
gating each individual KS according to Equation (8), is
numerically demanding because of the quadratic scaling
involved, namely O(NNg) with a large prefactor whereN
is the number of occupied states. In addition, there is of
course the cost of obtaining the ground state. We used
deterministic density functional theory (DFT) which
generally scales, depending on the method, as O(N2) −
O(N3); the DFT was more expensive than the sTDDFT
method.An alternative to the usualDFTwould have been
stochastic DFT [23], whichwould have been faster for the
largest clusters.

To lower the TDDFT cost, we recently developed a
stochastic framework for TDDFT with (sub)linear scal-
ing [26]. Instead of using a set of all N eigenstates {φj},
the occupied subspace is represented by |ζ 〉 obtained as a
random linear combination:

|ζ 〉 =
N∑
j
eiθj

√
fβ(εj,μ)|φj〉, (9)

where j is a state index and θj ∈ [0, 2π] is a random
phase. Each ζ is a stochastic vector created using a dis-
tinct set of random phases {θj}. All required quantities
are expressed using a stochastic average over Nζ vectors
denoted {· · · }ζ . For instance, the charge density is

ns(r) = {|ζ(r)|2}ζ . (10)

Since the Hamiltonian in Equation (6) is a functional of
the density, it also has a stochastic representation denoted
as Hs.

Finally, the stochastic orbitals |ζ 〉 are propagated using
a Trotter decomposition corresponding to the adiabatic

stochastic time-dependent KS equations:

i
∂ζ(r, t)

∂t
= (Hs[n(t)] + δv(r, t))ζ(r, t). (11)

After each propagation step δτ , the charge density is
evaluated by

ns(r, t) = {|ζ(r, t)|2}ζ , (12)

and the induced dipole μj(t) is calculated from
Equation (4). The stochastic charge density is then used
to constructHs and the TD procedure is repeated for the
next time step δτ , and the propagation continues for sev-
eral femtoseconds. Finally, the absorption cross section
σ is computed from the dipole signal μj(t) through
Equation (5).

The classical absorption spectrum is obtained from a
FDTD propagation of the Maxwell equations, using the
MIT Electromagnetic Equation Propagation [17] open-
source package. In FDTD, the metallic nanoparticle is
modelled as polarisable material with complex dielectric
permittivity given by

ε(ω) = εD(ω) + εL(ω). (13)

Here, εD(ω) is the intraband part, described by theDrude
model:

εD(ω) = 1 − f0ω2
p

ω(ω − i�0)
, (14)

where ωp is the plasma frequency of gold and f0, �0 are
the intraband oscillator strength and damping constant,
respectively. εL(ω) is the interband part of the dielec-
tric permittivity, modelled as a sum of K (typically K =
2−10) Lorentz-type terms,

εL(ω) =
K∑
j=1

fjω2
p

(ω2
j − ω2) + iω�j

, (15)

where ωj, fj and �−1
j are, respectively, the j′th oscillator

frequency, strength and lifetime. We discuss below how
all these parameters were determined.

TDDFT absorption spectra

We consider a set of nanoparticles with octahedral, trun-
cated cube and cuboctahedral shapes with diameters
ranging between 1.34 and 3.12 nm containing up to 3784
valence electrons. We use several closed-shell systems
that were previously determined to have stable shapes
and stoichiometries [27,28], as summarised in Table 1
and shown in Figure 1.

The time-dependent electron density was obtained
with sTDDFT for all systems except the smallest,
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Table 1. Summary of the structures.

Nanoparticle Ne Size (nm) Shape

Au44 484 1.34 Oct.
Au146 1606 2.23 Oct.
Au344 3784 3.12 Oct.

Au62 682 1.34 Tr.Cb.
Au104 1144 1.64 Tr.Cb.

Au116 1276 1.61 Cuboct.
Au147 1617 2.23 Cuboct.

Note: Oct., Tr.Cb. and Cuboct. refers to octahedron, truncated cube and cuboc-
tahedrons, respectively.

Au44 and Au62, where deterministic calculations were
employed. The TDDFT time step was δτ = 0.03 a.u. and
for the stochastic calculations we used Nζ = 400 pro-
jected random vectors ζ . This value of Nζ enables stable
propagation up to 12 fs. The stochastic propagation is
especially stable for this metallic system where the dipole
is strongly damped.

The TDDFT optical absorption cross sections were
calculated for each system and are shown in Figure 1.
With the exception of Au260, all systems have their first
absorption local maximum at 2.8 eV, a 0.4 eV blueshift
from values measured in n-heptane [30]. The presence
of a polarisable medium (the n-heptane solvent) results
in shifting the peaks to lower energies and explains,
at least partially, the discrepancy between experiment
and our calculations of nanoparticles in vacuum. While
this peak is clearly found in the spectra of truncated
cubes and cuboctahedra, its signature is much weaker for
octahedra.

We discuss the spectral features in the three spectral
regions, going from the larger to the smaller systems (cf.
Figure 1):

(1) Intensity at lower frequencies (5–10 eV): For the
two largest systems (Au344 and Au260) only a single
peak is observed (at 6.8 and 7.1 eV for the two
systems, respectively). As the nanoparticle diame-
ter decreases the peak is split into three (where the
sidebands are marked by stars). The small truncated
cubes Au62 and Au104 always exhibit three maxima
in this region. Note that except for the smallest sys-
tems (Au44 and Au62), the central peak dominates
this spectral region.

(2) Themid-range (10–16 eV): The octahedral nanopar-
ticles exhibit a splitting of a broad maximum found
at 13.3 eV for Au344. Spectra for other nanoparticle
geometries show several local maxima.

(3) High frequencies (17–22 eV): Here, a single major
peak is found, shifting to higher frequencies as
the system size increases. Splitting is observed for
truncated cubes (emphasised by stars above the
corresponding peaks in the figure). Note that cuboc-
tahedra do not exhibit the splitting as can be
seen from comparison of Au104 and Au116 in the
figure.

The transition from quantum to classical
absorption

As the system size gets smaller, the spectra change. One
manifestation is that the frequency spectrum becomes
more refined, as mentioned above. This is manifested
clearly already at the level of the time-dependent dipole
moment per valence electron, μx(t)/Ne (Equation (4)),
shown in Figure 2 for the largest and smallest systems
investigated. At early times, the two μx(t) curves are
almost indistinguishable and the difference in system size

Figure 1. Photoabsorption cross-section spectra for Au octahedra (left panel), cubes (middle panel) and cuboctahedra (right panel).
The TDDFT (black curve) and FDTD (shaded are) results are superimposed. Vertical dashed lines show the position of the main peaks.
The splittings of the main peaks in the low (5–10 eV) and medium (17–22 eV) frequency regions are indicated by stars (*). Note that the
statistical errors in the sTDDFT (employed for cluster sizes bigger than Au62) are smaller than the line width so that the features in the
small-cluster spectra are not artefacts.
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Figure 2. Induced dipole per valence electron as a function of
time for the smallest (full line) and the largest (dashed line) sys-
tems investigated.

Table 2. Values of the Lorentz–Drude model parameters.

Oscillator ωj fj �j

0 0.000 1.234 0.000
1 0.523 0.000 1.735
2 4.000 2.479 5.506
3 12.921 1.980 7.467
4 18.831 2.405 3.223
5 25.568 20.000 3.325

Notes: Values are given in eV. The plasma frequency was taken from [32] as
9.03 eV.

shows up at later times, where the large system’s dipole
decays faster.

The next stage is to compare to the classical spectrum.
For this, we need to supply the K oscillators’ parameters.
Typically, they are fitted to experimentally measured real
and imaginary optical dielectric functions of the mod-
elled bulk gold [31,32]. However, our goal is to focus on
the transition from quantum to classical absorption for
nanoparticles in the quantum regime, i.e. that are smaller
than 3–5 nm[33]. Therefore, we fitted the K oscillators’
parameters to the TDDFT absorption cross section for
the largest gold nanoparticle (Au344) and then use the
same dielectric function for all FDTD (classical) calcu-
lations. The fit used a large frequency range, 0.5–25 eV,
well above the 5.3 eVwork function of gold [34].We used
the Differential Evolution algorithm [35] to find oscilla-
tor parameters which minimise the following objective
function:

χ2 =
∫ ∣∣∣∣σTDDFT(ω) − σFDTD(ω)

σTDDFT(ω)

∣∣∣∣ dω. (16)

We found an optimal fit using K=6 oscillators shown in
Table 2.

Comparing the classical and TDDFT spectra in
Figure 1 reveals that for all systems smaller than Au344
the finer observed behaviour is not captured well. Only
the first peak at 2.8 eV is correctly found to be insensitive
to system size and shape, in agreement with results from

sTDDFT calculations. For all systems, FDTD spectra are
very smooth and show only three major peaks.

The first maximum shows slight size dependence, its
position for Au344 and Au44 is shifted by 0.4 eV to lower
frequencies for the smaller nanoparticle, but no splitting
is observed. The position of other peaks in the FDTD
spectra remains unchanged. Furthermore, TDDFT cap-
tures slight shape difference between Au116 and Au104
as symmetrical splitting of the peak at 19.7 eV, which
is completely absent in the FDTD results. We note that
the lack of shape dependence in the FDTD spectra can-
not be attributed to the coarseness of the real-space
grid employed in the classical simulation since that was
well converged even for the smallest system investigated
(Au44). Instead, we attribute the changes in the spectra
to quantum signatures and decreased DOS population in
the Fermi energy.

For small nanoparticle sizes, quantum confinement
effects dominate the spectra and individual electronic
states couple more strongly to the nanoparticle surface.
Furthermore, broad spectral features break down to indi-
vidual electronic transitions leading to multiple sharp
maxima. Within the classical FDTD approach, the shape
of the system is treated as homogeneous and isotropic
polarisable continuum but its precise geometry (octahe-
dron, cuboctahedron or truncated cube) has only negli-
gible effect on the resulting absorption.

Summary and conclusions

We used an FDTD Maxwell solver and our newly devel-
oped sTDDFTmethod to investigate the effect of size and
shape on the absorption cross section of gold nanopar-
ticles as large as 3 nm. The sTDDFT calculated spec-
tra show features that are consistent with the classical
Maxwell theory as the system approaches the bulk limit.
Moreover, the fine structure, significant in the small
systems, agree with our a priori expectation: in large
particles where the properties are essentially metallic,
the infinite number of states will result in a continuous,
smooth absorption spectrum. As the systems become
smaller, the finite number of states lead to discretisation
and splittings in the spectra. This is in line with experi-
mental results where individual gold nanoparticles below
3 nm show reduction in the DOS of the Fermi level [22],
and is reflected by the jagged nature of the spectrum for
small clusters.

Based on these observations, we conclude that even
whenwe force the classicalmethods to fit qualitatively the
TDDFT optical properties of gold nanoparticles at 3 nm,
it will lose the finer detail for smaller nanoparticles.

Our studies verify that sTDDFT is a valid technique
for calculating absorption cross section of bulk-like gold
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nanoparticles. They also show that for particles smaller
than 3 nm, fully quantummethods are required to predict
the finer details of the absorption cross-section spectra.

Acknowledgments

The calculations were performed as part of the XSEDE [36]
computational project TG-CHE170058.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

D.N. acknowledges support by the NSF Division of Materials
Research grantDMR/BSF-1611382, E.R. acknowledges support
by theNSFDivision of Chemistry grant CHE-1465064 andR.B.
acknowledges the support of theUnited States-Israel Binational
Science Foundation grant BSF 2015687.

References

[1] D. Guo, G. Xie and J. Luo, J. Phys. D 47 (1), 013001 (2013).
[2] K.A.Willets and R.P. VanDuyne, Annu. Rev. Phys. Chem.

58, 267 (2007).
[3] K.M. Mayer and J.H. Hafner, Chem. Rev. 111 (6), 3828

(2011).
[4] K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan,

R.R. Dasari and M.S. Feld, Phys. Rev. Lett. 78 (9), 1667
(1997).

[5] P. Christopher, H. Xin and S. Linic, Nat. Chem. 3 (6), 467
(2011).

[6] R.C. Boutelle, D. Neuhauser and S. Weiss, ACS Nano 10
(8), 7955 (2016).

[7] D. Solis Jr, A. Paul, J. Olson, L.S. Slaughter, P. Swanglap,
W. Chang and S. Link, Nano Lett. 13 (10), 4779 (2013).

[8] K.R. Catchpole and A. Polman, Appl. Phys. Lett. 93 (19),
191113 (2008).

[9] S. Lal, S.E. Clare and N.J. Halas, Acc. Chem. Res. 41 (12),
1842 (2008).

[10] C.F. Bohren, D.R. Huffman, Absorption and Scattering of
Light by Small Particles (Wiley, New York, 1998).

[11] D. Gall, J. Appl. Phys. 119 (8), 085101 (2016).
[12] K.L. Kelly, E. Coronado, L.L. Zhao and G.C. Schatz, J.

Phys. Chem. B 107 (3), 668 (2003).
[13] R.C. Boutelle, Y. Gao, C. Arntsen and D. Neuhauser, J.

Phys. Chem. C 117 (18), 9381 (2013).

[14] J.A. Scholl, A.L. Koh and J.A. Dionne, Nature 483 (7390),
421 (2012).

[15] U. Kreibig and L. Genzel, Surf. Sci. 156, 678 (1985).
[16] G. Mie, Ann. Phys. 330 (3), 377 (1908).
[17] A.F. Oskooi and D.R. andothers, Comput. Phys. Com-

mun. 181, 687 (2010).
[18] U. Kreibig and M. Vollmer, Optical Properties of Metal

Clusters, Vol. 25 (Springer Science and Business Media,
Berlin, 2013).

[19] L. Genzel, T.P. Martin and U. Kreibig, Z. Phys. B 21 (4),
339 (1975).

[20] K. Lindfors, T. Kalkbrenner, P. Stoller and V. Sandoghdar,
Phys. Rev. Lett. 93 (3), 037401 (2004).

[21] S. Berciaud, L. Cognet, P. Tamarat and B. Lounis, Nano
Lett. 5 (3), 515 (2005).

[22] H. Liu, B.S. Mun, G. Thornton, S.R. Isaacs, Y. Shon, D.F.
Ogletree and M. Salmeron, Phys. Rev. B 72 (15), 155430
(2005).

[23] R. Baer, D. Neuhauser and E. Rabani, Phys. Rev. Lett. 111,
106402 (2013).

[24] D.Neuhauser, Y.Gao, C. Arntsen, C. Karshenas, E. Rabani
and R. Baer, Phys. Rev. Lett. 113 (7), 076402 (2014).

[25] E. Rabani, R. Baer andD. Neuhauser, Phys. Rev. B 91 (23),
235302 (2015).

[26] Y. Gao, D. Neuhauser, R. Baer and E. Rabani, J. Chem.
Phys. 142, 034106 (2015).

[27] A.S. Barnard, Rep. Prog. Phys. 73, 086502 (2010).
[28] A.S. Barnard, Acc. Chem. Res. 45, 1688 (2012).
[29] J.P. Perdew and Y. Wang, Phys. Rev. B 45 (23), 13244

(1992).
[30] L.J. Mendoza Herrera, D. Munetón Arboleda, D.C.

Schinca and L.B. Scaffardi, J. Appl. Phys. 116 (23), 233105
(2014).

[31] A. Vial and T. Laroche, J. Phys. D 40 (22), 7152 (2007).
[32] A.D. Rakić, A.B. Djurišić, J.M. Elazar andM.L. Majewski,

Appl. Opt. 37 (22), 5271 (1998).
[33] J.A. Scholl, A.L. Koh and J.A. Dionne, Nature 483 (7390),

421 (2012).
[34] W.M.H Sachtler, G.J.H Dorgelo and A.A. Holscher, Surf.

Sci. 5 (2), 221 (1966).
[35] K. Price, R.M. Storn and J.A. Lampinen, Differen-

tial Evolution: A Practical Approach to Global Opti-
mization (Springer Science and Business Media, Berlin,
2006).

[36] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A.
Grimshaw,V.Hazlewood, S. Lathrop,D. Lifka, G.D. Peter-
son, R. Roskies, J.R. Scott andN.Wilkens-Diehr, Comput.
Sci. Eng. 16 (5), 62 (2014).


	Introduction
	Theory
	TDDFT absorption spectra
	The transition from quantum to classical absorption
	Summary and conclusions
	Acknowledgments
	Disclosure statement
	Funding
	References

